• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      柴達木盆地西部昆北斷階帶基底花崗巖鋯石U-Pb年齡、地球化學(xué)特征及其地質(zhì)意義*

      2014-04-10 01:23:00劉桂珍張玉修薛建勤吳光大陳琰
      巖石學(xué)報 2014年6期
      關(guān)鍵詞:柴達木盆地昆侖鋯石

      劉桂珍 張玉修 薛建勤 吳光大 陳琰

      1. 西安石油大學(xué)地球科學(xué)與工程學(xué)院,西安 7100652. 中國科學(xué)院計算地球動力學(xué)重點實驗室,北京 1000493. 中國科學(xué)院大學(xué)地球科學(xué)學(xué)院,北京 1000494. 中國石油青海油田公司勘探開發(fā)研究院,敦煌 7362021.

      柴達木盆地西部基底分布有大量的有花崗巖類巖石。通過對柴達木盆地西部昆北斷階帶鉆遇的基底花崗巖樣品開展詳細的巖石學(xué)、鋯石激光探針等離子體質(zhì)譜U-Pb同位素年代學(xué)及巖石地球化學(xué)研究表明,鋯石U-Pb同位素年齡為467~450Ma,顯示基底花崗巖的結(jié)晶年齡為中-晚奧陶世,屬于加里東期巖漿侵入旋回。詳細的巖石地球化學(xué)分析表明,昆北斷階帶基底花崗巖屬過鋁高鉀鈣堿性系列,其稀土元素配分模式為具有Eu負異常的輕稀土元素富集型,昆北斷階帶中南部基底花崗巖屬上地殼物質(zhì)熔融,同碰撞環(huán)境下形成的花崗巖。綜合區(qū)域上的研究成果,昆北斷階帶及其以西地區(qū)存在中奧陶世-早志留世的加里東期構(gòu)造-巖漿事件,這對探討柴達木盆地西部基底花崗巖成因類型及巖漿演化具有重要的意義。

      花崗巖;鋯石LA-ICPMS定年;加里東期; 基底;昆北斷階帶;柴達木盆地

      柴達木盆地是青藏高原內(nèi)部最大的、沉積巨厚的山間盆地(青海省地質(zhì)礦產(chǎn)局, 1991; Yinetal., 2008a; 陳宣華等, 2010)。地貌上,柴達木盆地周緣分別被阿爾金山、祁連山和東昆侖山所圍限。構(gòu)造上,柴達木盆地西北邊界是左行走滑的阿爾金斷裂(Meyeretal., 1998; Cowgilletal., 2004a, b; Cowgill, 2007),東北邊界是祁連山-南山逆沖斷裂帶(Burchfieletal., 1989; Tapponnieretal., 1990; Yinetal., 2007, 2008a, b),南界為東昆侖及其西部的祁漫塔格逆沖斷裂帶(Tapponnieretal., 1990; Jolivetetal., 2003; Yinetal., 2008a, b; 圖1a)。

      圖1 青藏高原構(gòu)造格架(a,據(jù)Zhang et al., 2004修改)和昆北斷階帶基底構(gòu)造圖(b,據(jù)陳國民等,2011修改)Fig.1 Sketch tectonic map of Tibetan Plateau (a, after Zhang et al., 2004) and basement sketch structure map of the north Kunlun faults zone, western Qaidam Basin (b, after Chen et al., 2011)

      柴達木盆地西部昆北斷階帶位于祁漫塔格山前,基底為淺變質(zhì)巖和花崗巖類(青海省地質(zhì)礦產(chǎn)局, 1991; 圖1b)。目前,對祁漫塔格地區(qū)侵入巖地球化學(xué)和年代學(xué)的研究比較多,而對處于覆蓋區(qū)的昆北斷階帶基底侵入巖研究比較少,更缺乏同位素年代學(xué)和地球化學(xué)約束。近年來,隨著昆北斷階帶基巖獲得油氣突破,油氣地質(zhì)研究和石油鉆探為深入探討昆北斷階帶基底演化創(chuàng)造了條件(陳國民等,2011;圖2)。本文采集柴達木盆地昆北斷階帶基底花崗巖鉆井巖心,進行激光剝蝕等離子質(zhì)譜(LA-ICPMS)鋯石U-Pb同位素年代學(xué)研究,確定花崗巖結(jié)晶年齡,結(jié)合巖石地球化學(xué)特征,對比鄰區(qū)露頭區(qū)資料,探討柴達木盆地西部基底構(gòu)造-巖漿作用及其地質(zhì)意義。

      圖2 昆北斷階帶鉆井巖性剖面及花崗巖采樣位置Fig.2 The lithologic columnar sections of three drilling cores and granite sample locations from north Kunlun faults zone

      1 區(qū)域地質(zhì)概況

      東昆侖造山帶西段北部的祁漫塔格與柴達木盆地一起以阿爾金南緣斷裂為界與阿爾金造山帶相隔,北東方向與柴達木盆地相鄰,南側(cè)以昆南斷裂為界與松潘-甘孜-復(fù)理石帶相接(Burchfieletal., 1989; Zhang, 2002; Zhangetal., 2014a, b; 圖1a)。關(guān)于祁漫塔格地區(qū)地質(zhì)構(gòu)造認識和構(gòu)造單元劃分存在多種不同的意見(青海省地質(zhì)礦產(chǎn)局,1991;姜春發(fā)等,1992;許志琴等,1996;李廷棟和肖序常,1996)。李榮社等(2008)以昆北斷裂(東昆侖逆沖斷裂系)、昆中斷裂(左行走滑的昆侖斷裂)斷裂為界將其劃分為北昆侖(北祁漫塔格)早古生代巖漿弧帶、中昆侖微陸塊(早古生代復(fù)合巖漿弧帶)和南昆侖早古生代增生楔雜巖帶。

      柴達木盆地基底包括前震旦紀結(jié)晶基底和震旦紀-三疊紀未變質(zhì)-淺變質(zhì)基底兩部分(翟光明等,2002)。盆地基底中西部包含有淺變質(zhì)的元古界穩(wěn)定型沉積建造及加里東期、海西期與印支期侵入巖(陳宣華等,2011)。柴達木盆地內(nèi)部構(gòu)造具有明顯的三分特點,根據(jù)地質(zhì)構(gòu)造發(fā)育的差異性,柴達木盆地具有南北分帶、東西分塊的基本構(gòu)造格架,可以劃分為以下3個一級構(gòu)造單元:北部斷塊帶、西部坳陷區(qū)和東部坳陷區(qū)三個單元,昆北斷階帶是西部坳陷中的一個二級構(gòu)造單元(陳宣華等,2010;陳國民等,2011;圖1b)。

      昆北斷階帶北西西向延伸呈帶狀展布,以祁漫塔格北緣逆沖斷裂(東昆侖逆沖斷層系北緣斷裂)與北祁漫塔格相鄰,逆沖斷層系主要由一系列北傾、向南仰沖的逆沖斷層組成(陳宣華等,2010;圖1b)。昆北斷階帶基底的上覆地層為古新統(tǒng)和始新統(tǒng)碎屑巖沉積地層(青海省地質(zhì)調(diào)查院,2004*青海省地質(zhì)調(diào)查院. 2004. 1:25萬庫朗米其提幅區(qū)域地質(zhì)調(diào)查報告(內(nèi)部報告, 未出版). 1-412)。在研究區(qū),鉆井與地震反射資料顯示上新世以來控制油砂山-尕斯庫勒盆-山系統(tǒng)的隱伏花土溝斷裂,其作用的前鋒向南擴展,在祁漫塔格內(nèi)部形成向南仰沖的祁漫塔格逆沖斷層和相應(yīng)的小型逆沖斷層,將元古代片麻巖和古生代花崗巖推覆到奧陶紀、石炭紀和古近紀地層之上,并將昆北斷階帶基底劃分為若干次級構(gòu)造單元(陳宣華等,2010;陳國民等,2011;圖1b)。本文主要研究昆北斷階帶中南部由鉆井鉆遇的基底花崗巖,進行同位素年代學(xué)和巖石地球化學(xué)研究,探討柴達木盆地昆北斷階帶基底構(gòu)造-巖漿活動(圖1b、圖2)。

      2 樣品采集及分析方法

      2.1 樣品采集

      樣品采集于Qie6、Qie7和Qie603等3口鉆井鉆遇的基底花崗巖(圖1b、圖2),進行同位素年代學(xué)與巖石地球化學(xué)分析。在鉆井取樣段花崗巖多具有不同程度油氣顯示,并發(fā)育不同期次構(gòu)造裂縫,花崗巖有輕微蝕變,影響了花崗巖的新鮮程度(圖2、圖3)。

      圖3 昆北斷階帶基底花崗巖特征(a) Qie603,2104m,花崗巖巖心;(b) Qie7,2182m,花崗巖巖心;(c、d) Qie603,2104.6m,花崗巖顯微特征,Q-石英,Pl-斜長石,Bt-黑云母,(c)為單偏光,(d)為正交偏光Fig.3 Characteristics of basement granites from north Kunlun faults zone (a) well core of Qie603, 2104m; (b) well core of Qie7, 2182m; (c, d) diagnostic signatures of granites from Qie603 well core, 2104.6m, Q-quartz, Pl-plagioclase, Bt-biotite, (c) and (d) with single and crossed polar respectively

      2.2 分析方法

      在對巖心觀察描述基礎(chǔ)上,對花崗巖類進行詳細巖石學(xué)、巖相學(xué)分析,選擇蝕變輕的樣品進行主量、微量元素分析,以及鋯石LA-ICPMS U-Pb同位素年代學(xué)分析。

      用于主量、微量元素分析的花崗巖樣品,首先碎成小塊體,用Mili-Q超凈水在超聲儀中清洗30ms,再用約1.0mol/L的稀鹽酸浸泡2h,以除去可能有的晚期碳酸鹽巖礦物和浮塵,最后再次用Mili-Q超凈水清洗并烘干。在不銹鋼研缽中無污染粉碎至200目以下。樣品主量、微量含稀土元素分析在西北大學(xué)大陸動力學(xué)國家重點實驗室完成,其中主量組分采用X熒光光譜進行(XRF),分析精度優(yōu)于1%;微量與稀土元素利用SX-2型電感耦合等離子體質(zhì)譜儀(ICPMS)測定,其分析方法見Gaoetal.(1999)。

      用于鋯石LA-ICPMS U-Pb同位素年代學(xué)分析的樣品,粉碎后進行人工重砂和電磁精選,然后在雙目鏡下挑選鋯石,鋯石的陰極發(fā)光(CL)圖像分析和LA-ICPMS U-Pb年齡測試在西北大學(xué)大陸動力學(xué)國家重點實驗室完成。CL發(fā)光儀為加載于掃描電鏡上的英國Gatan公司的Mono CL3+型陰極發(fā)光探頭。LA-ICPMS分析采用Agilent 7500型ICP-MS和德國LambdaPhysik公司的ComPex102 ArF準分子激光器(工作物質(zhì)ArF,波長193nm),以及MicroLas公司的GeoLas 200M光學(xué)系統(tǒng)聯(lián)機進行,激光束斑直徑為30μm,激光剝蝕樣品的深度為20~40μm。實驗中采用He作為剝蝕物質(zhì)的載氣,用美國國家標準技術(shù)研究院研制的人工合成硅酸鹽玻璃NIST SRM610作為標準參考物質(zhì)進行儀器最佳化。采樣方式為單點剝蝕,數(shù)據(jù)采集選用一個質(zhì)量峰一個點的跳峰方式,每完成4~5個測點的測定,加測標樣一次。在鋯石樣品分析15~20個點前后各測2次NIST SRM610。鋯石年齡采用國際標準鋯石91500作為外部標準物質(zhì),元素含量采用NIST SRM610作為外標,29Si作為內(nèi)標。測試結(jié)果由Glitter(ver 4.0, Macquarie University, Griffinetal., 2008)軟件計算得出,并按照Andersen的方法(Andersson, 2002),用LA-ICPMS Common Lead Correction(V. 3.15)對其進行普通鉛校正,年齡計算及諧和圖采用Isoplot(V.3)程序完成(Ludwig, 2003)。詳細分析步驟和數(shù)據(jù)處理方法及參數(shù)見Gaoetal.(2002)和柳小明等(2002)。

      3 分析結(jié)果

      3.1 巖石學(xué)特征

      昆北斷階帶基底花崗巖主要為灰白色-淺肉紅色,中-細?;◢徑Y(jié)構(gòu),塊狀構(gòu)造。礦物粒徑在0.36~6.44mm之間,成分為斜長石(20%)、鉀長石(30%)、石英(25%)、黑云母(15%)、角閃石(1%)及其它(7%)(圖3),副礦物主要為鋯石、榍石等,偶見有鉀長石似斑晶,基質(zhì)為斜長石(圖3b,d)。斜長石呈半自形板狀或粒狀晶,具有簡單環(huán)帶構(gòu)造,鈉長石雙晶常見An26,為中長石;鉀長石他形晶,石英它形粒狀,黑云母板狀、片狀,為二長花崗巖(圖3)。

      圖4 昆北斷階帶基底花崗巖鋯石陰極發(fā)光特征Fig.4 Zircon cathodoluminescence (CL) images of basement granites from north Kunlun faults zone (a)-sample Qie7; (b)-sample Qie6; (c)-sample Qie603

      3.2 鋯石特征與U-Pb年齡

      樣品Qie7花崗巖中鋯石主要呈短柱狀或長柱狀,長軸約60~200μm,振蕩環(huán)帶較寬(圖4a)。樣品Qie6花崗巖的鋯石陰極發(fā)光圖像顯示鋯石長軸約50~200μm,大小變化大,大部分呈長柱狀,少數(shù)為短柱狀,鋯石巖漿振蕩環(huán)帶清晰且較寬(圖4b)。樣品Qie603花崗巖的鋯石主要呈長柱狀,長軸約60~220μm(圖4c)。陰極發(fā)光圖像顯示幾乎所有的鋯石均具有較典型的巖漿振蕩環(huán)帶,約20%的鋯石有較小的老核,顯示巖漿成因鋯石特征(圖4)。

      根據(jù)鋯石陰極發(fā)光圖像,選擇晶形完整、顆粒較大的鋯石顆粒進行鋯石U-Pb同位素組成分析,分析結(jié)果見表1。樣品Qie7、Qie6和Qie603花崗巖鋯石的Th/U比值變化范圍于0.35~1.00(表1),均遠大于0.10,表明所測鋯石具有巖漿成因的特點(Rubatto and Gebbauer, 2000; Belousovaetal., 2002; Molleretal., 2003)。

      分析Qie7樣品24個測點,剔除1個缺少207Pb/206Pb比值的測點(Qie7-4),另有7個測點(Qie7-1,Qie7-3,Qie7-5,Qie7-15,Qie7-16,Qie7-17,Qie7-24)不諧和(表1)。一個核部測點的諧和年齡為521±9Ma,其余15個測點形成一個年齡集中區(qū),206Pb/238U加權(quán)平均年齡為467±4Ma(n=15,MSWD=0.26;圖5a,a′;表1)。

      樣品Qie6分析24個測點,其中有3個測點(Qie6-10,Qie6-15,Qie6-20)不諧和(表1),其余所有的測點均分布在諧和線附近,且集中分布(圖5b,b′)。計算得到206Pb/238U加權(quán)平均年齡為451±3Ma(n=21,MSWD=0.15;圖5b,b′;表1)。

      樣品Qie603分析24個測點(表1),所有測點均分布在諧和線附近,并集中分布,計算得到206Pb/238U加權(quán)平均年齡為450±2Ma(n=24,MSWD=0.54;圖5c,c′;表1)。

      綜上所述,昆北斷階帶基底3件花崗巖樣品Qie7、Qie6、Qie603的鋯石加權(quán)平均年齡分別為467±4Ma、451±3Ma和450±2Ma(圖5a-c′;表1)。

      3.3 巖石地球化學(xué)

      昆北斷階帶中南部基底花崗巖類主量組分中,SiO2含量68.47%~71.24%,屬于酸性巖。K2O含量3.66%~4.19%,Na2O含量3.01%~3.75%,K2O含量大于Na2O含量,CaO含量1.28%~1.6%,巖石總體顯示高鉀低鈣特點;Fe2O3、FeO含量偏高,F(xiàn)eOT/(FeOT+MgO)在0.80~0.87間,Al2O3含量12.83%~14.55%(表2)。A/CNK=1.4~1.8,平均1.6,δ=1.7~2.5,屬于鈣堿性巖(<3.3)。在K2O-SiO2圖上,屬高鉀鈣堿性系列(圖6a; Leetal., 1989),SiO2-AR圖解上,屬于鈣堿性系列(圖6b; Wright, 1969)。在A/NK-A/CNK圖解上,花崗巖屬于過鋁質(zhì)巖石系列(圖6c; Maniar and Piccoli, 1989)。

      圖5 昆北斷階帶基底花崗巖鋯石U-Pb年齡諧和圖和206Pb/238U年齡譜圖Fig.5 Zircon U-Pb concordia diagrams and 206Pb/238U age spectrum of basement granites from north Kunlun faults zone(a-a′)-sample Qie7; (b-b′)-sample Qie6; (c-c′)-sample Qie603

      圖6 昆北斷階帶基底花崗巖系列判別圖解Fig.6 Discrimination diagrams of basement granites from north Kunlun faults zone (a) SiO2-K2O after Le Maitre et al., 1989); (b) AR-SiO2 (after Wright, 1969); (c) A/CNK-A/NK (after Maniar and Piccoli, 1989)

      稀土總量(REE)大多在194×10-6~232×10-6間,輕稀土含量LREE=136×10-6~164×10-6,重稀土含量HREE=58.3×10-6~68.1×10-6,LREE/HREE比值為2.3~2.4,樣品的δEu值為0.7~0.8,Eu負異常明顯,中等虧損;δCe值0.9~1.1,Ce略有虧損;Eu/Sm值在0.15~0.16間(表2、圖7a)。樣品呈輕稀土富集的右傾型分布模式,輕重稀土元素分異明顯,而重稀土內(nèi)部分餾作用較弱(表2、圖7a)。在不相容元素原始地幔標準化蛛網(wǎng)圖上,強不相容元素Rb、Ba和Zr等強烈富集,Ta、Ce、Nb、Sr和Th等中等不相容元素富集中等;弱不相容元素Y 富集,樣品Ni、Pb、Zn顯較低豐度值(表2、圖7b)。該巖體的Nb/Ta值為8.5~10.4,平均為9.5;Nd/Th值為1.7~2.2,平均為1.9。

      圖7 昆北斷階帶基底花崗巖的稀土元素配分模式(a)和微量元素蜘蛛網(wǎng)圖(b)(標準化值據(jù)Sun and McDonough, 1989)Fig.7 Chondrite-normalized REE patterns (a) and primitive mantle-normalized spider grams (b) of basement granites from north Kunlun faults zone (normalization values after Sun and McDonough, 1989)

      4 討論

      4.1 巖體成巖年齡

      昆北斷階帶中南部基底3件花崗巖樣品Qie7、Qie6、Qie603鋯石LA-ICPMS U-Pb定年結(jié)果顯示,樣品加權(quán)平均年齡分為467±4Ma、451±3Ma和450±2Ma,代表該巖體的成巖年齡,巖體形成于晚奧陶世,屬于加里東期構(gòu)造旋回的產(chǎn)物。

      4.2 巖石類型

      從花崗巖類型判別圖上分析,樣品投入到混合區(qū),既有I型和S型,也有A型;從巖石化學(xué)特征上,花崗巖屬于過鋁質(zhì)巖石,基本屬于S型和A型花崗巖(圖8a-d; Whalenetal., 1987)。祁漫塔格區(qū)出露的花崗巖研究表明,加里東期花崗巖類主要分布于祁漫塔格山的北部地區(qū),由北東向和北西向兩組構(gòu)造巖漿帶組成(李榮社等,2008)。北東向構(gòu)造巖漿巖帶,巖體規(guī)模大、分布較廣泛,相應(yīng)的巖石類型依次為A型、A+S型、S+A型,總體以A型為主,局部發(fā)育少量的S型,I型極少;北西向構(gòu)造巖漿巖帶,巖體規(guī)模相對較小,巖石類型以I型為主(伍躍中等,2009a,b)。因此,昆北斷階帶中南部基底花崗巖與區(qū)域出露的同期花崗巖具有相似性,基本上是A+S型。

      圖8 昆北斷階帶基底花崗巖判別圖(底圖據(jù)Whalen et al., 1987)Fig.8 Discrimination diagrams of basement granites from north Kunlun faults zone (after Whalen et al., 1987)

      4.3 巖石成因

      花崗巖的Nb/Ta值為8.5~10.4,平均為9.5,明顯低于幔源巖石(17.5±2, Hofmann, 1988; Green, 1995)。Nd/Th值為1.7~2.2,平均為1.9,略低于殼源巖石(~3)而明顯有別于幔源巖石(>15)(Beaetal., 2001)。因此該巖體是由幔源基性巖漿高度結(jié)晶分異形成的可能性較小,而可能具殼源特征。

      鋯石CL的圖像顯示其具有較寬的巖漿振蕩環(huán)帶,說明鋯石結(jié)晶時溫度較高,其中微量元素擴散較快(Rubatto and Gebbauer, 2000),花崗巖的里特曼指數(shù)δ值在1.7~2.5之間,平均為2.0,屬典型的鈣堿性巖,總體屬過鋁高鉀鈣堿性系列(圖6a-c′)。

      在稀土元素球粒隕石標準化配分圖上,樣品輕稀土富集的右傾型分布模式,輕重稀土元素分異明顯,而重稀土內(nèi)部分餾作用較弱(圖7a、表2)。δEu值大多在0.5~0.6間,稀土元素配分圖中Eu處顯“V”字型谷,Eu強虧損;δCe值0.9~1.1,鈰略有虧損;Eu/Sm值0.15~0.16,(La/Yb)N大于1且小于10,其特征表明花崗巖巖漿源于地殼物質(zhì)的重熔。

      在不相容元素原始地幔標準化蛛網(wǎng)圖上,樣品的強不相容元素Rb、Ba和Zr等強烈富集,Ta、Ce、Nb、Sr和Th等中等不相容元素富集中等;弱不相容元素Y富集,Ni、Pb、Zn顯較低豐度值(圖7b、表2),這些特征顯示花崗巖巖漿可能來源于地殼物質(zhì)的熔融。

      昆北斷階帶基底花崗巖與祁漫塔格露頭區(qū)加里東期的花崗巖地球化學(xué)特征類似,均屬于過鋁質(zhì)型花崗巖,并兼具S型花崗巖特征(李榮社等,2008;伍躍中等,2009a,b)。

      4.4 地質(zhì)意義

      根據(jù)出露于柴達木盆地周緣阿爾金、祁連和東昆侖的巖漿活動,可以判斷柴達木盆地基底巖漿活動主要包括前寒武紀、古生代和中生代巖漿活動(陳宣華等,2010)。與古生代火山活動相伴,東昆侖-柴達木地體發(fā)育廣泛的古生代花崗巖侵入,中酸性侵入巖往往形成規(guī)模較大的巖基,侵入活動包括加里東期、海西期、印支期和燕山期(極少量)(陳世悅,2000;陳宣華等,2010;豐成友等,2012;劉彬等,2012;陳國超等,2013;郝娜娜等,2014)。侵入巖體受NW、NNW向構(gòu)造控制明顯,在平面上呈不規(guī)則條帶狀、橢圓狀等。昆北斷階帶發(fā)育的奧陶紀中期 (467~450Ma, 本文)花崗巖代表了加里東期柴達木盆地的基底巖系,分布與走向與區(qū)域構(gòu)造線一致。

      表2昆北斷階帶基底花崗巖的主量組分(wt%)、微量和稀土元素(×10-6)分析結(jié)果

      Table 2Major (wt%), trace and rare earth elements (×10-6) data of basement granites from north Kunlun faults zone

      樣品號SiO2Al2O3Fe2O3FeOTiO2CaOMgOK2ONa2OP2O5MnO燒失量總量Qie768.4712.904.473.430.511.281.384.193.750.090.121.90100.59Qie669.7214.554.003.020.551.601.803.663.010.090.111.56102.11Qie60371.2412.833.853.020.491.301.013.823.310.060.111.17101.04樣品號LiBeScVCrCoNiCuZnGaGeRbSrQie727.02.569.5322.711.0159.13.102.8449.714.61.5615945.3Qie630.03.4211.535.215.690.05.077.7764.218.41.78156142.1Qie60325.71.849.5122.37.6101.22.733.0448.118.82.24143147.2樣品號YZrNbCsBaLaCePrNdSmEuGdTbQie734.818311.52.2679631.862.27.6027.66.030.996.330.94Qie642.120714.35.4359937.872.48.9332.97.171.097.341.07Qie60341.921812.32.4465042.469.99.1834.16.901.087.091.03樣品號DyHoErTmYbLuHfTaPbThUREELREE/HREEQie75.931.313.760.6253.980.5825.471.358.3216.43.211942.3Qie66.881.554.440.7314.540.6696.091.5015.917.95.862292.3Qie6036.561.514.290.7024.340.6466.161.1910.215.55.012322.4

      昆侖構(gòu)造巖漿巖帶是與岡底斯可以媲美的構(gòu)造巖漿巖帶,其早古生代構(gòu)造-巖漿事件序列與北祁連、阿爾金可以對比,屬于阿爾金-祁連-東昆侖加里東期構(gòu)造-巖漿活動的一部分(莫宣學(xué)等,2007)。早古生代昆侖帶的構(gòu)造-巖漿活動主要包括500~400Ma的鐵鎂質(zhì)-超鎂鐵質(zhì)巖,及形成于500~400Ma的中酸性侵入巖與火山巖。祁漫塔格地區(qū)奧陶紀的主要花崗巖類是I型(尖石山巖體,伍躍中等,2009a,b,2011;黃土泉巖體,李榮社等,2008)和S型(十字溝巖體,伍躍中等,2009a,b,2011)或I-S過渡類型(玉蘇普阿勒克塔格巖體,448Ma,李榮社等,2008),含少量A型花崗巖類(巴什爾希巖體,李榮社等,2008;高曉峰等,2010),到早志留世時期在西側(cè)的白干湖地區(qū)發(fā)育A型花崗巖(高永寶等,2009,2010;高永寶和李文淵,2011)。在庫朗米其提灘間山群中發(fā)育呈夾層或似層狀或透鏡體的火山巖夾層,基性火山巖組合的Sm-Nd年齡為468±54Ma,地球化學(xué)性質(zhì)顯示為洋殼型的拉斑玄武巖系列(李榮社等,2008)。根據(jù)祁漫塔格地區(qū)各個地質(zhì)時期,當(dāng)新的構(gòu)造巖漿巖帶形成初期,巖石類型都以I型或I+S型為主,很少出現(xiàn)A型花崗巖,但隨著時間的推移,直至構(gòu)造巖漿巖帶發(fā)展的末期,最終都以A型或A+S型為主的事實,說明該區(qū)構(gòu)造巖漿巖帶形成和活動經(jīng)歷了剪切扭動-張扭性-壓性-壓扭性-拉張或張扭性的構(gòu)造應(yīng)力環(huán)境(伍躍中等,2009a,b,2011)。從前人的研究表明,祁漫塔格地區(qū)是一個復(fù)合構(gòu)造巖漿巖帶。祁漫塔格地區(qū)花崗巖巖漿作用受北東向和北西向的兩組構(gòu)造交替作用的控制,說明該區(qū)呈弧形展布的構(gòu)造巖漿巖帶并非同一構(gòu)造機制下由板塊俯沖碰撞形成的巖漿弧,而是由北東向和北西向兩組構(gòu)造巖漿帶交替作用形成的復(fù)合巖漿巖帶(伍躍中等,2009a,b,2011)。昆北斷階帶奧陶紀中期偏A+S型花崗巖的地球化學(xué)特征與年代學(xué)研究顯示了這種特征。

      5 結(jié)論

      (1)昆北斷階帶中南部基底花崗巖鋯石LA-ICPMS U-Pb年齡為467~450Ma,顯示花崗巖的結(jié)晶年齡為中-晚奧陶世,屬于加里東期巖漿的侵入。

      (2)昆北斷階帶基底花崗巖為過鋁高鉀鈣堿性系列,其稀土元素配分模式為具有Eu負異常和Ce異常不明顯的輕稀土元素富集型,總體來說,昆北斷階帶中南部基底花崗巖成因?qū)俚貧の镔|(zhì)熔融形成的同碰撞花崗巖類。

      (3)綜合資料認為,在昆北斷階帶及以西地區(qū)存在中奧陶世-早志留世(468~430Ma)的加里東期構(gòu)造-巖漿事件,可能形成于加里東期造山運動的碰撞階段。

      Andersson J, M?ller C and Johansson L. 2002. Zircon geochronology of migmatites gneiss along the southern Mylonite Zone: A major Sveconorwegian terrane boundary in the Baltic Shield. Precambrian Research, 114(1-2): 121-147

      Bea F, Arzamastsev A, Montero P and Arzamastseva L. 2001. Anomalous alkaline rocks of Soustov Kola: Evidence of mantle-derived metasomatic fluids affecting crustal materials. Contributions to Mineralogy and Petrology, 140(5): 554-566

      Belousova EA, Griffin WL and Reilly SY. 2002. Igneous zircon: Trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143(5): 602-622

      Burchfiel BC, Molnar P, Zhao ZY, Liang K, Wang SJ, Huang MM and Sutter J. 1989. Geology of the Ulugh-Muztagh area, northern Tibet. Earth and Planetary Science Letters, 94(1-2): 57-70

      Bureau of Geology and Mineral Resources of Qinghai Province. 1991. Regional Geology in Qinghai Province. Beijing: Geological Publishing House, 1-661 (in Chinese)

      Chen GC, Pei XZ, Li RB, Li ZC, Pei L, Liu ZQ, Chen YX, Liu CJ, Gao JM and Wei FH. 2013. Geochronology and genesis of the Helegang Xilikete granitic plutons from the southern margin of the eastern East Kunlun Orogenic Belt and their tectonic significance. Acta Geologica Sinica, 87(10): 1525-1541 (in Chinese with English abstract)

      Chen GM, Xia MQ, Wan Y, Zhang PP, Yuan JX and Gong QL. 2011. Structural characteristics and exploration prospects of North-Kunlun faults zone in Qaidam basin. Natural Gas Geoscience, 22(1): 89-96 (in Chinese with English abstract)

      Chen SY, Xu FY and Peng DH. 2000. Characteristics of basement structure and their controls on hydrocarbon in Qaidam Basin. Xinjiang Petroleum Geology, 21(3): 175-179 (in Chinese with English abstract)

      Chen XH, Dang YQ, Yin A and Wang LQ. 2010. Mountain-Basin Coupling and Tectonic Evolution in Mountains around Qaidam Basin. Beijing: Geological Publishing House, 1-365 (in Chinese with English abstract)

      Chen XH, Yin A, George G, Li L and Jiang RB. 2011. Chemical geodynamics of granitic magmatism in the basement of the eastern Qaidam Basin, northern Qinghai-Tibet Plateau. Acta Petrologica Sinica, 85(2): 157-170 (in Chinese with English abstract)

      Collins WJ, Beams SD, White AJR and Chappell BM. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189-200

      Cowgill E, Yin A, Arrowsmith JR, Feng WX and Zhang SH. 2004a. The Akato Tagh bend along the Altyn Tagh fault, Northwest Tibet 1: Smoothing by vertical-axis rotation and the effect of topographic stresses on bend-flanking faults. Geological Society of America Bulletin, 116(11): 1423-1442

      Cowgill E, Arrowsmith JR, Yin A, Wang XF and Chen ZL. 2004b. The Akato Tagh bend along the Altyn Tagh fault, Northwest Tibet 2: Active deformation and the importance of transpression and strain hardening within the Altyn Tagh system. Geological Society of America Bulletin, 116(11): 1443-1464

      Cowgill E. 2007. Impact of riser reconstructions on estimation of secular variation in rates of strike-slip faulting: Revisiting the Cherchen River site along the Altyn Tagh Fault, NW China. Earth and Planetary Science Letters, 254(3-4): 239-255

      Feng CY, Wang S, Li GC, Ma SC and Li DS. 2012. Middle to Late Triassic granitoids in the Qimantage area, Qinghai Province, China: Chronology, geochemistry and metallogenic significances. Acta Petrologica Sinica, 28(2): 665-678 (in Chinese with English abstract)

      Gao S, Ling WL, Qiu Y, Zhou L, Hartmann G and Simon K. 1999. Contrasting geochemical and Sm-Nd isotopic compostions of Archean metasediments from the Kongling evolution and redistribution of REE during crutal anatexis. Geochimica et Cosmochimica Acta, 63(13-14): 2071-2088

      Gao S, Liu XM, Yuan HL, Harttendorf B, Gunther D and Hu SH. 2002. Determination of forty-two major and trace elements of USGS and NIST SRM glasses by laser ablation-inductively coupled plasma-mass spectrometry. Geostandard Newsletters, 26(2): 181-196

      Gao XF, Xiao PX, Xie CR, Fan LY, Guo L and Xi RG. 2010. Zircon LA-ICP-MS U-Pb dating and geological significant of Bashierxi granite in the eastern Kunlun area, China. Geological Bulletin of China, 29(7): 1001-1008 (in Chinese with English abstract)

      Gao YB, Li WY and Zhang ZW. 2009. Mineralization characteristics and analysis of potential in the area of Qimantag. Acta Mineralogica Sinica, 28(1): 393-394 (in Chinese with English abstract)

      Gao YB, Li WY and Tan WJ. 2010. Metallogenicl characteristics and analysis of the prospecting potential in the area of Qimantag. Northwestern Geology, 43(4): 35-43 (in Chinese with English abstract)

      Gao YB and Li WY. 2011. Petrogenesis of granites containing tungsten and tin ores in the Baiganhu deposit, Qimantag, NW China, constraints from petrology, chronology and geochemistry. Geochimica, 40: 324-336 (in Chinese with English abstract)

      Green TH. 1995. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system. Chemical Geology, 120(3-4): 347-359

      Griffin WL, Powell WJ, Pearson NJ and O’Reilly SY. 2008. GLITTER: Data reduction software for laser ablation ICP-MS. In: Sylvester P (ed.). Laser Ablation-ICP-MS in the Earth Sciences. Mineralogical Association of Canada Short Course Series, 40: 204-207

      Hao NN, Yuan WM, Zhang AK, Cao JH, Chen XN, Feng YL and Li X. 2014. Late Silurian to Early Devonian granitoids in the Qimantage area, East Kunlun Mountains: LA-ICP-MS zircon U-Pb ages, geochemical features and geological setting. Geological Review, 60(1): 201-215 (in Chinese with English abstract)

      Hofmann PF. 1988. United Plates of America, the birth of a craton: Early Proterozoic assembly and growth of Laurentia. Annual Review of Earth and Planetary Sciences, 16(1): 543-603

      Jiang CF, Yang JS, Feng BG, Zhu ZZ, Zhao M, Chai YC, Shi XD and Wang HD. 1992. Opening-Closing Tectonics of Kunlun. Beijing: Geological Publishing House, 1-207 (in Chinese with English abstract)

      Jolivet M, Brunel M, Seward D, Xu Z, Yang J, Malavieille J, Roger F, Leyreloup A, Arnaud N and Wu C. 2003. Neogene extension and volcanism in the Kunlun Fault Zone, northern Tibet: New constraints on the age of the Kunlun Fault. Tectonics, 22(5): 1052-1075

      Le MRW, Bateman P, Dudek A, Keller J, Lameyre J, Le BMJ, Sabine PA, Schmid R, Sorensen H, Streckeisen A, Wooley AR and Zanettin B. 1989. A Classification of Igneous Rocks and Glossary of Terms. Oxford: Blackwell, 1-193

      Li RS, Ji WH, Yang YC, Yu PS, Zhao ZM, Chen SJ, Men Y, Pang XP, Shi BD, Zhang WJ, Li H and Luo CY. 2008. Kunlun Mountains and Surrounding Areas Geology. Beijing: Geological Publishing House, 1-400 (in Chinese with English abstract)

      Li TD and Xiao XC. 1996. Tectonic analysis: Structure and evolution of lithosphere of Qinghai-Xizang Plateau. People’s Republic of China Ministry of Geology and Mineral Resources Geological Memoirs (5), 20: 6-20 (in Chinese with English abstract)

      Liu B, Ma CQ, Zhang JY, Xiong FH, Huang J and Jiang HA. 2012. Petrogenesis of Early Devonian intrusive rocks in the east part of Eastern Kunlun Orogen and implication for Early Palaeozoic orogenic processes. Acta Petrologica Sinica, 28(6): 1785-1807 (in Chinese with English abstract)

      Liu XM, Gao S, Yuan HL, Bodo H, Detlef G, Chen L and Hu SH. 2002. Analysis of 42 major and trace elements in glass standard references materials by 193nm LA-ICPMS. Acta Petrologica Sinica, 18(3): 408-418 (in Chinese with English abstract)

      Ludwig KR. 2003. ISOPLOT 3: A Geochronological Toolkit for Microsoft Excel: Berkeley Geochronology Centre. Special Publication, 4: 74

      Maniar PD and Piccoli PM. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5): 635-643

      Meyer B, Tapponnier P, Bourjot L, Metivier F, Gaudemer Y, Peltzer G, Guo SM and Chen ZT. 1998. Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction and oblique, strike-slip controlled growth of the Tibet Plateau. Geophysical Journal International, 135(1): 1-47

      Mo XX, Luo ZH, Deng JF, Yu XH, Liu CD, Chen HW, Yuan WM and Liu YH. 2007. Granitoids and crustal growth in the East-Kunlun orogenic belt. Geological Journal of China Universities, 13(3): 403-414 (in Chinese with English abstract)

      Moller A, O’Brien PJ, Kennedy A and Kroner A. 2003. Linking growth episodes of zircon and metamorphic textures to zircon chemistry: An example from the ultrahigh-temperature granulites of Rogaland (SW Norway). EMU Notes in Mineralogy, 5: 65-82

      Rubatto D and Gebbauer D. 2000. Use of cathodoluminescence for U-Pb zircon dating by IOM Microprobe: Some examples from the western Alps. In: Cathodolumine: Scence in Geoscinence. Berlin: Springer-Verlag, 373-400

      Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Sounders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42(1): 313-345

      Tapponnier P, Meyer B, Avouac JP, Peltzer G, Gaudemer Y, Guo SM, Xiang HF, Yin KL, Chen ZT, Cai SH and Dai HG. 1990. Active thrusting and folding in the Qilian-Shan, and decoupling between upper crust and mantle in northeastern Tibet. Earth and Planetary Science Letters, 97(3-4): 382-403

      Whalen JB, Currie K and Chappell BW. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419

      Wright JB. 1969. A simple alkalinity ratio and its application to non-orogenic granite genesis. Geological Magazine, 106(4): 370-384

      Wu YZ, Wang Z, Guo L and Tang Z. 2009a. Tectonic control for temporal and spatial variation of granitoid in southwest sector of Altyn mountains: Evidence from changes of potassium and sodium in granitoids. Acta Geotectonica et Metallogenia, 33(4): 573-587 (in Chinese with English abstract)

      Wu YZ, Wang Z, Guo L and Xiao PX. 2009b. Tectonic constraint on the temporal and spatial variation of granitoid rocks in the Qimantag region, eastern Kunlun: Evidence from the changes of potassium and sodium contents. Acta Geologica Sinica, 83(7): 964-981 (in Chinese with English abstract)

      Wu YZ, Qiao GB and Chen DH. 2011. A preliminary study on relationship between tectonic magmatism and mineralization in Qimantag area, eastern Kunlun Mountains. Acta Geotectonica et Metallogenia, 35(2): 232-241 (in Chinese with English abstract)

      Xu ZQ, Jiang M and Yang JS. 1996. Tectonophysical process at depth for the uplift of the northern part of the Qinghai-Tibet Plateau: Illustrated by the geological and geophysical comprehension profile from Golmud to the Tanggula mountains, Qinghai Province, China. Acta Petrologica Sinica, 70(3): 195-206 (in Chinese with English abstract)

      Yin A, Manning CE, Lovera O and Menola CA. 2007. Early Paleozoic tectonic and thermomechanical evolution of ultrahigh-pressure (UHP) metamorphic rocks in the northern Tibetan Plateau, Northwest China. International Geology Review, 49(8): 681-716

      Yin A, Dang YQ, Wang LC, Jiang WM, Zhou SP, Chen XH, Gehrels GE and McRivette MW. 2008a. Cenozoic tectonic evolution of Qaidam Basin and its surrounding regions (Part 1): The southern Qilian Shan-Nan Shan thrust belt and northern Qaidam Basin. Geological Society of America Bulletin, 120(7-8): 813-846

      Yin A, Dang YQ, Zhang M, Chen XH and McRivette MW. 2008b. Cenozoic tectonic evolution of the Qaidam Basin and its surrounding regions (Part 3): Structural geology, sedimentation, and regional tectonic reconstruction. Geological Society of America Bulletin, 120(7-8): 847-876

      Zhai GM, Song JG, Jin JQ, Gao WL and Xue C. 2002. Plate Tectionic Evolution and Evaluation and of Oil-basining Formation. Beijing: Publishing House of Oil Industry, 1-461 (in Chinese with English abstract)

      Zhang KJ. 2002. Escape hypothesis for the North and South China collision and the tectonic evolution of the Qinling orogen, eastern Asia. Eclogae Geologicea Helvetics, 95: 237-247

      Zhang KJ, Xia, BD, Wang GM, Li YT and Ye HF. 2004. Early Cretaceous stratigraphy, depositional environments, sandstone provenance, and tectonic setting of central Tibet, western China. Geological Society of America Bulletin, 116(9): 1202-1222

      Zhang YX, Tang XC, Zhang KJ, Zeng L and Gao CL. 2014a. U-Pb and Lu-Hf isotope systematics of detrital zircons from the Songpan-Ganzi Triassic flysch, NE Tibetan Plateau: Implications for provenance and crustal growth. International Geology Review, 56(1) : 29-56

      Zhang YX, Zeng L, Zhang KJ, Li ZW, Wang CS and Guo TL. 2014b. Late Palaeozoic and Early Mesozoic tectonic and palaeogeographic evolution of central China: Evidence from U-Pb and Lu-Hf isotope systematics of detrital zircons from the western Qinling region. International Geology Review, 56(3): 351-392

      附中文參考文獻

      陳國超, 裴先治, 李瑞保, 李佐臣, 裴磊, 劉戰(zhàn)慶, 陳有炘, 劉成軍, 高景民, 魏方輝. 2013. 東昆侖造山帶東段南緣和勒岡希里克特花崗巖體時代、成因及其構(gòu)造意義. 地質(zhì)學(xué)報, 87(10): 1525-1541

      陳國民, 夏敏全, 萬云, 張培平, 袁建新, 鞏慶林. 2011. 柴達木盆地昆北斷階帶構(gòu)造特征及油氣前景初步評價. 天然氣地球科學(xué), 22(1): 89-96

      陳世悅, 徐風(fēng)銀, 彭德華. 2000. 柴達木盆地基底構(gòu)造特征及其控油意義. 新疆石油地質(zhì), 21(3): 175-179

      陳宣華, 黨玉琪, 尹安, 汪立群. 2010. 柴達木盆地及其周緣山系盆山耦合與構(gòu)造演化. 北京: 地質(zhì)出版社, 1-365

      陳宣華, 尹安, George G, 李麗, 蔣榮寶. 2011. 柴達木盆地東部基底花崗巖類巖漿活動的化學(xué)地球動力學(xué). 地質(zhì)學(xué)報, 85(2): 157-170

      豐成友, 王松, 李國臣, 馬圣鈔, 李東生. 2012. 青海祁漫塔格中晚三疊世花崗巖: 年代學(xué)、地球化學(xué)及成礦意義. 巖石學(xué)報, 28(2): 665-678

      高曉峰, 校培喜, 謝從瑞, 范立勇, 過磊, 奚仁剛. 2010. 東昆侖阿爾克庫木湖北巴什爾?;◢弾r鋯石LA-ICPMS U-Pb定年及其地質(zhì)意義. 地質(zhì)通報, 29(7): 1001-1008

      高永寶, 李文淵, 張照偉. 2009. 祁漫塔格地區(qū)成礦地質(zhì)特征及潛力分析. 礦物學(xué)報, 28(1): 393-394

      高永寶, 李文淵, 譚文娟. 2010. 祁漫塔格地區(qū)成礦地質(zhì)特征及找礦潛力分析. 西北地質(zhì), 43(4): 35-43

      高永寶, 李文淵. 2011. 東昆侖造山帶祁漫塔格地區(qū)白干湖含鎢錫礦花崗巖: 巖石學(xué)、年代學(xué)、地球化學(xué)及巖石成因. 地球化學(xué), 40(4): 324-336

      郝娜娜, 袁萬明, 張愛奎, 曹建輝, 陳小寧, 馮云磊, 李希. 2014. 東昆侖祁漫塔格晚志留世-早泥盆世花崗巖: 年代學(xué)、地球化學(xué)及形成環(huán)境. 地質(zhì)論評, 60(1): 201-215

      姜春發(fā), 楊徑綏, 馮秉貴, 朱志直, 趙民, 柴耀楚, 施希德, 王懷達. 1992. 昆侖開合構(gòu)造. 北京: 地質(zhì)出版社, 1-207

      李榮社, 計文化, 楊永成, 于浦生, 趙振明, 陳守建, 孟勇, 潘小平, 史秉德, 張維吉, 李行, 洛長義. 2008. 昆侖山及鄰區(qū)地質(zhì). 北京: 地質(zhì)出版社, 1-400

      李廷棟, 肖序常. 1996. 青藏高原地體構(gòu)造分析——青藏高原巖石圈結(jié)構(gòu)構(gòu)造和形成演化. 中華人民共和國地質(zhì)礦產(chǎn)部專報(五), 20: 6-20

      劉彬, 馬昌前, 張金陽, 熊富浩, 黃堅, 蔣紅安. 2012. 東昆侖造山帶東段早泥盆世侵入巖的成因及其對早古生代造山作用的指示. 巖石學(xué)報, 28(6): 1785-1807

      柳小明, 高山, 袁洪林, Bodo H, Detlef G, 陳亮, 胡圣紅. 2002. 193nm LA-ICPMS對國際地質(zhì)標準參考物質(zhì)中42種主量和微量元素的分析. 巖石學(xué)報, 18(3): 408-418

      莫宣學(xué), 羅照華, 鄧晉福, 喻學(xué)惠, 劉東成, 譫宏偉, 袁萬明, 劉云華. 2007. 東昆侖造山帶花崗巖及地殼生長. 高校地質(zhì)學(xué)報, 13(3): 403-414

      青海省地質(zhì)礦產(chǎn)局. 1991. 青海省區(qū)域地質(zhì)志. 北京: 地質(zhì)出版社, 1-661

      伍躍中, 王戰(zhàn), 過磊, 唐卓. 2009a. 阿爾金山西南段花崗巖類的時空變化與構(gòu)造作用——來自鉀鈉含量變化的證據(jù). 大地構(gòu)造與成礦學(xué), 33(4): 573-587

      伍躍中, 王戰(zhàn), 過磊, 校培喜. 2009b. 東昆侖祁漫塔格地區(qū)花崗巖類時空變化的構(gòu)造控制——來自鉀鈉含量變化的證據(jù). 地質(zhì)學(xué)報, 83(7): 964-981

      伍躍中, 喬耿彪, 陳登輝. 2011. 東昆侖祁漫塔格地區(qū)構(gòu)造巖漿作用與成礦關(guān)系初步探討. 大地構(gòu)造與成礦學(xué), 35(2): 232-241

      許志琴, 姜枚, 楊經(jīng)綏. 1996. 青藏高原北部隆升的深部構(gòu)造物理作用: 以“格爾木-唐古拉山”地質(zhì)及地球物理綜合剖面為例. 地質(zhì)學(xué)報, 70(3): 195-206

      翟光明, 宋建國, 靳久強, 高維亮. 2002. 板塊構(gòu)造演化與含油氣盆地形成與評價. 北京: 石油工業(yè)出版社, 1-461

      猜你喜歡
      柴達木盆地昆侖鋯石
      鋯石成因礦物學(xué)及Lu-Hf同位素的應(yīng)用
      《昆侖之境》
      我在南昌 你在哪
      心聲歌刊(2022年3期)2022-06-06 06:31:42
      跨越昆侖
      柴達木盆地北緣鋰多金屬礦成礦條件及找礦潛力
      俄成功試射“鋯石”高超音速巡航導(dǎo)彈
      軍事文摘(2020年24期)2020-02-06 05:56:36
      柴達木盆地西部古近系石膏及其硫同位素分布特征
      昆侖
      鋯石微區(qū)原位U-Pb定年的測定位置選擇方法
      鉆石與鋯石的區(qū)別知多少?
      张北县| 翁源县| 城市| 紫金县| 赤峰市| 仪陇县| 那坡县| 鸡西市| 突泉县| 水城县| 赤城县| 西和县| 施甸县| 长兴县| 云龙县| 浦东新区| 江孜县| 观塘区| 休宁县| 禄丰县| 高青县| 西充县| 淳安县| 岑溪市| 泸水县| 囊谦县| 察隅县| 左贡县| 大厂| 融水| 汉中市| 麻阳| 石河子市| 玛曲县| 德格县| 皮山县| 乌兰浩特市| 乳山市| 襄樊市| 东台市| 靖远县|