• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    東天山圪塔山口鎂鐵-超鎂鐵質(zhì)巖體地球化學(xué)、鋯石U-Pb年代學(xué)及其對(duì)Ni-Cu成礦的指示*

    2014-04-10 01:22:49馮宏業(yè)許英霞秦克章唐冬梅郭海兵三金柱毛亞晶
    巖石學(xué)報(bào) 2014年6期
    關(guān)鍵詞:東天山輝長巖鐵質(zhì)

    馮宏業(yè) 許英霞 秦克章 唐冬梅 郭海兵 三金柱 毛亞晶,4

    1. 河北聯(lián)合大學(xué)礦業(yè)工程學(xué)院地質(zhì)系,唐山 0630092. 中國科學(xué)院礦產(chǎn)資源研究重點(diǎn)實(shí)驗(yàn)室,中國科學(xué)院地質(zhì)與地球物理研究所,北京 1000293. 新疆有色地勘局704隊(duì),哈密 8390004. 中國科學(xué)院新疆礦產(chǎn)資源研究中心,中國科學(xué)院新疆生態(tài)與地理研究所,烏魯木齊 8300111.

    新疆新近發(fā)現(xiàn)的圪塔山口鎳銅硫化物礦床位于東天山康古爾-黃山鎳銅硫化物成礦帶的東端。礦區(qū)包含4個(gè)鎂鐵-超鎂鐵質(zhì)巖體,其中Ⅰ、Ⅱ、Ⅲ號(hào)巖體均見鎳銅硫化物礦化。本文利用SIMS鋯石U-Pb法測(cè)得Ⅰ號(hào)礦化巖體輝長巖年齡為282.6±1.9Ma,不僅與東天山地區(qū)其它含Ni-Cu礦化的鎂鐵-超鎂鐵質(zhì)巖體形成時(shí)代一致,而且與塔里木玄武巖、鎂鐵質(zhì)巖墻及北山地區(qū)的鎂鐵-超鎂鐵質(zhì)巖體形成時(shí)限相一致。其形成可能與造山后伸展背景下的地幔柱疊加作用有關(guān)。地球化學(xué)數(shù)據(jù)表明圪塔山口巖體具有高M(jìn)g特征,除2個(gè)輝長巖樣品m/f值較低外,其余14個(gè)樣品集中于2.73~5.05之間,屬鐵質(zhì)超基性巖。巖石稀土元素配分模式為右傾式,輕、重稀土比2.64~3.39;含長角閃輝橄巖及部分含長角閃橄輝巖和含長橄輝巖δEu具正異常,可能與這3個(gè)巖相中存在斜長石的結(jié)晶有關(guān)。微量元素蛛網(wǎng)圖表明巖石富集大離子親石元素Cs、Rb、Ba、K、Sr,富集高場(chǎng)強(qiáng)元素U、Pb,虧損高場(chǎng)強(qiáng)元素Th、Nb等特征。主量元素SiO2-(Na2O+K2O)與(FeOT/MgO)-FeOT圖解、微量元素相關(guān)圖及微量元素比值相關(guān)圖說明圪塔山口巖體成巖物質(zhì)為來源于虧損地幔的鈣堿性玄武質(zhì)巖漿,成巖作用以巖漿結(jié)晶分異為主導(dǎo),并受到地殼的混染作用,具有較好的鎳銅硫化物礦床成礦潛力。

    鎂鐵-超鎂鐵質(zhì)巖;地球化學(xué);鋯石U-Pb測(cè)年;鎳銅硫化物成礦潛力;圪塔山口;東天山

    東疆地區(qū)是我國重要的銅、鎳、金成礦帶,其中與鎳銅硫化物礦床相關(guān)的鎂鐵-超鎂鐵質(zhì)巖體主要聚集在東天山地區(qū)的康古爾-黃山韌性剪切帶中(毛景文等,2002;秦克章等,2002,2007;Qinetal., 2003,2011;Xuetal., 2003)。許多學(xué)者對(duì)東天山鎳銅成礦帶進(jìn)行過研究(倪志耀,1991,1992;秦克章,2000;王登紅等,2000;毛景文等,2002;Xuetal., 2003;王玉往等,2004,2009;秦克章等,2003,2012;孫赫等,2006,2008;唐冬梅等,2009a;Tangetal., 2011;三金柱等,2007,2010)。區(qū)內(nèi)含鎳銅硫化物的鎂鐵-超鎂鐵質(zhì)巖體多沿康古爾-黃山深大斷裂分布,新近發(fā)現(xiàn)的圪塔山口含硫化物鎂鐵-超鎂鐵質(zhì)巖體緊鄰康古爾-黃山深大斷裂,位于圖拉爾根大型銅鎳鈷礦床的東部,相距僅18km,研究程度甚低,成巖成礦過程與時(shí)代等均未查明。而其成巖成礦時(shí)代與東天山其它鎂鐵-超鎂鐵質(zhì)巖體是否一致、巖漿源區(qū)是否相同均不明確,直接影響對(duì)其成礦前景的判斷。為了確定圪塔山口巖體的成巖成礦年齡及源區(qū)特征,本文選取了礦區(qū)Ⅰ號(hào)含礦巖體的輝長巖進(jìn)行了SIMS鋯石U-Pb年齡測(cè)試,并選擇了不同巖性的代表性樣品進(jìn)行了巖石主、微量元素地球化學(xué)分析研究,為判別其成礦地質(zhì)背景與成礦潛力提供地球化學(xué)和年代學(xué)制約。

    1 區(qū)域地質(zhì)背景

    圪塔山口鎳銅礦床大地構(gòu)造位置上處于準(zhǔn)噶爾與東天山覺羅塔格古生代溝-弧-盆體系拼接所形成的康古爾塔格-黃山韌性剪切帶上,區(qū)域上位于東天山鎳-銅成礦帶的東端(圖1)。東天山地區(qū)經(jīng)歷了多次構(gòu)造運(yùn)動(dòng),以發(fā)育東西向和北東東向區(qū)域性深大斷裂及韌性剪切斷層為特征,這些斷裂構(gòu)造為鎂鐵-超鎂鐵質(zhì)巖漿的就位與成礦提供了有利的導(dǎo)礦和容礦空間。沿康古爾-黃山深大斷裂,動(dòng)力變質(zhì)作用極其強(qiáng)烈,形成規(guī)模巨大的韌性剪切帶,以強(qiáng)烈擠壓、走滑兼韌性剪切為特征(Xuetal., 2003)。

    區(qū)域內(nèi)出露地層主要為古生界的石炭系和泥盆系,其次為中上元古界和新生界地層。中上元古界主要分布于中天山和北山地區(qū),為一套變質(zhì)碳酸鹽巖-碎屑巖地層。泥盆系和石炭系大多分布于沙泉子斷裂帶以北,主要為一套海相火山噴發(fā)-沉積建造。新生界主要為陸相碎屑沉積物,廣泛分布于區(qū)內(nèi)低洼地帶。

    區(qū)內(nèi)巖漿巖發(fā)育,侵入巖以中酸性巖類為主,其次為基性、超基性巖類,多為華力西期產(chǎn)物?;鹕綆r類以基性熔巖、中酸性熔巖及火山碎屑巖最為常見。巖體與火山巖由于受區(qū)域深大斷裂控制而多沿?cái)嗔褬?gòu)造的延伸方向展布。沿康古爾-黃山韌性剪切帶形成鎂鐵-超鎂鐵質(zhì)侵入巖帶,呈北東東向帶狀分布,從西向東分布有土墩、二紅洼、香山、黃山南、黃山、黃山東、葫蘆、馬蹄、咸水泉、圖拉爾根、圪塔山口、四頂黑山等多個(gè)巖體(圖1)。

    2 礦區(qū)地質(zhì)與巖體特征

    圪塔山口為東天山鎳銅成礦帶東端新發(fā)現(xiàn)的含鎳銅巖體,系新疆有色地勘局704隊(duì)近年來1:5萬礦調(diào)過程中的重要發(fā)現(xiàn)。礦區(qū)由4個(gè)鎂鐵-超鎂鐵質(zhì)巖體組成,出露地層主要為下泥盆統(tǒng)大南湖組和新生界地層(圖2a)。大南湖組(D1d)地層分布在康古爾-黃山斷裂帶北部,呈北東東向大面積展布,為一套海相火山噴發(fā)-沉積建造、火山碎屑沉積建造,可分為四個(gè)亞組,每個(gè)亞組之間都為斷層接觸。礦區(qū)內(nèi)僅見有第一亞組(D1d1)的一套深灰色、灰綠色、灰紫色、紫紅色厚層狀安山質(zhì)、英安質(zhì)熔巖、火山碎屑巖及灰綠色、紫紅色砂巖。新生界地層主要為第四系上更新統(tǒng)-全新統(tǒng)(Q3-4Pl)和(Q4Pl),分布于工作區(qū)中部大溝及北西部洼地內(nèi),由一套洪積物,主要由砂、礫石及亞砂土組成。

    受區(qū)域性深大斷裂的控制,礦區(qū)內(nèi)斷裂破碎帶均沿北東東向分布,以強(qiáng)烈擠壓、走滑兼韌性剪切為特征,地表巖石多表現(xiàn)為強(qiáng)片理化及斷層破碎,帶內(nèi)巖石具強(qiáng)烈糜棱巖化和塑性變形特征。該斷裂帶對(duì)區(qū)內(nèi)基性巖體的侵入具有十分重要的控制作用。

    區(qū)內(nèi)出露的巖漿巖多以侵入巖為主,為華力西期的產(chǎn)物。沿北東向分布有一系列閃長巖、安山玢巖、花崗巖及4個(gè)鎂鐵-超鎂鐵質(zhì)巖體,其中除Ⅳ號(hào)巖體沿北西向延伸外,其它3個(gè)巖體均呈脈狀,沿北東東向展布(圖2a)。

    圖1 東天山區(qū)域地質(zhì)簡(jiǎn)圖與圪塔山口Ni-Cu硫化物礦化巖體大地構(gòu)造位置(據(jù)秦克章等,2002,2007補(bǔ)充修改)1-第四紀(jì);2-泥盆紀(jì)-石炭紀(jì)沉積火山巖、變質(zhì)火山巖;3-早石炭紀(jì)弧火山巖;4-泥盆紀(jì)火山巖;5-前寒武紀(jì)變質(zhì)巖;6-康古爾-黃山韌性剪切帶;7-鎂鐵-超鎂鐵質(zhì)巖體;8-實(shí)測(cè)斷層;9-推測(cè)斷層;10-研究區(qū)Fig.1 The regional geological map of eastern Tianshan and location of Getashankou Ni-Cu bearing intrusion (Revised after Qin et al., 2002, 2007)1-Quarterary; 2-Devonian-Carboniferous metamorphosed volcano-sedimentary rocks; 3-Early Carboniferous arc-volcanic rocks; 4-Devonian volcanic rocks; 5-Pre-Camberian metamorphic basement; 6-Kanggur-Huangshan ductile shear zone; 7-mafic-ultramafic intrusion; 8-measured fault; 9-inferred fault; 10-study area

    Ⅰ號(hào)巖體:地表露頭長300m,寬100m,呈北東東向延伸的透鏡狀,傾向南東,傾角65°~69°左右。地表出露巖性主要為石英閃長巖、閃長巖、角閃輝長巖、輝長巖、輝石橄欖巖,巖漿分異演化完全。地表球形風(fēng)化發(fā)育,局部見有星點(diǎn)狀孔雀石。巖體與圍巖界線清楚,接觸帶內(nèi)局部可見細(xì)脈狀的石英脈。巖石蝕變強(qiáng)烈,主要有蛇紋石化、石棉化、透閃石化及褐鐵礦化等。鎳銅礦化主要分布于角閃輝長巖和輝石橄欖巖中,見有星點(diǎn)狀黃鐵礦、磁黃鐵礦和黃銅礦(圖3a)。

    Ⅱ號(hào)巖體:呈條帶狀,長400m,寬10~40m,巖體走向約60°,傾向南,傾角45°~69°。平面上呈環(huán)帶狀巖相分帶,沿圖2a中勘探線方向自北向南巖性依次為:角閃輝長巖相→輝石橄欖巖相→橄欖輝石巖相→輝長巖相,相鄰巖相間為漸變過渡接觸,指示分異演化完全。礦體位于巖體的中上部,主要賦存于橄欖巖相及橄欖輝石巖相中,這兩種巖相具全巖礦化特征。地表角閃輝長巖為塊狀;橄欖巖為粉末狀、碎粒狀,巖石強(qiáng)烈蝕變,橄欖石多變?yōu)樯呒y石(圖3b)或纖維狀石棉,部分風(fēng)化成褐黃色、褐紅色、紅色土狀粉末,品位較高,見有鎳華(圖3c);橄欖輝石巖多呈碎粒狀、羊糞蛋狀,見有大量網(wǎng)脈狀、纖維狀的石棉;輝長巖為碎塊狀。巖體深部總體表現(xiàn)為一透鏡狀巖體,西端埋深較小,東端埋深較大,與地表水平分帶特征相對(duì)應(yīng),巖體在垂向上也存在巖相分帶特征,即中心為橄欖輝石巖相與橄欖巖相,上部為角閃輝長巖相,下部輝長巖相(圖2b),各巖相之間無明顯界線。其中橄欖輝石巖相占巖體的大部分,該巖相局部存在礦化富集,形成低品位礦體;橄欖巖相位于巖體的中上部,為礦化最富集的賦礦巖相,往往形成高品位礦體,主要礦石礦物為磁黃鐵礦,其次為黃銅礦和鎳黃鐵礦(圖3d);輝長巖相中僅見到少量的礦化。硫化物組合與結(jié)構(gòu)構(gòu)造與東天山區(qū)域上的已知銅鎳礦床(丁奎首等,2007)相似。

    Ⅲ號(hào)巖體:位于Ⅰ號(hào)巖體東部,Ⅱ號(hào)巖體北側(cè),呈脈狀延伸,沿走向(70°)長約700m,寬5~36m,傾向南東,傾角52°~67°,巖體在地表可分為兩個(gè)巖相,上盤為輝長巖相,下盤為輝橄巖相,二者呈漸變過渡關(guān)系(圖3e),巖性主要為角閃輝長巖及含長輝橄巖,含長輝橄巖位于巖體下盤,其下與一套厚約1~6m的灰黑色炭質(zhì)片巖呈斷層接觸。地表巖石呈粉末狀、 碎粒狀, 蝕變強(qiáng)烈,主要為蛇紋石化、透閃石化。巖石中可見有大量的褐鐵礦,局部富集形成黃褐色鐵帽帶,鐵帽帶中見有大量孔雀石(圖3f)。巖體在垂向上具有薄層狀輝長巖相-橄欖巖相-角閃輝長巖相的分帶特征。巖體整體表現(xiàn)為西端基性程度相對(duì)較低,向東基性程度逐漸增高,局部見有橄欖巖相。礦石大部分為星點(diǎn)狀、浸染狀-稠密浸染狀、海綿隕鐵結(jié)構(gòu)的礦石,局部出現(xiàn)了貫入式塊狀礦石(圖3g)。

    圖2圪塔山口礦區(qū)地質(zhì)簡(jiǎn)圖(a)與6號(hào)勘探線剖面圖(b)(據(jù)新疆有色地勘局704隊(duì),2011*新疆有色地勘局704隊(duì).2011.新疆哈密市頭蘇泉地區(qū)銅鎳金礦普查年度總結(jié)報(bào)告(2011年度)修改)

    Fig.2Simplified geological map of Getashankou ore district (a) and geological profile of No.6 exploration line (b)

    圖3 圪塔山口鎂鐵-超鎂鐵質(zhì)巖體宏觀及顯微照片(a)-地表星點(diǎn)狀礦化超基性巖體;(b)-蛇紋石化橄欖石(正交光);(c)-鎳華;(d)-硫化物組成;(e)-Ⅲ號(hào)巖體地表巖相關(guān)系;(f)-地表孔雀石化;(g)-貫入的塊狀硫化物;(h)-測(cè)年輝長巖樣品照片;(i)-測(cè)年輝長巖顯微照片(正交光).Mal-孔雀石;Sulf-硫化物;Ol-橄欖石;Serp-蛇紋石;Cpx-單斜輝石;Opx-斜方輝石;Cp-黃銅礦;Po-磁黃鐵礦;Pn-鎳黃鐵礦;Mag-磁鐵礦;Hbl-角閃石;Pl-斜長石Fig.3 The macrophotograph and microphotograph of Getashankou mafic-ultramafic intrusions(a)-the disseminated ore-bearing ultramafic intrusion on the surface; (b)-olivine altered into Serpentine (crossed polar); (c)-annabergite; (d)-the composition of sulfides (reflecting microscope); (e)-the lithofacies change of intrusion Ⅲ on the surface ; (f)-the malachite-bearing intrusion on the surface; (g)-massive sulfide; (h)-image of the gabbro for age dating; (i)-microphotograph of the gabbro for age dating (crossed polar). Mal-malachite; Sulf-sulfide; Ol-olivine; Serp-serpentine; Cpx-clinopyroxene; Opx-orthopyroxene; Cp-chalcopyrite; Po-pyrrhotite; Pn-pentlandite; Mag-magnetite; Hbl-hornblende; Pl-plagioclase

    Ⅳ號(hào)巖體:地表長約420m,寬約100m,呈透鏡狀產(chǎn)出,侵位于泥盆系下統(tǒng)大南湖組第一亞組第七巖性段的凝灰?guī)r、砂巖中。地表出露巖性主要為輝長巖與角閃輝長巖,巖相相對(duì)單一,礦化程度低。其礦物組成及粒度與其它巖體有所不同,加之其走向?yàn)楸蔽飨?,因此我們推測(cè)其與其它巖體可能不是同一時(shí)期的產(chǎn)物。

    為了精確測(cè)定圪塔山口含礦巖體的形成時(shí)限及礦區(qū)構(gòu)造背景,進(jìn)而為判別巖體成礦前景及完善東天山地區(qū)的構(gòu)造演化提供年代學(xué)和地球化學(xué)制約,本文選擇了Ⅰ號(hào)巖體的輝長巖(約20kg,圖3h)及不同巖性的代表性樣品,進(jìn)行SIMS鋯石U-Pb年代學(xué)及巖石主微量的研究,測(cè)年樣品取樣位置見圖2。

    Ⅰ號(hào)巖體測(cè)年輝長巖顯微鏡下特征如圖3i所示,其礦物組成特征如下:輝石(包括斜方輝石和單斜輝石)占45%~50%,半自形-他形,總體新鮮,部分纖閃石化;角閃石:約5%,半自形-他形,多呈特征的棕色,多色性顯著,包裹輝石、長石或充填于輝石、長石的晶隙之間,說明其生成較晚;斜長石:45%~50%,自形晶-他形,自形晶者形成堆晶或被輝石、角閃石包裹,反映了其結(jié)晶早于輝石,蝕變較強(qiáng);半自形-他形者充填于晶體間隙,相對(duì)自形晶者而言,其蝕變程度較低,顯微鏡下測(cè)得其最大消光角為32.5°,對(duì)應(yīng)An牌號(hào)值57.5,為拉長石;副礦物主要包括磷灰石、鋯石、磁鐵礦、尖晶石等。

    表1圪塔山口鎂鐵-超鎂鐵質(zhì)巖體主量元素(wt%)和微量元素(×10-6)分析結(jié)果

    Table 1Major (wt%) and trace (×10-6) element compositions of Getashankou mafic-ultramafic intrusions

    樣品號(hào)GT602-127GT602-133GT803-202GT801-40GT602-85GTS602-113GTS602-120GTS602-100巖性含長角閃輝橄巖含長輝橄巖含長角閃橄輝巖角閃橄輝巖SiO239.1538.4639.0540.3939.7839.5739.5639.58TiO20.430.400.620.610.460.530.470.51Al2O36.146.026.097.166.715.695.906.16Fe2O311.7712.7113.9912.0911.0011.9211.4811.11MnO0.150.150.160.160.150.150.150.15MgO28.6628.2826.8926.4928.3928.6229.0528.30CaO3.113.193.194.063.473.143.233.46Na2O0.380.320.380.550.450.440.430.48K2O0.510.460.250.260.560.610.570.54P2O50.080.070.100.100.080.090.080.09燒失量8.238.297.956.757.957.997.748.33總量98.6198.3598.6798.6299.0098.7598.6698.71S—1.051.430.55—0.34——Fe2O3*—10.7711.2411.09—11.34——FeOT11.7212.713.8811.8410.8711.8211.3611.06Mg#0.830.810.790.810.840.830.830.83m/f4.764.353.754.285.054.714.964.97Sc11.412.715.416.412.913.213.314.5V84.782.897.611087.998.393.8105Cr20431855127117462401191821882486Co120154166124115122118124Ni14352641253716401222160713301498Cu36011311081565190358177235Zn79.778.177.083.581.476.575.776.0Rb15.515.46.866.1816.117.718.617.9Sr210185142182163132242119Y7.006.6210.910.27.708.598.429.05Zr69.862.895.787.672.484.875.296.5Nb1.331.231.501.581.791.631.381.61Cs5.565.141.931.044.104.274.986.20Ba83.893.142.455.358.583.597.757.7La2.682.713.303.352.913.342.973.56Ce6.636.538.568.686.797.627.028.52Pr0.910.851.301.300.951.101.081.20Nd4.434.116.496.034.705.285.105.49Sm1.031.051.601.521.381.381.321.52Eu0.500.430.610.550.500.530.450.55Gd1.181.121.991.821.321.281.261.35Tb0.230.210.360.330.270.240.270.29Dy1.501.382.302.101.621.601.761.80Ho0.310.280.500.410.310.320.350.38Er0.880.841.401.200.850.981.011.08Tm0.140.120.210.190.130.140.160.16Yb0.920.771.311.240.821.001.001.13Hf1.601.202.092.081.631.941.561.92Lu0.140.110.190.170.120.140.150.17Ta0.120.110.130.120.110.130.120.14Tl0.150.150.050.040.110.130.110.12Pb1.842.236.264.672.443.581.993.18Th0.410.420.400.430.370.450.420.48U0.160.210.170.190.150.170.180.20ΣREE21.4820.5130.1228.8922.6724.9623.8827.02LREE/HREE3.053.252.642.873.173.383.013.28δEu1.381.211.041.011.121.201.041.15

    續(xù)表1

    Continued Table 1

    樣品號(hào)GT602-158GT602-143GT801-48GT1002-144GT802-162GTSTC14-2GT801-113GT801-129巖性含長橄輝巖角閃輝長巖輝長巖SiO239.9738.4439.1744.2245.1450.8144.5844.02TiO20.360.460.431.010.911.220.780.86Al2O38.526.127.7210.9812.6416.5514.7214.83Fe2O311.6113.813.2912.1510.168.1910.2913.00MnO0.150.150.150.140.150.140.130.13MgO25.4227.3925.6918.1315.726.0814.2910.48CaO4.483.204.205.236.747.977.917.90Na2O0.490.360.500.792.403.361.712.34K2O0.260.460.240.120.340.550.490.32P2O50.060.080.070.170.150.180.120.13燒失量7.057.686.946.254.814.394.604.90總量98.3798.1498.4099.1999.1699.4499.6298.91FeOT11.4413.7313.0811.779.697.759.7810.34S—1.441.441.17———2.54Fe2O3*—11.0610.509.75———7.97Mg#0.810.800.790.750.760.600.730.66m/f4.293.893.792.923.201.452.731.92Sc12.312.012.718.820.530.717.318.1V79.188.783.9144148213125146Cr170418921715547582239383243Co12215814998.570.731.182.2149Ni13902807217985138459.85381776Cu5161260124820611643.44272563Zn77.581.872.582.078.987.669.778.5Rb7.8412.75.391.244.279.272.484.19Sr214151198216283541376404Y5.856.906.3616.916.222.613.015.0Zr52.071.657.213013219088.4121Nb1.231.411.053.252.743.572.032.37Cs1.873.230.800.280.260.740.290.17Ba40.058.844.875.728339680.2105La2.352.752.355.795.898.414.765.68Ce5.566.455.7614.514.219.611.213.2Pr0.740.900.772.092.062.691.601.87Nd3.304.293.819.9010.113.27.338.91Sm0.851.091.042.652.583.252.072.46Eu0.390.380.360.900.861.170.780.85Gd0.951.031.062.642.753.572.192.50Tb0.170.210.190.500.520.730.410.50Dy1.051.341.143.133.194.422.503.02Ho0.220.290.260.680.650.920.510.61Er0.650.790.681.861.802.601.481.73Tm0.100.120.110.300.280.420.220.27Yb0.650.800.651.811.802.661.411.76Hf1.161.381.303.133.134.182.373.02Lu0.100.120.090.260.280.380.210.26Ta0.090.100.100.210.190.270.140.18Tl0.070.140.040.030.030.070.020.03Pb2.475.095.309.182.544.433.626.23Th0.320.400.320.670.891.290.570.85U0.100.160.140.210.310.900.190.33ΣREE17.0720.5518.2764.0247.0146.9536.6643.62LREE/HREE3.393.383.373.083.203.173.113.09δEu1.301.081.041.041.030.981.111.03

    注:Mg#=Mg2+/(Mg2++Fe2+),m/f=(Mg2++Ni2+)/(Fe3++Fe2++Mn2+), FeOT=0.9×Fe2O3,F(xiàn)e2O3*表示扣除硫化物中鐵轉(zhuǎn)化的Fe2O3以后的Fe2O3的含量;表中所涉及到主量元素的計(jì)算及文中主量元素投圖時(shí)均按扣除燒失量后的百分含量計(jì),其中“—”表示未測(cè)試

    圖4 圪塔山口巖體主要氧化物與MgO相關(guān)性圖Fig.4 Diagrams of oxides versus MgO of Getashankou intrusions

    3 巖石地球化學(xué)

    本文選取了圪塔山口礦區(qū)輝石橄欖巖相、橄欖輝石巖相和輝長巖相的不同樣品,分別進(jìn)行了全巖主、微量元素分析。其中,主量元素分析在中國科學(xué)院地質(zhì)與地球物理研究所礦產(chǎn)資源研究重點(diǎn)實(shí)驗(yàn)室XRF-1500X射線熒光光譜儀上完成;微量元素分析在核工業(yè)地質(zhì)研究院完成,具體巖石類型及分析結(jié)果見表1,部分樣品取樣位置見圖2。

    3.1 主量元素地球化學(xué)

    圪塔山口礦區(qū)全巖SiO2含量為38.44%~50.81%,平均44.97%;Fe2O3含量為8.19%~13.99%,平均11.79%;Al2O3含量為5.69%~16.55%,平均8.87%;CaO含量為3.11%~7.97%,平均4.66%;K2O含量為0.12%~0.61%,平均0.39%;Na2O含量為0.32%~3.36%,平均0.96%;MnO含量為0.13%~0.16%,平均0.15%;TiO2含量為0.36%~1.22%,平均0.63%;MgO含量為6.08%~29.05%,平均22.99%;Mg#較高,為0.60~0.84。主要氧化物與MgO的相關(guān)性(圖4)表明:除了K2O與MgO相關(guān)關(guān)系不明確以外,SiO2、TiO2、Al2O3、CaO、Na2O與MgO呈現(xiàn)明顯的負(fù)相關(guān)關(guān)系, FeOT和MnO則呈現(xiàn)正相關(guān)關(guān)系,這與巖漿結(jié)晶時(shí)礦物的晶出順序是對(duì)應(yīng)的,說明結(jié)晶分異作用控制巖漿的主要化學(xué)成分變化。

    全巖硅堿圖表明圪塔山口鎂鐵-超鎂鐵質(zhì)巖體的巖漿屬亞堿性系列(圖5a),由于圪塔山口巖體含有較高的MgO含量,且主要為超基性巖-基性巖,不宜用FAM圖判別其巖石系列。本文利用(FeOT/MgO)-FeOT關(guān)系圖對(duì)圪塔山口巖漿的性質(zhì)進(jìn)行簡(jiǎn)單的判別,其結(jié)果表明圪塔山口巖漿具鈣堿性玄武巖向島弧拉斑玄武巖過渡的特征(圖5b)。同時(shí)礦物學(xué)的研究也證實(shí)圪塔山口巖漿為來源于地幔的鈣堿性玄武質(zhì)巖漿(Fengetal., 2012),因此圪塔山口巖漿性質(zhì)應(yīng)為以鈣堿性玄武質(zhì)巖漿為主的巖漿類型。據(jù)孫赫等(2007)、秦克章等(2012)研究,認(rèn)為東天山地區(qū)鎂鐵-超鎂鐵質(zhì)巖體巖漿具有從拉斑玄武巖向鈣堿性玄武巖過渡的趨勢(shì),鈣堿性巖漿源更有利于東天山地區(qū)巖漿鎳銅硫化物礦床的形成。圪塔山口巖體除兩個(gè)輝長巖樣品m/f值小于2之外,其余樣品m/f值介于2.73~5.05之間,而這一范圍與東天山地區(qū)的黃山、香山、黃山東巖體(王潤民等,1987)及圖拉爾根、葫蘆、白石泉巖體總體一致(孫赫等,2007),均為與巖漿型鎳銅或鉑族元素相關(guān)的類型。因此,圪塔山口鎂鐵-超鎂鐵質(zhì)巖體與東天山地區(qū)眾多鎂鐵-超鎂鐵質(zhì)巖體鎳銅硫化物礦床具有相同的、有利于形成巖漿硫化物礦床的巖漿源區(qū)特征。

    3.2 稀土與微量元素地球化學(xué)

    圪塔山口巖體稀土元素球粒隕石標(biāo)準(zhǔn)化配分模式為輕稀土富集的右傾式(圖6a),輕、重稀土比LREE/HREE為2.64~3.39;含長角閃輝橄巖及部分含長角閃橄輝巖、含長橄輝巖δEu具正異常,可能與這3個(gè)巖相中存在斜長石的結(jié)晶有關(guān)。微量元素原始地幔標(biāo)準(zhǔn)化蛛網(wǎng)圖表明樣品富集大離子親石元素Cs、Rb、Ba、K、Sr及高場(chǎng)強(qiáng)元素U、Pb,虧損高場(chǎng)強(qiáng)元素Th、Nb(圖6b),說明巖石具島弧親緣性(Cox, 1980)。在Nb-Zr相關(guān)性圖中,圪塔山口樣品基本上位于虧損型地幔區(qū)(圖7),說明成巖物質(zhì)來源于虧損的地幔。

    圖5 圪塔山口巖體巖石SiO2-(Na2O+K2O)(a,底圖據(jù)Irvine and Baragar, 1971)與(FeOT/MgO)-FeOT (b,底圖據(jù)Miyashiro and Shido, 1975)化學(xué)分類圖解CA-鈣堿性玄武巖系列區(qū);TH-拉斑玄武巖系列區(qū)Fig.5 The petrochemical Series classification diagram of SiO2-(Na2O+K2O) (a, after Irvine and Baragar, 1971) and (FeOT/MgO)-FeOT (b, after Miyashiro and Shido, 1975) for Getashankou intrusions CA-calc-alkaline basalt series; TH-tholeiite basalt series

    圖6 圪塔山口巖體球粒隕石標(biāo)準(zhǔn)化稀土元素配分圖(a, 標(biāo)準(zhǔn)化值據(jù)Boynton, 1989)與原始地幔標(biāo)準(zhǔn)化微量元素蛛網(wǎng)圖(b,標(biāo)準(zhǔn)化值據(jù)Sun and McDonough, 1989)Fig.6 Chondrite-normalized REE patterns (a, normalizing values after Boynton, 1989) and PM-normalized trace elements spider diagram (b, normalizing values after Sun and McDonough, 1989) of Getashankou intrusions

    4 SIMS鋯石U-Pb測(cè)年

    用于SIMS鋯石U-Pb年齡測(cè)定的樣品委托廊坊市河北地礦局區(qū)域礦產(chǎn)調(diào)查研究所實(shí)驗(yàn)室完成鋯石樣品的分選工作。然后將鋯石樣品、鋯石標(biāo)樣Ple?ovice(Slámaetal., 2008)和實(shí)驗(yàn)室鋯石工作標(biāo)樣Qinghu(Lietal., 2009)粘貼在環(huán)氧樹脂靶上,拋光使其暴露一半晶面。對(duì)鋯石進(jìn)行透、反射光顯微照相以及陰極發(fā)光圖像分析,以檢查鋯石的內(nèi)部結(jié)構(gòu)、選擇適宜的測(cè)試點(diǎn)位。在真空下給樣品靶鍍金以備分析。

    U、Th、Pb的測(cè)定在中國科學(xué)院地質(zhì)與地球物理研究所CAMECA IMS-1280二次離子質(zhì)譜儀(SIMS)上進(jìn)行,詳細(xì)分析方法見Lietal.(2009)。鋯石標(biāo)樣與鋯石樣品以1:3比例交替測(cè)定。U-Th-Pb同位素比值與含量分別用標(biāo)準(zhǔn)鋯石Ple?ovice(337Ma, Slámaetal., 2008)和91500(U=81×10-6, Wiedenbecketal., 1995)校正獲得,以長期監(jiān)測(cè)標(biāo)準(zhǔn)樣品獲得的標(biāo)準(zhǔn)偏差(1SD=1.5%, Lietal., 2010)和單點(diǎn)測(cè)試內(nèi)部精度共同傳遞得到樣品單點(diǎn)誤差,用標(biāo)準(zhǔn)樣品Qinghu(159.5Ma, Lietal., 2009)作為未知樣監(jiān)測(cè)數(shù)據(jù)的精確度。普通Pb的校正采用實(shí)測(cè)204Pb值,由于所測(cè)普通Pb含量非常低,可以假定其主要來源于制樣過程中帶入的表面Pb污染,以現(xiàn)代地殼平均Pb同位素組成(Stacey and Kramers, 1975)作為普通Pb組成進(jìn)行校正。同位素比值與年齡誤差均為1σ。采用ISOPLOT軟件(Ludwig, 2001)對(duì)測(cè)試數(shù)據(jù)進(jìn)行處理。

    圖7 圪塔山口巖體的Nb-Zr地幔類型判別圖(底圖據(jù)Le Roex et al., 1983)Fig.7 The Nb-Zr discrimination diagram of mantle types for Getashankou intrusions (after Le Roex et al., 1983)

    測(cè)年樣品中鋯石呈透明的長柱狀-短柱狀,自形-半自形晶,部分鋯石可見環(huán)帶狀結(jié)構(gòu),多數(shù)鋯石長軸長50~200μm,部分可達(dá)250μm。本文共分析了20粒鋯石樣品(圖8a),測(cè)試結(jié)果見表2。鋯石U、Th、Pb含量分別為466×10-6~1670×10-6,404×10-6~3011×10-6和27×10-6~119×10-6,Th/U介于0.866到1.830之間,除2個(gè)測(cè)試點(diǎn)之外均大于1.136,表明所測(cè)樣品均為典型的巖漿鋯石(Daniela, 2002)。f206%最大為0.08,表明普通Pb占全部Pb的比例很小。如圖8b所示,所有樣品均落在諧和曲線附近,所得圪塔山口輝長巖的鋯石206Pb/238U-207Pb/235U諧和年齡為282.6±1.9Ma,平均權(quán)重方差MSWD=0.15。

    圖8 圪塔山口輝長巖樣品鋯石陰極發(fā)光圖像及其U-Pb諧和年齡圖Fig.8 Cathodoluminescene images and concordia plot of U-Pb analysis of zircons separate from Getashankou gabbros

    5 討論

    5.1 成巖年齡及意義

    巖漿鎳銅硫化物礦床的成巖、成礦作用基本同時(shí)發(fā)生,因此這一輝長巖年齡(282.6±1.9Ma)可以說明圪塔山口鎳銅硫化物礦床的成巖成礦時(shí)代為早二疊世。

    東天山地區(qū)發(fā)育大量二疊紀(jì)與鎂鐵-超鎂鐵質(zhì)巖體有關(guān)的大中型巖漿型鎳銅硫化物礦床,如黃山、黃山東、黃山南、圖拉爾根、香山和葫蘆等,其成巖成礦時(shí)代為圖拉爾根I號(hào)巖體輝長巖的單顆粒鋯石U-Pb年齡為300.5±3.2Ma(三金柱等,2010);黃山東黑云母橄欖蘇長巖的SHRIMP鋯石U-Pb年齡274±3Ma(韓寶福等,2004),銅鎳硫化物礦石Re-Os等時(shí)線年齡為282±20Ma(毛景文等,2002);黃山單顆粒鋯石U-Pb年齡284Ma(Qinetal., 2011);香山輝長巖和鈦鐵輝長巖單顆粒鋯石年齡分別為285±1.2Ma和278±1.8Ma(秦克章等,2001;肖慶華等,2010;Qinetal., 2011);天宇輝長巖鋯石年齡280±2Ma(Tangetal., 2011);白石泉輝長巖鋯石年齡281.2±0.9Ma(毛啟貴等,2006),Re-Os等時(shí)線年齡為286±14Ma(王虹等,2007);葫蘆Re-Os等時(shí)線年齡為283±13Ma(陳世平等,2005)。

    綜上可知東天山地區(qū)鎂鐵-超鎂鐵質(zhì)巖體形成時(shí)代主要集中在早二疊世,個(gè)別礦區(qū)輝長巖為晚石炭世,從巖體年齡上來看,圪塔山口巖體與已知區(qū)域上大中型鎳銅礦床一致。其測(cè)年結(jié)果將東天山地區(qū)280Ma左右的幔源巖漿作用向東推進(jìn)到了中蒙邊界,從而大大拓展了東天山地區(qū)尋找該時(shí)代鎳銅礦床的空間。同時(shí)這一年齡對(duì)鄰區(qū)圖拉爾根礦床的形成也具有一定的指示意義,圖拉爾根I號(hào)巖體輝長巖鋯石年齡300.5±3.2Ma(三金柱等,2010),明顯早于區(qū)域上其它巖體的年齡,因此本文推測(cè)圖拉爾根可能存在另一期巖漿活動(dòng),有待進(jìn)一步查證。

    圖9 圪塔山口巖體同化混染判別圖(原始地幔和上下地殼值據(jù)Sun and McDonough, 1989)Fig.9 Geochemical discriminant of assimilate contamination for Getashankou intrusions (data of original mantle and crust from Sun and McDonough, 1989)

    5.2 地殼混染作用

    研究表明不同元素在不同礦物中的相容性不同,隨著結(jié)晶作用的進(jìn)行,殘余巖漿會(huì)逐漸富集早期結(jié)晶相中的不相容元素、虧損早期結(jié)晶相中的相容元素,即巖漿在結(jié)晶過程中元素豐度會(huì)隨之變化,而總分配系數(shù)相同或者很相近的元素比值不會(huì)因結(jié)晶作用而改變。因此,總分配系數(shù)相同或者很相近、對(duì)同化混染作用又敏感的元素比值間的協(xié)變關(guān)系,可以檢驗(yàn)同化混染作用的存在與否(Campbell and Griffiths, 1993; Mecdonaldetal., 2001; 姜常義等, 2007; Sunetal., 2008; Tangetal., 2012)。從圖9中可以看出巖石的Ce/Nb-Th/Nb、Ta/Yb-Th/Yb以及TiO2/Yb-La/Yb協(xié)變關(guān)系均表現(xiàn)為一致的正相關(guān),說明巖體存在明顯的同化混染作用。而Nb/Th比值介于上地殼和下地殼之間,說明同化混染的物質(zhì)可能來源于地殼。據(jù)Hofmann(1988)典型地幔的Ce/Pb值為20~30,平均25,地殼的Ce/Pb值小于15。由表1可知,圪塔山口巖體的Ce/Pb值介于1.09~5.59,為地殼值范圍,加之Nb的強(qiáng)烈虧損、Zr的明顯富集(圖6b),均表明圪塔山口巖體存在地殼的混染作用。圪塔山口礦區(qū)圍巖為泥盆系大南湖組凝灰?guī)r、砂巖等,圍巖中富含豐富的黃鐵礦,相關(guān)研究表明圪塔山口巖漿侵位過程中始終處于S飽和狀態(tài)(馮宏業(yè),2014;馮宏業(yè)等,2014),可能正是圍巖混染時(shí)帶入的S使得巖漿體系始終保持S的飽和,從而使硫化物得以不斷熔離。

    5.3 可能的構(gòu)造背景

    關(guān)于東天山地區(qū)康古爾-黃山鎳銅成礦帶鎂鐵-超鎂鐵質(zhì)巖體形成的大地構(gòu)造背景的爭(zhēng)論一直存在。姬金生等(1994)、李文鉛等(2000)認(rèn)為康古爾韌性剪切帶為縫合帶,黃山-鏡兒泉地區(qū)超基性巖為蛇綠巖套的一部分。也有學(xué)者認(rèn)為康古爾-黃山地區(qū)為弧后拉張盆地(左國朝等,1992),東天山地區(qū)銅鎳礦就產(chǎn)生于裂谷或裂陷槽背景(馮益民等,2002)。秦克章等(2002)、Qinetal.(2003)認(rèn)為東天山地區(qū)早石炭世已進(jìn)入弧后裂陷伸展階段,晚石炭世弧后盆地折返,早二疊世初結(jié)束造山,進(jìn)入造山后伸展階段,該階段形成大量的鎂鐵-超鎂鐵質(zhì)雜巖和巖漿硫化物礦床及巖漿熱液型金礦床(Qinetal., 2002; 孫赫, 2009),徐興旺等(1998)則認(rèn)為碰撞造山擠壓-伸展轉(zhuǎn)變期是韌性剪切帶型金礦和巖漿銅鎳硫化物礦的大規(guī)模成礦期。

    圖10 圪塔山口巖體TiO2-10MnO-10P2O5圖解(底圖據(jù)Mullen, 1983)OIT-大洋島弧拉斑玄武巖;OIA-大洋島弧堿性玄武巖;MORB-洋中脊玄武巖;IAT-島弧拉斑玄武巖;CAB-鈣堿性玄武巖Fig.10 The diagram of TiO2-10MnO-10P2O5 for Getashankou intrusions (after Mullen, 1983)OIT-oceanic island tholeiite; OIA-oceanic island alkalibasalt; MORB-mid-oceanic ridge basalt; IAT-island arc tholeiite basalt; CAB-calc-alkaline basalt

    對(duì)東天山地區(qū)古洋盆閉合時(shí)限及古大洋的俯沖方向的認(rèn)識(shí)也不盡相同。Qinetal.(2002,2005,2009)、孫赫(2009)通過對(duì)礦床成礦時(shí)代的演化研究,認(rèn)為東天山地區(qū)從中泥盆到晚石炭世處于洋殼的俯沖階段,早二疊世處于造山后的伸展階段。而毛啟貴等(2006)、Xiaoetal.(2008)、Aoetal.(2010)則認(rèn)為俯沖作用一直持續(xù)到三疊紀(jì)。關(guān)于俯沖方向的爭(zhēng)論主要有:北天山次大洋向塔里木板塊和準(zhǔn)噶爾板塊雙向俯沖(姬金生等,1994)、北天山次大洋或古亞洲洋向北俯沖(Xiaoetal., 2004, 2008; 胡克兵等, 2008)、準(zhǔn)噶爾大洋板塊向南俯沖、南天山洋向北俯沖(秦克章,2000;唐冬梅等,2009b;Suetal., 2012)。中天山白石泉與東天山地區(qū)其它鎂鐵-超鎂鐵質(zhì)巖體巖漿具有從拉斑玄武巖向鈣堿性玄武巖過渡的巖漿演化趨勢(shì)(孫赫等,2006)。本文采用TiO2-10MnO-10P2O5圖來判別圪塔山口巖體產(chǎn)出的構(gòu)造環(huán)境,結(jié)果如圖10所示,樣品多落于鈣堿性區(qū)及島弧拉斑玄武巖區(qū),顯示出與東天山其它巖體具有相同的構(gòu)造特征。研究表明從東天山覺羅塔格構(gòu)造帶中鎂鐵-超鎂鐵質(zhì)巖體經(jīng)中天山北緣白石泉、天宇巖體到中天山地塊南緣的北山地區(qū)鎂鐵-超鎂鐵質(zhì)巖體,俯沖板片混染的程度由強(qiáng)變?nèi)?Zhouetal., 2004; 孫赫等, 2006; Chaietal., 2008; 唐冬梅等, 2009b; 姜常義等, 2006; 蘇本勛等, 2010; Suetal., 2012)。因此本文支持東天山地區(qū)準(zhǔn)噶爾古大洋板塊向南(天山)俯沖。

    圖11 東天山-北山一帶及塔里木玄武巖成巖年齡對(duì)比圖(據(jù)Qin et al., 2011補(bǔ)充修改)Fig.11 Compiled age data of basalts and mafic/ultramafic dikes/intrusions in Tarim Basin, eastern Tianshan and Beishan (revised after Qin et al., 2011)

    東天山地區(qū)的鎂鐵-超鎂鐵質(zhì)巖體的形成是否與地幔柱活動(dòng)有關(guān)也是爭(zhēng)論的熱點(diǎn)之一。許多學(xué)者認(rèn)為東天山地區(qū)存在早二疊世地幔柱活動(dòng)(Zhouetal., 2004; 毛景文等, 2006; Maoetal., 2008; Pirajnoetal., 2008; 徐學(xué)義等, 2009; Qinetal., 2011; Suetal., 2011; 李文淵等, 2012),并認(rèn)為東天山的鎂鐵巖帶中鎳銅礦床的形成與地幔柱活動(dòng)有關(guān),如Qinetal.(2011)通過年代學(xué)與Sr-Nd同位素研究表明二者可能具有成因上的聯(lián)系,并認(rèn)為二疊世碰撞后伸展背景下的地幔柱疊加作用是形成東天山和北山鎂鐵-超鎂鐵質(zhì)巖帶的主要原因。但同時(shí)也有學(xué)者認(rèn)為東天山地區(qū)鎂鐵-超鎂鐵質(zhì)巖體的形成與地幔柱無關(guān),如鄧宇峰等(2011)通過對(duì)黃山西巖體的研究,認(rèn)為其巖漿源區(qū)與地幔柱活動(dòng)無關(guān)。

    圪塔山口巖體的主微量元素特征表明其具島弧玄武巖的特征,而不同于李文鉛等(2000)中康古爾塔格蛇綠巖的洋中脊環(huán)境,同時(shí)圪塔山口巖體的地質(zhì)特征也表明其為幔源巖漿沿構(gòu)造裂隙上侵的產(chǎn)物。因此本文認(rèn)為東天山地區(qū)的鎂鐵-超鎂鐵質(zhì)巖體不是縫合帶蛇綠巖,而是造山后伸展階段幔源巖漿上侵的產(chǎn)物。其成巖年齡282.6±1.9Ma,不僅與東天山一帶其它巖體成巖時(shí)代一致,而且與北山地區(qū)鎂鐵-超鎂鐵質(zhì)巖體形成時(shí)代相同。如坡北輝長巖鋯石U-Pb年齡274~289Ma(姜常義等,2006;李華芹等,2006,2009),羅東巖體283~284Ma(孫赫等, 2010; Aoetal., 2010),筆架山、紅石山巖體SIMS鋯石U-Pb年齡依次為279Ma、280Ma(Qinetal., 2011)。說明東天山-北山地區(qū)在270~290Ma,尤其在275~285Ma間發(fā)育了大規(guī)模的巖漿活動(dòng),同時(shí)這一年齡范圍也與塔里木地區(qū)玄武巖及鎂鐵質(zhì)巖墻形成時(shí)代一致(圖11)。因此,從形成時(shí)代上來看,東天山-北山地區(qū)鎂鐵-超鎂鐵質(zhì)巖體的形成可能與塔里木大火成巖省巖漿活動(dòng)有關(guān)。全巖Sr-Nd同位素、鋯石Hf同位素和全巖主、微量地球化學(xué)數(shù)據(jù)也顯示東天山-北山鎂鐵-超鎂鐵質(zhì)侵入巖與塔里木火山巖有成因聯(lián)系(Qinetal., 2011; Suetal., 2011)。圪塔山口鎂鐵-超鎂鐵巖體的全巖主、微量元素特征、Ni-Cu成礦特征及形成時(shí)代與東天山已知的與鎂鐵-超鎂鐵質(zhì)巖體相關(guān)的鎳銅硫化物礦床都非常相似,所以地幔柱活動(dòng)及其作用是否影響到東天山更東段巖體及成礦有待進(jìn)一步深入研究。

    6 結(jié)論

    (1)輝長巖鋯石U-Pb測(cè)年結(jié)果表明新近發(fā)現(xiàn)的圪塔山口鎂鐵-超鎂鐵質(zhì)巖體的形成年齡為282.6±1.9Ma,為早二疊世,與東天山-北山地區(qū)的鎂鐵-超鎂鐵質(zhì)巖體形成時(shí)代一致,同時(shí)也與塔里木盆地的玄武巖與鎂鐵質(zhì)巖墻的時(shí)代相同。

    (2)圪塔山口巖體是具有虧損地幔特征的鈣堿性玄武質(zhì)巖漿在以結(jié)晶分異作用為主導(dǎo),與殼源物質(zhì)混染綜合作用下的產(chǎn)物,巖體具有較好的鎳銅礦成礦潛力。

    (3)東天山鎂鐵-超鎂鐵質(zhì)巖體形成于古大洋板塊向南俯沖結(jié)束后的造山后伸展背景,其形成可能與地幔柱疊加作用相關(guān)。

    致謝野外工作得到了新疆有色地勘局704隊(duì)雷剛副總工、康峰高工,圪塔山口(頭蘇泉)項(xiàng)目部楊陽、席斌斌、馬新星、楊寶新等的支持與幫助;SIMS鋯石U-Pb年齡測(cè)試得到中國科學(xué)院地質(zhì)與地球物理研究所李獻(xiàn)華研究員等的支持;兩位匿名審稿人對(duì)論文的修改提出了寶貴的建議;在此一并致以衷心的感謝。

    Ao SJ, Xiao WJ, Han CM, Mao QG and Zhang JE. 2010. Geochronology and geochemistry of Early Permian mafic-ultramafic complexes in the Beishan area, Xinjiang, NW China: Implications for Late Paleozoic tectonic evolution of the southern Altaids. Gondwana Research, 18(2-3): 466-478

    Boynton WV. 1989. Geochemistry of the rare earth elements: Meteorite study. In: Henderson P (ed.). Rare Earth Element Geochemistry. Amsterdam: Elsevier, 63-114

    Campbell IH and Griffiths RW. 1993. The evolution and transport in the shallow mantle beneath the East Pacific Rise: Deep Sea Drilling Project. Initial Reports, 147: 103-134

    Chai FM, Zhang ZC, Mao JW, Dong LH, Zhang ZH and Wu H. 2008. Geology, petrology and geochemistry of the Baishiquan Ni-Cu-bearing mafic-ultramafic intrusions in Xinjiang, NW China: Implications for tectonics and genesis of ores. Journal of Asian Earth Sciences, 32: 218-235

    Chen SP, Wang DH, Qu WJ, Chen ZH and Gao XL. 2005. Geological features and ore formation of the Hulu Cu-Ni sulfide deposit, eastern Tianshan, Xinjiang. Xinjiang Geology, 23(3): 230-233 (in Chinese with English abstract)

    Cox KG. 1980. A model for flood basalt volcanism. Journal of Petrology, 21(4): 629-650

    Daniela R. 2002. Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology, 184(1): 123-138

    Deng YF, Song XY, Chen LM, Cheng SL, Zhang XL and Li J. 2011. Features of the mantle source of the Huangshanxi Ni-Cu sulfide-bearing mafic-ultramafic intrusion, eastern Tianshan. Acta Petrologica Sinica, 27(12): 3640-3652 (in Chinese with English abstract)

    Ding KS, Qin KZ, Xu YX, Sun H, Xu XW, Tang DM, Mao Q and Ma YG. 2007. Typomorphic characteristics and ore-forming significance of pyrrhotite in the major Cu-Ni deposits, East Tianshan, Xinjiang. Mineral Deposits, 26(1): 109-119 (in Chinese with English abstract)

    Feng HY, Xu YX, Qin KZ, Tang DM, Mao YJ, Xue SC and Zhang LF. 2012. Mineralogical studies of the Getashankou Ni-Cu sulfide-bearing mafic-ultramafic intrusions in eastern Tianshan, NW China and its implications. In: 12thInternational Ni-Cu-(PGE) Symposium. Guiyang: 226-229

    Feng HY. 2014. Ore-forming mechanism and ore-bearing property evaluation for Getashankou Ni-Cu deposit in eastern Tianshan, Xinjiang. Master Degree Thesis. Tangshan: Heibei United University, 1-175 (in Chinese with English abstract)

    Feng HY, Xu YX, Tang DM, Qin KZ, Mao YJ, Guo HB and San JZ. 2014. Mineralogical characteristics of olivine and spinel for Getashankou Cu-Ni-bearing mafic-ultramafic intrusions in eastern Tianshan, NW China. Geology and Exploration, 50(2): 346-359 (in Chinese with English abstract)

    Feng YM, Zhu BQ, Yang JL and Zhang KC. 2002. Tectonics and evolution of the eastern Tianshan Mountains: A brief introduction to Tectonic map (1:500000) of the eastern Tianshan Mountains of Xinjiang. Xinjiang Geology, 20(4): 309-314 (in Chinese with English abstract)

    Han BF, Ji JQ, Song B, Chen LH and Li ZH. 2004. SHRIMP zircon U-Pb ages of Kalatongke No.1 and Huangshandong Cu-Ni-bearing mafic-ultramafic complexes, North Xinjiang and geological implications. Chinese Science Bulletin, 49(22): 2324-2328 (in Chinese)

    Hofmann AW. 1988. Chemical differentiation of the earth: The relationship between mantle, continental crust and oceanic crust. Earth and Planetary Science Letters, 90(3): 297-314

    Hu KB, Yao SZ, Qu WJ, Du AD and Ao SJ. 2008. Re-Os isotopic analysis of the Hulu Cu-Ni sulfide deposit magmatic ore system, East Tianshan, Xinjiang, NW China. Acta Petrologica Sinica, 24(10): 2359-2370 (in Chinese with English abstract)

    Irvine TN and Baragar WRA. 1971. A guide to the chemical classification of the common volcanic rocks. J. Earth Sci., 8(5): 523-548

    Ji JS, Tao HX, Zeng ZR and Yang XK. 1994. Geology and Mineralization of the Kangguertage Gold Metallogenic Belt in Eastern Tianshan. Beijing: Geological Publishing House, 1-202 (in Chinese with English abstract)

    Jiang CY, Cheng SL, Ye SF, Xia MZ, Jiang HB and Dai YC. 2006. Lithogeochemistry and petrogenesis of Zhongposhanbei mafic rock body, at Beishan region, Xinjiang. Acta Petrologica Sinica, 22(1): 115-126 (in Chiense with English abstract)

    Jiang CY, Xia MZ, Yu X, Lu DX, Wei W and Ye SF. 2007. Liuyuan trachybasalt belt in the northeastern Tarim Plate: Products of asthenosphere mantle decompressional melting. Acta Petrologica Sinica, 23(7): 1765-1778 (in Chinese with English abstract)

    Le Roex AP, Dick HJB, Erlank AJ, Reid AM, Frey FA and Hart SR. 1983. Geochemistry, mineralogy and petrogenesis of Lavas Erupted along the Southwest Indian Ridge between the Bouvet Triple Junction and 11 Degrees East. Journal of Petrology, 24(3): 267-318

    Li HQ, Chen FW, Mei YP, Wu H, Cheng SL, Yang JQ and Dai YC. 2006. Isotopic ages of No.1 intrusive body in Pobei mafic-ultramafie belt of Xinjiang and their geological significance. Mineral Deposit, 25(4): 463-469 (in Chinese with English abstract)

    Li HQ, Mei YP, Qu WJ, Cai H and Du GM. 2009. SHRIMP zircon U-Pb and Re-Os dating of No.10 intrusive body and associated ores in Pobei mafic-ultramafic belt of Xinjiang and its significance. Mineral Deposit, 28(5): 633-642 (in Chinese with English abstract)

    Li QL, Li XH, Liu Y, Tang GQ, Yang JH and Zhu WG. 2010. Precise U-Pb and Pb-Pb dating of Phanerozoic baddeleyite by SIMS with oxygen flooding technique. Journal of Analytical Atomic Spectrometry, 25(7): 1107-1113

    Li WQ, Dong FR and Zhou RH. 2000. Ophiolite discovered in Kangurtag region and its characteristics. Xinjiang Geology, 18(2): 121-128 (in Chinese with English abstract)

    Li WY, Niu YL, Zhang ZW, Zhang MJ, Gao YB, Hu PQ, Zhang JW, Tan WJ and Jiang HB. 2012. Geodynamic setting and further exploration of magmatism-related mineralization concentrated in the Late Paleozoic in the northern Xinjiang Autonomous Region. Earth Science Frontiers, 19(4): 41-50 (in Chinese with English abstract)

    Li XH, Liu Y, Li QL, Guo CH and Chamberlain KR. 2009. Precise determination of Phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization. Geochem. Geophys. Geosyst., 10, Q04010, doi: 10. 1029/2009GC002400

    Ludwig KR. 2001. Users manual for Isoplot/Exrev. 2.49. Berkeley Geochronology Centre Special Publication. No.1a, 56

    Mao JW, Yang JM, Qu WJ, Du AD, Wang ZL and Han CM. 2002. Re-Os dating of Cu-Ni sulfide ores from Huangshandong deposit in Xinjiang and its geodynamic significance. Mineral Deposits, 21(4): 323-330 (in Chinese with English abstract)

    Mao JW, Pirajno F, Zhang ZH, Chai FM, Yang JM, Wu H, Chen SP, Cheng SL and Zhang CQ. 2006. Late Variscan post-collisional Cu-Ni sulfide deposits in east Tianshan and Altay in China: Principal characteristics and possible relationship with mantle plume. Acta Geologica Sinica, 80(7): 925-942

    Mao JW, Pirajno F, Zhang ZH, Chai FM, Wu H, Chen SP, Cheng SL, Yang JM and Zhang CQ. 2008. A review of the Cu-Ni sulfide deposits in the Chinese Tianshan and Altay orogens (Xinjiang Autonomous Region, NW China): Principal characteristics and ore-forming processes. Journal of Asian Earth Sciences, 32(2-4): 184-203

    Mao QG, Xiao WJ, Han CM, Sun M, Yuan C, Yan Z, Yong Y and Zhang J. 2006. Zircon U-Pb age, geochemistry of the Baishiquan mafic-ultramafic complex in the eastern Tianshan, Xinjiang Province: Constraints on the closure of the Paleo-Asian Ocean. Acta Petrologica Sinica, 22(1): 153-162 (in Chinese with English abstract)

    Mecdonald R, Rogers NW and Fitton JG. 2001. Plume lithosphere interactions in the generation of the basalts of the Kenys rift, East Africa. Journal of Petrology, 42(5): 877-900

    Miyashiro A and Shido F. 1975. Tholeiitic and calc-alkalic series in relation to the behaviors of titanium, vanadium, chromium, and nickel. American Journal of Science, 275(3): 265-277

    Mullen ED. 1983. MnO/TiO2/P2O5: A miner element discriminent for basaltic rocks of oceanic environments and its implications for petrogenesis. Earth and Planetary Science Letters, 62(1): 53-62

    Ni ZY. 1991. Chemical composition and petrologic significance of olivines in Huangshandong mafic-ultramafic complex in Hami, Xinjiang, China. Journal of Mineralogy and Petrology, 11(3): 40-47 (in Chinese with English abstract)

    Ni ZY. 1992. Origin of mafic-ultramafic complex: Around Huangshan in Hami, Xinjiang. Northwestern Geology, 13(2): 9-17 (in Chinese with English abstract)

    Pearce JA. 1982. Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe RS (ed.). Andesites Orogenic Andesites and Related Rocks. Chichetter: Wiley, 525-548

    Pirajno F, Mao JW, Zhang ZC, Zhang ZH, and Chai FM. 2008. The association of mafic-ultramafic intrusions and A-type magmatism in the Tianshan and Altay orogens, NW China: Implications for geodynamic evolution and potential for the discovery of new ore deposits. Journal of Asian Earth Sciences, 32(2-4): 165-183

    Qin KZ. 2000. Paleozoic Central-Asia Orogeneses and metallogenese in northern Xinjiang. Post-Doctor Research Report. Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences, 1-194 (in Chinese with English summary)

    Qin KZ, Sun S, Li JL, Hao J, Xiao WJ and Wang ZH. 2011. Temporal-spatial distribution pattern of metallic deposits as criteria of tectonic environment of northern Xinjiang. In: Proceedings of China Post-Doctor Symposium (Solid Earth Sciences Volume). Beijing: Science Press, 540-545 (in Chinese with English abstract)

    Qin KZ, Sun S, Li JL, Fang TH, Wang SL and Liu W. 2002. Paleozoic epithermal Au and porphyry Cu deposits in North Xinjiang, China: Epochs, features, tectonic linkage and exploration significance. Resource Geology, 52(4): 291-300

    Qin KZ, Fang TH, Wang SL, Zhu BQ, Feng YM, Yu HF and Xiu QY. 2002. Plate tectonics division, evolution and metallogenic settings in eastern Tianshan Mountains, NW China. Xinjiang Geology, 20(4): 302-308 (in Chinese with English abstract)

    Qin KZ, Zhang LC, Xiao WJ, Xu XW and Mao JW. 2003. Overview of major Au, Cu, Ni and Fe deposits and metallogenic evolution of the eastern Tianshan Mountains, Northwestern China. In: Mao JW, Goldfarb, RJ, Seltmann R, Wang DW, Xiao WJ and Hart C (eds.). Tectonic Evolution and Metallogeny of the Chinese Altay and Tianshan: London, Natural History Museum, International Symposium of the IGCP-473 Project, IAGOD Guidebook Series 10, Urumqi, Xinjiang, China, 227-249

    Qin KZ, Peng XM, San JZ, Xu XW, Fang TH, Wang SL and Yu HF. 2003. Types of major ore deposits, division of metallogenic belts in eastern Tianshan, and discrimination of potential prospects of Cu, Au, Ni mineralization. Xinjiang Geology, 21(2): 143-150 (in Chinese with English abstract)

    Qin KZ, Xiao WJ, Zhang LC, Xu XW, Hao J, Sun S and Li JL. 2005. Eight stages of major ore deposits in northern Xinjiang, NW-China: Clues and constraints on the tectonic evolution and continental growth of Central Asia. In: Mao JW and Bierlein F (eds.). Mineral Deposit Research: Meeting the Global Challenge. Springer, Volume 2: 1327-1330

    Qin KZ, Ding KS, Xu YX, Sun H, Xu XW, Tang DM and Mao Q. 2007. Ore potential of protoliths and modes of Co-Ni occurrence in Tulargen and Baishiquan Cu-Ni-Co deposits, East Tianshan, Xinjiang. Mineral Deposits, 26(1): 1-14 (in Chinese with English abstract)

    Qin KZ, Sun H, San JZ, Xu XW, Tang DM, Ding KS, Xiao QH and Su BX. 2009. Tectonic setting, geological features and evaluation of ore-bearing property for magmatic Cu-Ni deposits in eastern Tianshan, NW China. In: Proceedings of Xi’an International Ni-Cu (Pt) Deposit Symposium. Northwestern Geology, 42(Suppl.1): 95-99

    Qin KZ, Su BX, Sakyi PA, Tang DM, Li XH, Sun H, Xiao QH and Liu PP. 2011. SIMS Zircon U-Pb geochronology and Sr-Nd isotopes of Ni-Cu-bearing mafic-ultramafic intrusions in eastern Tianshan and Beishan in correlation with flood basalts in Tarim Basin (NW CHINA): Constraints on a ca. 280Ma mantle plume. American Journal of Science, 311(3): 237-260

    Qin KZ, Tang DM, Su BX, Mao YJ, Xue SC, Tian Y, Sun H, San JZ, Xiao QH and Deng G. 2012. The Tectonic setting, style, basic feature, relative erosion degree, ore-bearing evaluation sign, potential analysis of mineralization of Cu-Ni-bearing Permian mafic-ultramafic complexes, northern Xinjiang. Northwestern Geology, 45(4): 83-116 (in Chinese with English abstract)

    San JZ, Hui WD, Qin KZ, Sun H, Xu XW, Liang GH, Wei JY, Kang F and Xiao QH. 2007. Geological characteristics of Tulargen magmatic Cu-Ni-Co deposit in eastern Xinjiang and its exploration direction. Mineral Deposits, 26(3): 307-316 (in Chinese with English abstract)

    San JZ, Qin KZ, Tang ZL, Tang DM, Su BX, Sun H, Xiao QH and Liu PP. 2010. Precise zircon U-Pb age dating of two mafic-ultramafic complexes at Tulargen large Cu-Ni district and its geological implications. Acta Petrologica Sinica, 26(10): 3027-3035 (in Chinese with English abstract)

    Sláma J, Ko?ler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN and Whitehouse MJ. 2008. Ple?ovice zircon: A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249(1-2): 1-35

    Stacey JS and Kramers JD. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett., 26(2): 207-221

    Su BX, Qin KZ, Sun H and Wang H. 2010. Geochronological, petrological, mineralogical and geochemical studies of the Xuanwoling mafic-ultramafic intrusion in Beishan area, Xinjiang. Acta Petrologica Sinica, 26(11): 3283-3294 (in Chinese with English abstract)

    Su BX, Qin KZ, Sakyi PA, Li XH, Yang YH, Sun H, Tang DM, Liu PP, Xiao QH and Malaviarachchi SPK. 2011. U-Pb age and Hf-O isotopes of zircons from Late Paleozoic mafic-ultramafic units in the southern Central Asian Orogenic Belt: Tectonic implications and evidence for an Early-Permian mantle plume. Gondwana Research, 20(2-3): 516-531

    Su BX, Qin KZ, Sun H, Tang DM, Sakyi PA, Chu ZY, Liu PP and Xiao QH. 2012. Subduction-induced mantle heterogeneity beneath eastern Tianshan and Beishan: Insights from Nd-Sr-Hf-O isotopic mapping of Late Paleozoic mafic-ultramafic complexes. Lithos, 134-135: 41-51

    Sun H, Qin KZ, Li JX, Xu XW, San JZ, Ding KS, Hui WD and Xu YX. 2006. Petrographic and geochemical characteristics in the Tulargen Cu-Ni-Co sulfide deposit, eastern Tianshan, and its tectonic background. Geology in China, 33(3): 606-617 (in Chinese with English abstract)

    Sun H, Qin KZ, Xu XW, Li JX, Ding KS, Xu YX and San JZ. 2007. Petrological characteristics and copper-nickel ore-forming processes of Early Permian mafic-ultramafic intrusion belts in East Tianshan. Mineral Deposits, 26(1): 98-108 (in Chinese with English abstract)

    Sun H, Qin KZ, Li JX, Tang DM, Fan X and Xiao QH. 2008. Constraint of mantle partial melting on PGE mineralization of mafic-ultramafic intrusions in eastern Tianshan: Case study on Tulargen and Xiangshan Cu-Ni deposits. Acta Petrologica Sincia, 24(5): 1079-1086 (in Chinese with English abstract)

    Sun H. 2009. Ore-forming Mechanism in conduit system and ore-bearing property evaluation for mafic-ultramafic complex in Eastern Tianshan, Xinjiang. Ph. D. Dissertation. Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences, 1-262 (in Chinese with English summary)

    Sun H, Qin KZ, Tang DM, Xiao QH, Su BX and Lu HF. 2010. Olivine characteristics’ implication for magmatic evolution and sulfide segregation of Luodong complex in Beishan area, Xinjiang. Sci. Technol. Rev., 28(18): 21-26 (in Chinese with English abstract)

    Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and process. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42(1): 313-345

    Sun WD, Hu YH, Kamenetsky VS, Eggins SM, Chen M and Arculus RJ. 2008. Constancy of Nb/U in the mantle revisited. Geochimica et Cosmochimica Acta, 72(14): 3542-3549

    Tang DM, Qin KZ, Sun H, Qi L, Xiao QH and Su BX. 2009a. PGE geochemical characteristics of Tianyu magmatic Cu-Ni deposit: Implications for magma evolution and sulfide segregation. Acta Geologica Sinica, 83(5): 680-697 (in Chinese with English abstract)

    Tang DM, Qin KZ, Sun H, Su BX, Xiao QH, Cheng SL and Li J. 2009b. Lithological chronological and geochemical characteristics of Tianyu Cu-Ni deposit, East Tianshan: Constraints on source and genesis of mafic-ultramafic intrusions in East Xinjiang. Acta Petrologica Sinica, 25(4): 817-831 (in Chinese with English abstract)

    Tang DM, Qin KZ, Li CS, Qi L, Su BX and Qu WJ. 2011. Zircon dating, Hf-Sr-Nd-Os isotopes and PGE geochemistry of the Tianyu sulfide-bearing mafic-ultramafic intrusion in the Central Asian Oregenic Belt, NW China. Lithos, 126(1-2): 84-98

    Tang DM, Qin KZ, Sun H, Su BX and Xiao QH. 2012. The role of crustal contamination in the formation of Ni-Cu sulfide deposits in eastern Tianshan, Xinjiang, northwestern China: Evidence from trace element geochemistry, Re-Os, Sr-Nd, zircon Hf-O, and sulfur isotopes. Journal of Asian Earth Science, 49: 145-160

    Wang DH, Chen YC, Xu ZG and Lin WW. 2000. Cu-Ni-(PGE) sulfide metallogenic series in North Xinjiang. Mineral Deposits, 19(2): 147-155 (in Chinese with English abstract)

    Wang H, Qu WJ, Li HQ and Chen SP. 2007. Dating and discussion on the rock-forming and ore-forming age of newly-discovered Cu-Ni-sulfide deposits in Hami, Xinjiang. Acta Geologica Sinica, 81(4): 526-530 (in Chinese with English abstract)

    Wang RM, Liu DQ and Yin DT. 1987. The conditions of controlling metallogny of Cu, sulphide ore deposits and the orientation of finding ore Hami, Xinjiang, China. Journal of Mineralogy and Petrology, (1): 41-85 (in Chinese with English abstract)

    Wang YW, Wang JB and Wang LJ. 2004. REE characteristics of Cu-Ni sulfide deposits in the Hami area, Xinjiang. Acta Petrologica Sinica, 20(4): 935-948 (in Chinese with English abstract)

    Wang YW, Wang JB, Wang LJ and Long LL. 2009. Characteristics of two mafic-ultramafic rock series in the Xiangshan Cu-Ni-(V)Ti-Fe ore district, Xinjiang. Acta Petrologica Sinica, 25(4): 888-900 (in Chinese with English abstract)

    Wiedenbeck M, Allé P, Corfu F, Griffin WL, Meier M, Oberli F, Vonquadt A, Roddick JC and Speigel W. 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostand. Newsl., 19(1): 1-23

    Xiao QH, Qin KZ, Tang DM, Su BX, Sun H, San JZ, Cao MJ and Hui WD. 2010. Xiangshanxi composite Cu-Ni-Ti-Fe deposit belongs to comagmatic evolution product: Evidences from ore microscopy, zircon U-Pb chronology and petrological geochemistry, Hami, Xinjiang, NW China. Acta Petrologica Sinica, 26(2): 503-522 (in Chinese with English abstract)

    Xiao WJ, Zhang LC, Qin KZ, Sun S and Li JL. 2004. Paleozoic aecretionary and collisional tectonics of the eastern Tianshan (China): Implication for the continental growth of central Asia. American Journal of Science, 304(2-4): 370-395

    Xiao WJ, Han CM, Yuan C, Sun M, Lin SF, Chen HL, Li ZL, Li JL and Sun S. 2008. Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang, NW China: Implications for the tectonic evolution of central Asia. Journal of Asian Earth Sciences, 32(2-4): 102-117

    Xu XW, Ma TL, Sun LQ, Li GS, Zhang XQ, Xu XK and Wu JX. 1998. Characteristics and dynamic significance of the ductile compressed zone in eastern Tianshan Mt. in Jiaoluotage area in Xinjiang Province. Scientia Geologica Sinica, 33(2): 147-157 (in Chinese with English abstract)

    Xu XW, Ma TL, Sun LQ and Cai XP. 2003. Characteristics and dynamic origin of the large-scale Jiaoluotage ductile compressional zone in the eastern Tianshan Mountains, China. Journal of Structural Geology, 25(11): 1901-1915

    Xu XY, He SP, Wang HL and Chen JL. 2009. Geological Background Map of Mineralization in Eastern Tianshan-Beishan Area. Beijing: Geological Publishing House (in Chinese)

    Zhou MF, Lesher CM, Yang ZX, Li JW and Sun M. 2004. Geochemistry and petrogenesis of 270Ma Ni-Cu-(PGE) sulfide-bearing mafic intrusions in the Huangshan district, eastern Xinjiang, Northwest China: Implications for the tectonic evolution of the Central Asian orogenic belt. Chemical Geology, 209(3-4): 233-257

    Zuo GC, Feng YZ, Liu CY, Li MS and Guo ZJ. 1992. Old continental crust feature of proterozoic era and crust type of Early Palaeozoic era in Gansu-Inner Mongol Beishan area and eastern Xinjiang Tianshan MTS. Acta Geologica Gansu, 1(1): 55-67 (in Chinese with English abstract)

    附中文參考文獻(xiàn)

    陳世平, 王登紅, 屈文俊, 陳鄭輝, 高曉理. 2005. 新疆葫蘆銅鎳硫化物礦床的地質(zhì)特征與成礦時(shí)代. 新疆地質(zhì), 23(3): 230-233

    鄧宇峰, 宋謝炎, 陳列錳, 程松林, 張新利, 李軍. 2011. 東天山黃山西含銅鎳礦鎂鐵-超鎂鐵巖體巖漿地幔源區(qū)特征研究. 巖石學(xué)報(bào), 27(12): 3640-3652

    丁奎首, 秦克章, 許英霞, 孫赫, 徐興旺, 唐冬梅, 毛騫, 馬玉光. 2007. 東天山主要銅鎳礦床中磁黃鐵礦的礦物標(biāo)型特征及其成礦意義. 礦床地質(zhì), 26(1): 109-119

    馮宏業(yè). 2014. 新疆東天山圪塔山口Ni-Cu礦床成礦機(jī)制及巖體含礦性評(píng)價(jià)研究. 碩士學(xué)位論文. 唐山:河北聯(lián)合大學(xué), 1-175

    馮宏業(yè), 許英霞, 唐冬梅, 秦克章, 毛亞晶, 郭海兵, 三金柱. 2014. 東天山圪塔山口銅鎳礦區(qū)鎂鐵-超鎂鐵質(zhì)巖體橄欖石與尖晶石礦物學(xué)特征. 地質(zhì)與勘探, 50(2): 346-359

    馮益民, 朱寶清, 楊軍錄, 張開春. 2002. 東天山大地構(gòu)造及演化——1:50萬東天山大地構(gòu)造圖簡(jiǎn)要說明. 新疆地質(zhì), 20(4): 309-314

    韓寶福, 季建清, 宋彪, 陳立輝, 李宗懷. 2004. 新疆喀拉通克和黃山東含銅鎳礦鎂鐵-超鎂鐵雜巖體的SHRIMP鋯石U-Pb年齡及其地質(zhì)意義. 科學(xué)通報(bào), 49(2): 2324-2328

    胡克兵, 妖書振, 屈文俊, 杜安道, 敖松堅(jiān). 2008. 新疆東天山葫蘆銅鎳硫化物礦床Re-Os同位素物質(zhì)來源示蹤研究. 巖石學(xué)報(bào), 24(10): 2359-2370

    姬金生, 陶洪祥, 曾章仁, 楊興科. 1994. 東天山康古爾塔格金礦帶地質(zhì)與成礦. 北京: 地質(zhì)出版社

    姜常義, 程松林, 葉書鋒, 夏明哲, 蔣寒冰, 代玉財(cái). 2006. 新疆北山地區(qū)中坡山北鎂鐵質(zhì)巖體巖石地球化學(xué)與巖石成因. 巖石學(xué)報(bào), 22(1): 115-126

    姜常義, 夏明哲, 余旭, 逯東霞, 魏巍, 葉書鋒. 2007. 塔里木板塊東北部柳園粗面玄武巖帶:軟流圈地幔減壓熔融的產(chǎn)物. 巖石學(xué)報(bào), 23(7): 1765-1778

    李華芹, 陳富文, 梅玉萍, 吳華, 程松林, 楊甲全, 代玉財(cái). 2006. 新疆坡北基性-超基性巖帶Ⅰ號(hào)巖體Sm-Nd和SHRIMP U-Pb同位素年齡及其地質(zhì)意義. 礦床地質(zhì), 25(4): 463-469

    李華芹, 梅玉萍, 屈文俊, 蔡紅, 杜國民. 2009. 新疆坡北基性-超基性巖帶10號(hào)巖體SHRIMP U-Pb和礦石Re-Os同位素定年及其意義. 礦床地質(zhì), 28(5): 633-642

    李文鉛, 董富榮, 周汝洪. 2000. 新疆鄯善康古爾塔格蛇綠雜巖的發(fā)現(xiàn)及其特征. 新疆地質(zhì), 18(2): 121-128

    李文淵, 牛耀齡, 張照偉, 張銘杰, 高永寶, 胡沛青, 張江偉, 譚文娟, 蔣寒冰. 2012. 新疆北部晚古生代大規(guī)模巖漿成礦的地球動(dòng)力學(xué)背景和戰(zhàn)略找礦遠(yuǎn)景. 地學(xué)前緣, 19(4): 41-50

    毛景文, 楊建民, 屈文俊, 杜安道, 王志良, 韓春明. 2002. 新疆黃山東銅鎳硫化物礦床Re-Os同位素測(cè)定及其地球動(dòng)力學(xué)意義. 礦床地質(zhì), 21(4): 323-330

    毛景文, Franco P, 張作衡, 柴鳳梅, 楊建民, 吳華, 陳世平, 程松林, 張長青. 2006. 天山-阿爾泰東部地區(qū)海西晚期后碰撞銅鎳硫化物礦床: 主要特點(diǎn)及可能與地幔柱的關(guān)系. 地質(zhì)學(xué)報(bào), 80(7): 925-942

    毛啟貴, 肖文交, 韓春明, 孫敏, 袁超, 閆臻, 李繼亮, 雍擁, 張繼恩. 2006. 新疆東天山白石泉銅鎳礦床基性-超基性巖體鋯石U-Pb同位素年齡、地球化學(xué)特征及其對(duì)古亞洲洋閉合時(shí)限的制約. 巖石學(xué)報(bào), 22(1): 153-162

    倪志耀. 1991. 新疆哈密黃山東鎂鐵-超鎂鐵雜巖體中橄欖石的化學(xué)成分及其巖石學(xué)意義. 礦物巖石, 11(3): 40-47

    倪志耀. 1992. 新疆哈密黃山東鎂鐵-超鎂鐵雜巖體成因探討. 西北地質(zhì), 13(2): 9-17

    秦克章. 2000. 新疆北部中亞型造山與成礦作用. 博士后研究報(bào)告.北京:中國科學(xué)院地質(zhì)與地球物理研究所, 1-194

    秦克章, 孫樞, 李繼亮,郝杰,肖文交,王志洪. 2001. 金屬礦床時(shí)空分布樣式作為大地構(gòu)造環(huán)境的標(biāo)志——以北疆為例. 見: 中國博士后學(xué)術(shù)大會(huì)論文集(固體地球科學(xué)). 北京: 科學(xué)出版社, 540-545

    秦克章, 方同輝, 王書來, 朱寶清, 馮益民, 于海峰, 修群業(yè). 2002. 東天山板塊構(gòu)造分區(qū)演化與成礦地質(zhì)背景研究. 新疆地質(zhì), 20(4): 302-308

    秦克章, 彭曉明, 三金柱, 徐興旺, 方同輝, 王書來, 于海峰. 2003. 東天山主要礦床類型、成礦區(qū)帶劃分與成礦遠(yuǎn)景區(qū)優(yōu)選. 新疆地質(zhì), 21(2): 143-150

    秦克章, 丁奎首, 許英霞, 孫赫, 徐興旺, 唐冬梅, 毛騫. 2007. 東天山圖拉爾根、白石泉銅鎳鈷礦床鈷、鎳賦存狀態(tài)及原巖含礦性研究. 礦床地質(zhì), 26(1): 1-14

    秦克章, 唐冬梅, 蘇本勛, 毛亞晶, 薛勝超, 田野, 孫赫, 三金柱, 肖慶華, 鄧剛. 2012. 北疆二疊紀(jì)鎂鐵-超鎂鐵巖銅、鎳礦床的構(gòu)造背景、巖體類型、基本特征、相對(duì)剝蝕程度、含礦性評(píng)價(jià)標(biāo)志及成礦潛力分析. 西北地質(zhì), 45(4): 83-116

    三金柱, 惠衛(wèi)東, 秦克章, 孫赫, 徐興旺, 梁光河, 魏俊英, 康峰, 肖慶華. 2007. 新疆哈密圖拉爾根全巖礦化巖漿銅-鎳-鈷礦床地質(zhì)特征及找礦方向. 礦床地質(zhì), 26(3): 307-316

    三金柱, 秦克章, 湯中立, 唐冬梅, 蘇本勛, 孫赫, 肖慶華, 劉平平. 2010. 東天山圖拉爾根大型銅鎳礦區(qū)兩個(gè)鎂鐵-超鎂鐵巖體的鋯石U-Pb定年及其地質(zhì)意義. 巖石學(xué)報(bào), 26(10): 3027-3035

    蘇本勛, 秦克章, 孫赫, 王恒. 2010. 新疆北山地區(qū)旋窩嶺鎂鐵-超鎂鐵巖體的年代學(xué)、巖石礦物學(xué)和地球化學(xué)研究. 巖石學(xué)報(bào), 26(11): 3283-3294

    孫赫, 秦克章, 李金祥, 徐興旺, 三金柱, 丁奎首, 惠衛(wèi)東, 許英霞. 2006. 東天山圖拉爾根銅鎳鈷硫化物礦床巖相、巖石地球化學(xué)特征及其形成的構(gòu)造背景. 中國地質(zhì), 33(3): 606-617

    孫赫, 秦克章, 徐興旺, 李金祥, 丁奎首, 三金柱. 2007. 東天山鎂鐵質(zhì)-超鎂鐵質(zhì)巖帶巖石特征及銅鎳成礦作用. 礦床地質(zhì), 26(1): 98-108

    孫赫, 秦克章, 李金祥, 唐冬梅, 范新, 肖慶華. 2008. 地幔部分熔融程度對(duì)東天山鎂鐵質(zhì)-超鎂鐵質(zhì)巖鉑族元素礦化的約束——以圖拉爾根和香山銅鎳礦為例. 巖石學(xué)報(bào), 24(5): 1079-1086

    孫赫. 2009. 東天山鎂鐵-超鎂鐵巖銅鎳硫化物礦床通道式成礦機(jī)制與巖體含礦性評(píng)價(jià)研究. 博士學(xué)位論文. 北京: 中國科學(xué)院地質(zhì)與地球物理研究所, 1-262

    孫赫, 秦克章, 唐冬梅, 肖慶華, 蘇本勛, 盧鴻飛. 2010. 新疆北山羅東巖體橄欖石特征對(duì)巖漿演化和硫化物熔離的指示. 科技導(dǎo)報(bào), 28(18): 21-26

    唐冬梅, 秦克章, 孫赫, 漆亮, 肖慶華, 蘇本勛. 2009a. 東疆天宇巖漿Cu-Ni礦床的鉑族元素地球化學(xué)特征及其對(duì)巖漿演化、硫化物熔離的指示. 地質(zhì)學(xué)報(bào), 83(5): 680-697

    唐冬梅, 秦克章, 孫赫, 蘇本勛, 肖慶華, 程松林, 李軍. 2009b. 天宇銅鎳礦床的巖相學(xué)、鋯石U-Pb年代學(xué)、地球化學(xué)特征: 對(duì)東疆鎂鐵-超鎂鐵質(zhì)巖體源區(qū)和成因的制約. 巖石學(xué)報(bào), 25(4): 817-831

    王登紅, 陳毓川, 徐志剛, 林文蔚. 2000. 新疆北部Cu-Ni-(PGE)硫化物礦床成礦系列探討. 礦床地質(zhì), 19(2): 147-155

    王虹, 屈文俊, 李華芹, 陳世平. 2007. 哈密地區(qū)新發(fā)現(xiàn)銅鎳硫化物礦床成巖成礦時(shí)代的測(cè)定及討論. 地質(zhì)學(xué)報(bào), 81(4): 526-530

    王潤民, 劉德權(quán), 殷定泰. 1987. 新疆哈密土墩-黃山一帶銅鎳硫化物礦床成礦控礦條件及找礦方向的研究. 礦物巖石, (1): 41-85

    王玉往, 王京彬, 王莉娟. 2004. 新疆哈密黃山地區(qū)銅鎳硫化物礦床的稀土元素特征及意義. 巖石學(xué)報(bào), 20(4): 935-948

    王玉往, 王京彬, 王莉娟, 龍靈利. 2009. 新疆香山銅鎳鈦鐵礦區(qū)兩個(gè)鎂鐵-超鎂鐵巖系列及特征. 巖石學(xué)報(bào), 25(4): 888-900

    肖慶華, 秦克章, 唐冬梅, 蘇本勛, 孫赫, 三金柱, 曹明堅(jiān), 惠衛(wèi)東. 2010. 新疆哈密香山西銅鎳-鈦鐵礦床系同源巖漿分異演化產(chǎn)物——礦相學(xué)、鋯石U-Pb年代學(xué)及巖石地球化學(xué)證據(jù). 巖石學(xué)報(bào), 26(2): 503-522

    徐興旺, 馬天林, 孫立倩, 李貴書, 張學(xué)勤, 徐湘康, 吳繼修. 1998. 新疆東天山覺羅塔格韌性擠壓帶基本特征及動(dòng)力學(xué)意義. 地質(zhì)科學(xué), 33(2): 147-157

    徐學(xué)義, 何世平, 王洪亮, 陳雋璐. 2009. 東天山-北山地區(qū)成礦地質(zhì)背景圖. 北京: 地質(zhì)出版社

    左國朝, 馮永忠, 劉春燕, 李茂松, 郭召杰. 1992. 甘蒙北山-東疆天山元古代古陸殼特征及其早古生代地殼類型. 甘肅地質(zhì)學(xué)報(bào), 1(1): 55-67

    猜你喜歡
    東天山輝長巖鐵質(zhì)
    武夷山的巖茶上好品質(zhì)竟與石材中的鐵質(zhì)有關(guān)
    石材(2022年4期)2023-01-07 10:47:04
    攀枝花鐵礦床淺色輝長巖墻的成因及其地質(zhì)意義
    東天山中段晚古生代剪切帶疊加特征及構(gòu)造控礦作用
    東天山卡拉塔格礦集區(qū)奧陶—志留紀(jì)侵入巖地球化學(xué)特征及成因
    贛東北樟樹墩-西灣蛇綠混雜巖中輝長巖和玄武巖年代學(xué)、地球化學(xué)特征及地質(zhì)意義
    準(zhǔn)噶爾北部科克森套蛇綠巖中輝長巖年代學(xué)、巖石化學(xué)特征及地質(zhì)意義
    甜甜的柿子
    鐵太多與妊娠糖尿病有關(guān)
    鐵太多與妊娠糖尿病有關(guān)
    東天山三道嶺地區(qū)泥盆紀(jì)巖石地層單位厘定
    思南县| 宁晋县| 馆陶县| 阿克陶县| 婺源县| 滨州市| 邵武市| 连平县| 甘孜县| 绥德县| 贵德县| 靖宇县| 虹口区| 化德县| 呼和浩特市| 龙南县| 蓬安县| 合山市| 资源县| 阳江市| 海林市| 临城县| 常德市| 泰兴市| 台中县| 类乌齐县| 柳江县| 遂平县| 德惠市| 吉木乃县| 平武县| 扬州市| 思茅市| 文登市| 报价| 嵩明县| 广饶县| 横山县| 曲麻莱县| 安徽省| 梧州市|