• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Lentivirus-mediated Persephin over-expression in Parkinson’s disease rats

    2015-02-07 12:58:29XiaofengYinHuaminXuYunxiaJiangYunlaiZhiYuxiuLiuHengweiXiangKaiLiuXiaodongDingPengSun

    Xiao-feng Yin, Hua-min Xu, Yun-xia Jiang, Yun-lai Zhi, Yu-xiu Liu, Heng-wei Xiang, Kai Liu, Xiao-dong Ding,, Peng Sun,

    1 Department of Neurosurgery, the Second Af liated Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China

    2 Department of Physiology, Qingdao University, Qingdao, Shandong Province, China

    3 Nursing College of Qingdao University, Qingdao, Shandong Province, China

    4 Department of Pediatric Surgery, Af liated Hospital of Qingdao University, Qingdao, Shandong Province, China

    5 Department of Nursing, Af liated Hospital of Qingdao University, Qingdao, Shandong Province, China

    6 Department of Neurosurgery, Af liated Hospital of Medical College, Qingdao University, Qingdao, Shandong Province, China

    Lentivirus-mediated Persephin over-expression in Parkinson’s disease rats

    Xiao-feng Yin1,#, Hua-min Xu2,#, Yun-xia Jiang3, Yun-lai Zhi4, Yu-xiu Liu5, Heng-wei Xiang6, Kai Liu6, Xiao-dong Ding6,*, Peng Sun6,*

    1 Department of Neurosurgery, the Second Af liated Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China

    2 Department of Physiology, Qingdao University, Qingdao, Shandong Province, China

    3 Nursing College of Qingdao University, Qingdao, Shandong Province, China

    4 Department of Pediatric Surgery, Af liated Hospital of Qingdao University, Qingdao, Shandong Province, China

    5 Department of Nursing, Af liated Hospital of Qingdao University, Qingdao, Shandong Province, China

    6 Department of Neurosurgery, Af liated Hospital of Medical College, Qingdao University, Qingdao, Shandong Province, China

    Persephin, together with glial cell line-derived neurotrophic factor and neurturin, has a neurotrophic ef ect and promotes the survival of motor neurons cultured in vitro. In this study, dopaminergic neurons in the substantia nigra of rats were transfected with the Persephin gene. One week later 6-hydroxydopamine was injected into the anterior medial bundle to establish a Parkinson’s disease model in the rats. Results found that the number of dopaminergic neurons in the substantia nigra increased, tyrosine hydroxylase expression was upregulated and concentrations of dopamine and its metabolites in corpus striatum were increased after pretreatment with Persephin gene. In addition, the rotating ef ect of the induced Parkinson’s disease rats was much less in the group pretreated with the Persephin gene. Persephin has a neuroprotective ef ect on the 6-hydroxydopamine-induced Parkinson’s disease through protecting dopaminergic neurons.

    nerve regeneration; Persephin; lentivirus; Parkinson’s disease; dopaminergic neurons; gene therapy; over-expression; transfection; striatum; neural regeneration

    Funding: This work was supported by the National Natural Science Foundation of China, No. 81171208 and the Natural Science Foundation of Shandong Province of China, No. Z2008C06.

    Yin XF, Xu HM, Jiang YX, Zhi YL, Liu YX, Xiang HW, Liu K, Ding XD, Sun P (2015) Lentivirus-mediated Persephin over-expression in Parkinson’s disease rats. Neural Regen Res 10(11):1814-1818.

    Introduction

    Parkinson’s disease (PD) is a multi-system degenerative disorder, involving not only the nigral dopaminergic cells but also other predisposed nerve cells, i.e., non-dopaminergic structures of the lower brainstem or in the olfactory bulb (Braak et al., 2002; Burn and Tr?ster, 2004; Katzenschlager, 2014). Progressive degeneration of substantia nigra dopaminergic neurons leads to a subsequent loss of dopaminergic terminals in the caudate-putamen and the clinical symptoms, such as akinesia, resting tremor, muscle rigidity, and postural imbalance (Lotharius and Brundin, 2002; de la Fuente-Fernández et al., 2004).

    Neurotrophic factors are important for the development and maintenance of the nervous system (Airaksinen and Saarma, 2002; Zihlmann et al., 2005; Wanigasekara and Keast, 2006). Neurturin supports the survival of ventral midbrain dopaminergic and motor neurons and induces neurite outgrowth in the spinal cord (Bespalov et al., 2011; Wang et al., 2014). Glial cell line-derived neurotrophic factor (GDNF) maintains the survival and function of midbrain dopaminergic neurons in vitro and attenuates neuronal damage induced by 6-hydroxydopamine (6-OHDA) (Zhao et al., 2014).

    The physiological functions of Persephin protein (PSPN) remain unclear at present. PSPN shares some neurotrophic ef ects previously described for GDNF and neurturin (Sidorova et al., 2010). It supports the survival of motor neurons cultured in vivo after sciatic nerve axotomy (Yang et al., 2007). However, because of the extremely low expression levels of PSPN, tissue distribution has been studied by reverse transcription-PCR only. Low PSPN mRNA expression level is found throughout the embryonic and adult central nervous system and in all peripheral tissues examined (including heart, kidney, liver, skin, and muscle) (Akerud et al., 2002).

    Previous studies showed that neural stem cells modif ed using GDNF could survive longer than unmodified neural stem cells after intracerebral transplantation in a rat model of middle cerebral artery occlusion (Kameda et al., 2007). In the present study, we investigated whether lentivirus (LV)-mediated PSPN over-expression could enhance the survival of dopaminergic neurons in the 6-OHDA-induced PD rat model.

    Materials and Methods

    6-OHDA injury and LV-PSPN intervention

    Forty healthy, clean, 8-month-old male Wistar rats, weighing 200–250 g, were provided by the Animal Center of Qingdao Food and Drug Administration (license No. D20131004; Qingdao, Shandong Province, China). All rats were housed in a temperature-controlled room, under a 12-hour day/night cycle, allowing free access to water and food. All experimental procedures were in accordance with the National Institute of Health Guide for Care and Use of Laboratory Animals and were approved by the Animal Ethics Committee of Qingdao University in China.

    Rats adapted to the experiment conditions for 1 week before the experiment and were randomly divided into four groups. Normal group: rats were free of any treatment; 6-OHDA group: rats were injected with 6-OHDA (Sigma, St. Louis, MO, USA; dissolved to normal saline containing 0.2% ascorbic acid, 4 mg/mL) into the anterior medial bundle of the right forebrain. The coordinates of the two injection sites were: (1) 4.4 mm posterior to the bregma, 1.2 mm lateral to the median line and 7.8 mm below the dura mater; (2) 4.0 mm posterior to the bregma, 0.8 mm lateral to the median line and 8.0 mm below the dura mater. The injection volume was 2.25 μL and 2.7 μL, respectively (He et al., 2014). 6-OHDA + LV-null group: rats were f rst injected with 1 μL of LV only (titer 1 × 108, Shanghai Genechem, Shanghai, China) on the right substantia nigra (coordinates: 5.3 mm posterior to the bregma, 1.9 mm lateral to the median line and 7.5 mm below the skull), and then injected with 6-OHDA as above 1 week later; 6-OHDA + LV-PSPN group: rats were f rst injected with LV-PSPN lentivirus (titer 1 × 108, Shanghai Genechem) on the right substantia nigra, and then injected with 6-OHDA as above 1 week later (He et al., 2014).

    Behavioral testing

    After 21 days of 6-OHDA injection, subcutaneous injections with 0.05 mg/kg apomorphine (Sigma; dissolved to normal saline containing 0.2% ascorbic acid) were applied to the napes of the rats to induce the rotating behaviors of rats. The number of rotations within 30 minutes was recorded.

    Immunof uorescence test

    At 21 days after the 6-OHDA injection, rats were anesthetized with 8% chloral hydrate via intraperitoneal injection. A needle was inserted into the aortic ventricle of rats, and 400 mL of 37°C normal saline was infused rapidly until the liver turned white, then 4% pre-cooled paraformaldehyde was infused until the whole body of the rat became stif . The brains were harvested and f xed in 4% paraformaldehyde for 4 hours and then hydrated in a 4°C 20% sucrose phosphate solution until the brains sank to the bottom of the centrifugation tube. Then the brains were hydrated in a 4°C 30% sucrose phosphate solution until the brains sank to the bottom of the centrifugation tube. Tissues were cut into coronal frozen sections at 20 μm thickness for immunof uorescence staining. The sections were placed in 24-well culture plates and incubated with 400 μL of mouse anti-rat TH monoclonal antibody (1:2,000; Sigma). The culture plates were then transferred to 4°C refrigerators overnight, and rinsed with PBS three times, for 10 minutes each. Then the sections were incubated with DyLight 488-labeled donkey anti-mouse IgG (1:500; Sigma) for 1 hour at room temperature, and rinsed with PBS three times, for 10 minutes each. Finally, the sections were mounted with 70% glycerol and observed under the microscope (ZEISS, Oberkochen, Germany).

    Western blot assay

    Figure 1 Lentivirus-mediated Persephin (LV-PSPN) over-expressed PSPN in dopaminergic neurons of rat substantia nigra.

    After the rats were anesthetized with 8% chloral hydrate via intraperitoneal injection and killed, their brains were harvested. The substantia nigra was separated and weighed in the Eppendorf tube, then the tissue was ground using 100 μL of 4 mg lysis buf er and centrifuged for 30 minutes at 14,000 × g at 4°C. The supernatant was collected and denatured with 4× loading buf er for 5 minutes at 95 °C. Forty μg totalprotein was used for protein electrophoresis and transferred onto membranes. The membranes were blocked for 2 hours and incubated with mouse anti-rat TH monoclonal antibody (1:2,000; Sigma) and mouse anti-rat PSPN monoclonal antibody (1:200; Invitrogen, Karlsruhe, Germany) at 4°C overnight. After three washes in TBST, samples were incubated with donkey anti-mouse IgG (1:2,000; Abcam, Cambridge, MA, USA) for 1 hour. Immunoreactivity was visualized using ECL western blot assay and optical density was analyzed using a UVP Image System (Upland, CA, USA).

    High-performance liquid chromatography (HPLC)

    At 8 weeks post-transplantation, striatal concentrations of DA, Dihydroxy phenyl acetic acid (DOPAC) and homovanillic acid (HVA) were measured by HPLC with an electrochemical detector (ZEISS). Rats were decapitated at 4°C under sterile conditions. The brain tissue was rinsed with icecold PBS, precisely weighed, and homogenized in an ice-cold perchloric acid and EDTA solution (0.4 M HClO4, 0.5 mM Na2-EDTA, 0.01% L-cysteine) to yield a 10% (w/v) homogenate at 0 °C. The homogenates were centrifuged at 14,000 × g at 4°C for 15 minutes. After centrifugation, the supernatants were removed, and 0.5 volume of potassium salt solution (20 mmol/L potassium citrate, 300 mmol/L KH2PO4, 2 mmol/L Na2-EDTA) was added at 0°C for 15 minutes. The precipitates were then centrifuged at 14,000 × g at 0–4°C for 15 minutes. After centrifugation, the supernatants were frozen at –80°C or immediately applied to the HPLC system (ZEISS). Dialysis samples were assayed for DA, DOPAC and HVA by HPLC with electrochemical detection. The samples were placed in the 717 Plus Autosampler (Waters, Milford, MA, USA) connected to the 2465ECD (Waters) equipped with a C18 reverse-phase column (4.6 × 75 mm, 3.5 μm; Waters). The samples were eluted by mobile phase (100 mM Na-citrate, 0.1 mM EDTA, 75 mM Na2HPO4, 2 mM NaCl, 1 mM C-7 at pH 3.9, 10% methanol) at a f ow rate of 0.6 mL/min. DA, DOPAC and HVA levels were calculated by extrapolating the peak area from a standard curve (ranging from 1 nM to 100 nM of mixed DA, DOPAC and HVA). The identification of peaks was carried out by comparison with standards. The amounts of DA in each sample were quantif ed by comparing the peak area of the samples with those of the standards.

    Statistical analysis

    Statistical analysis was conducted using GraphPad Prism 6.0 software (GraphPad Software Inc., LaJolla, CA, USA). The data are expressed as the mean ± SD and analyzed by one-way or two-way analysis of variance. Statistical signif cance was determined as P < 0.05.

    Results

    LV-PSPN over-expressed PSPN in dopaminergic neurons

    Seventy-two hours after dopaminergic neurons were transfected with LV-PSPN, 95% of green fluorescent protein (GFP)-positive dopaminergic neurons were observed. Western blot assay results showed that dopaminergic neurons expressed endogenous PSPN and that LV-null infection did not af ect the expression of PSPN, whereas LV-PSPN signif -cantly induced high expression of PSPN (Figure 1A). Immunof uorescence staining showed that dopaminergic neurons mostly expressed the TH and PSPN (Figure 1B). Therefore, LV-PSPN could ef ectively infect dopaminergic neurons and increase the protein expression of PSPN.

    Neuroprotection by PSPN on 6-OHDA-lesioned dopaminergic neurons

    Rats in the 6-OHDA group and 6-OHDA + LV-null group had about 15% residual substantia nigra TH cells, which was signif cantly lower than the normal group (P < 0.05); rats in the 6-OHDA + LV-PSPN group had approximately 50% residual substantia nigra TH cells, which was higher than the 6-OHDA group and the 6-OHDA + LV-null group (P < 0.05; Figure 2).

    Transplantation of LV-PSPN-transfected neural stem cells increased the striatal dopamine expression in 6-OHDA-induced injury rats

    Dopamine levels in the striatum were determined by HPLC. Mean dopamine level in the striatum of rats in the 6-OHDA group and 6-OHDA + LV-null group was lower than that of the normal group (P < 0.05). Dopamine level in the striatum of rats showed no signif cant dif erence between the 6-OHDA group and 6-OHDA + LV-null group (P > 0.05). After pretreatment with LV-PSPN, the dopamine level was increased by 179% compared with the two other groups (P < 0.05; Figure 3).

    Transplantation of LV-PSPN-transfected neural stem cells improved the behavior of 6-OHDA-induced injury rats

    The apomorphine-induced rotational behaviors of rats in all groups are shown in Figure 4. The average rotational rate of the normal group hardly changed from the baseline (0 rotation/30 minutes). In contrast, the rotational rates of rats in the 6-OHDA + LV-null group and the 6-OHDA group averaged more than 300 rotations per 30 minutes, signif -cantly greater than before treatment (P < 0.05). The average rotational rates of rats implanted with 6-OHDA + LV-PSPN were half those in the other two 6-OHDA groups (P < 0.05).

    Discussion

    Neurotrophic factors have been demonstrated to exert potent ef ects on neurons, such as the promotion of survival, neurite branching, synaptogenesis, modulation of electrophysiological properties and synaptic plasticity (Kuhlmann et al., 2006; Wang et al., 2013; Zhang et al., 2014). GDNF, a distantly related member of the transforming growth factor-beta superfamily and a potent neurotrophic factor, can af ect neuronal dif erentiation, development, growth and survival in the central nervous system and has neuroprotective ef ects against a variety of neuronal insults (Conover et al., 1993; Tang et al., 2014). However, the ef ects of GDNF are transient, and need repeated administration into brain parenchyma or intraventricular space (Parker et al., 2014). In addition, as a large protein, GDNF has dif culty in crossing the bloodbrain barrier (Barichello et al., 2014). This limits the clinical application of GDNF. Direct intravenous administration ofa clinical applicable gene in rats subjected to middle cerebral artery occlusion increased clinical applicability levels, reduced infarct volume at the affected hemisphere, and improved behavioral performance (Bensadoun et al., 2000). Moreover, transplantation of GDNF gene-modif ed stem cells promotes dif erentiation into neurof lament-positive cells and has better therapeutic ef ects in intracerebral hemorrhage models in rats than the transplantation of empty virus-transfected stem cells (DeWitt et al., 2014; Du et al., 2014). Therefore, GDNF may have some therapeutic potential for central nervous system diseases.

    In the past decade, gene therapy has painted the prospect of better PD treatments (Arimura et al., 2014). If the genes of neuroprotective factors are delivered to the striatum, the progressive loss of dopaminergic neurons should be interrupted. PSPN, a recently cloned member of the transforming growth factor-β superfamily and GDNF subfamily, is distributed throughout the nervous system at extremely low levels. Therefore, we used PSPN as the therapeutic gene to provide a protective ef ect against progressive degeneration of dopaminergic neurons.

    The f ndings of this study show a promising application of PSPN in gene therapy to treat PD. In this study, we observed that PSPN could prevent the severe reduction in dopaminergic cell count in substantia nigra and striatal dopamine content in the striatum caused by 6-OHDA treatment. This study also indicates that intracellular transduction of the PSPN gene can reduce the rotational behavior in a rat model of PD to some extent. This indicates that PSPN can directly protect nigra dopaminergic neurons against the toxicity of 6-OHDA by countering its ef ects.

    Author contributions: PS and XDD conceived and designed this study. XFY and YXJ performed the experiments. YXL and HWX analyzed the data. KL and YLZ provided reagents/ materials/analysis tools. HMX wrote the paper. All authors approved the f nal version of this paper.

    Conf icts of interest: None declared.

    Plagiarism check: This paper was screened twice using Cross-Check to verify originality before publication.

    Peer review: This paper was double-blinded, stringently reviewed by international expert reviewers.

    Airaksinen MS, Saarma M (2002) The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci 3:383-394.

    Akerud P, Holm PC, Castelo-Branco G, Sousa K, Rodriguez FJ, Arenas E (2002) Persephin-overexpressing neural stem cells regulate the function of nigral dopaminergic neurons and prevent their degeneration in a model of Parkinson’s disease. Mol Cell Neurosci 21:205-222.

    Arimura S, Okada T, Tezuka T, Chiyo T, Kasahara Y, Yoshimura T, Motomura M, Yoshida N, Beeson D, Takeda S, Yamanashi Y (2014) Neuromuscular disease. DOK7 gene therapy benef ts mouse models of diseases characterized by defects in the neuromuscular junction. Science 345:1505-1508.

    Barichello T, N Gon?alves JC, Generoso JS, Simoes LR, Tashiro MH, Goularte JA, Vuolo F, Rodrigues DH, Vilela MC, Petronilho F, Teixeira AL, Quevedo J (2014) Protection of blood brain barrier integrity and modulation of inflammatory mediators during treatment of pneumococcal meningitis with daptomycin or ceftriaxone. Curr Neurovasc Res.

    Bensadoun JC, Deglon N, Tseng JL, Ridet JL, Zurn AD, Aebischer P (2000) Lentiviral vectors as a gene delivery system in the mouse midbrain: cellular and behavioral improvements in a 6-OHDA model of Parkinson’s disease using GDNF. Exp Neurol 164:15-24.

    Bespalov MM, Sidorova YA, Tumova S, Ahonen-Bishopp A, Magalh?es AC, Kulesskiy E, Paveliev M, Rivera C, Rauvala H, Saarma M (2011) Heparan sulfate proteoglycan syndecan-3 is a novel receptor for GDNF, neurturin, and artemin. J Cell Biol 192:153-169.

    Braak H, Del Tredici K, Bratzke H, Hamm-Clement J, Sandmann-Keil D, Rüb U (2002) Staging of the intracerebral inclusion body pathology associated with idiopathic Parkinson’s disease (preclinical and clinical stages). J Neurol 249 Suppl 3:III/1-5.

    Burn DJ, Tr?ster AI (2004) Neuropsychiatric complications of medical and surgical therapies for Parkinson’s disease. J Geriatr Psychiatry Neurol 17:172-180.

    Conover JC, Ip NY, Poueymirou WT, Bates B, Goldfarb MP, DeChiara TM, Yancopoulos GD (1993) Ciliary neurotrophic factor maintains the pluripotentiality of embryonic stem cells. Development 119:559-565.

    de la Fuente-Fernández R, Sossi V, Huang Z, Furtado S, Lu JQ, Calne DB, Ruth TJ, Stoessl AJ (2004) Levodopa-induced changes in synaptic dopamine levels increase with progression of Parkinson’s disease: implications for dyskinesias. Brain 127:2747-2754.

    DeWitt J, Pappas A, Nishi R (2014) Ciliary neurotrophic factor reduces the proliferation and promotes the differentiation of TH- MYCN transformed sympathoadrenal progenitors. Dev Neurosci 36:422-431.

    Du J, Gao XQ, Deng L, Chang NB, Xiong HL, Zheng Y (2014) Transfection of the glial cell line-derived neurotrophic factor gene promotes neuronal dif erentiation. Neural Regen Res 9:33-40.

    He Z, Jiang Y, Xu H, Jiang H, Jia W, Sun P, Xie J (2014) High frequency stimulation of subthalamic nucleus results in behavioral recovery by increasing striatal dopamine release in 6-hydroxydopamine lesioned rat. Behav Brain Res 263:108-114.

    Kameda M, Shingo T, Takahashi K, Muraoka K, Kurozumi K, Yasuhara T, Maruo T, Tsuboi T, Uozumi T, Matsui T, Miyoshi Y, Hamada H, Date I (2007) Adult neural stem and progenitor cells modif ed to secrete GDNF can protect, migrate and integrate after intracerebral transplantation in rats with transient forebrain ischemia. Eur J Neurosci 26:1462-1478.

    Katzenschlager R (2014) Parkinson’s disease: recent advances. J Neurol 261:1031-1036.

    Kuhlmann T, Remington L, Cognet I, Bourbonniere L, Zehntner S, Guilhot F, Herman A, Guay-Giroux A, Antel JP, Owens T, Gauchat JF (2006) Continued administration of ciliary neurotrophic factor protects mice from inf ammatory pathology in experimental autoimmune encephalomyelitis. Am J Pathol 169:584-598.

    Lotharius J, Brundin P (2002) Pathogenesis of Parkinson’s disease: dopamine, vesicles and alpha-synuclein. Nat Rev Neurosci 3:932-942.

    Parker N, Falk H, Singh D, Fidaleo A, Smith B, Lopez MS, Shokat KM, Wright WW (2014) Responses to glial cell line-derived neurotrophic factor change in mice as spermatogonial stem cells form progenitor spermatogonia which replicate and give rise to more dif erentiated progeny. Biol Reprod 91:92.

    Sidorova YA, M?tlik K, Paveliev M, Lindahl M, Piranen E, Milbrandt J, Arum?e U, Saarma M, Bespalov MM (2010) Persephin signaling through GFRα1: the potential for the treatment of Parkinson’s disease. Mol Cell Neurosci 44:223-232.

    Tang S, Liao X, Shi B, Qu Y, Huang Z, Lin Q, Guo X, Pei F (2014) The ef ects of controlled release of neurotrophin-3 from PCLA scaf olds on the survival and neuronal dif erentiation of transplanted neural stem cells in a rat spinal cord injury model. PLoS One 9:e107517.

    Wang K, Demir IE, D’Haese JG, Tieftrunk E, Kujundzic K, Schorn S, Xing B, Kehl T, Friess H, Ceyhan GO (2014) The neurotrophic factor neurturin contributes toward an aggressive cancer cell phenotype, neuropathic pain and neuronal plasticity in pancreatic cancer. Carcinogenesis 35:103-113.

    Wang S, Fang J, Ma J, Wang Y, Liang S, Zhou D, Sun G (2013) Electroacupuncture-regulated neurotrophic factor mRNA expression in the substantia nigra of Parkinson’s disease rats. Neural Regen Res 8:540-549.

    Wanigasekara Y, Keast JR (2006) Nerve growth factor, glial cell line-derived neurotrophic factor and neurturin prevent semaphorin 3A-mediated growth cone collapse in adult sensory neurons. Neuroscience 142:369-379.

    Figure 2 PSPN increased TH expression in dopaminergic neurons of rat substantia nigra.

    Figure 3 The levels of dopamine (DA), 3-4-dihydroxy-phenylacetic acid (DOPAC) and homovanillic acid (HVA) in Parkinson’s disease rats after transfection.

    Figure 4 The apomorphine-induced rotational behaviors of 6-OHDA-induced Parkinson’s disease rats after transplantation of LV-PSPN-transfected neural stem cells.

    Yang J, Runeberg-Roos P, Leppanen VM, Saarma M (2007) The mouse soluble GFR[alpha]4 receptor activates RET independently of its ligand persephin. Oncogene 26:3892-3898.

    Zhang HY, Song N, Jiang H, Bi MX, Xie JX (2014) Brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor inhibit ferrous iron inf ux via divalent metal transporter 1 and iron regulatory protein 1 regulation in ventral mesencephalic neurons. Biochim Biophys Acta 1843:2967-2975.

    Zhao Y, Haney MJ, Gupta R, Bohnsack JP, He Z, Kabanov AV, Batrakova EV (2014) GDNF-transfected macrophages produce potent neuroprotective ef ects in Parkinson’s disease mouse model. PLoS One 9:e106867.

    Zihlmann KB, Ducray AD, Schaller B, Huber AW, Krebs SH, Andres RH, Seiler RW, Meyer M, Widmer HR (2005) The GDNF family members neurturin, artemin and persephin promote the morphological dif erentiation of cultured ventral mesencephalic dopaminergic neurons. Brain Res Bull 68:42-53.

    Copyedited by Norman C, Dawes EA, Yang Y, Li CH, Song LP, Zhao M

    *Correspondence to: Peng Sun, M.D. or Xiao-dong Ding, M.D., sunpengqd@163.com or 15154258721@163.com.

    # These authors contributed equally to this work.

    orcid: 0000-0001-5202-3819 (Peng Sun) 0000-0002-7872-0919 (Xiao-dong Ding)

    10.4103/1673-5374.170309 http://www.nrronline.org/

    Accepted: 2015-09-14

    国产精品久久电影中文字幕 | 黄色a级毛片大全视频| 深夜精品福利| 在线十欧美十亚洲十日本专区| 国产精品秋霞免费鲁丝片| 美女高潮到喷水免费观看| videos熟女内射| 丝袜美足系列| 亚洲国产中文字幕在线视频| 久久天躁狠狠躁夜夜2o2o| 老司机影院毛片| 在线天堂中文资源库| 国产又爽黄色视频| 热re99久久精品国产66热6| 啦啦啦在线免费观看视频4| 成熟少妇高潮喷水视频| 日本vs欧美在线观看视频| 国产又爽黄色视频| 手机成人av网站| 亚洲成人手机| 国产在线观看jvid| av网站在线播放免费| 国产精品久久久久久精品古装| 色精品久久人妻99蜜桃| 妹子高潮喷水视频| 波多野结衣一区麻豆| 一进一出好大好爽视频| 亚洲午夜理论影院| 青草久久国产| 日韩 欧美 亚洲 中文字幕| 国产成+人综合+亚洲专区| 在线观看免费午夜福利视频| videos熟女内射| 日日爽夜夜爽网站| 亚洲熟女精品中文字幕| 大香蕉久久网| 老司机靠b影院| 精品久久蜜臀av无| 亚洲欧美日韩另类电影网站| 香蕉国产在线看| 人妻一区二区av| 建设人人有责人人尽责人人享有的| 亚洲精品乱久久久久久| 精品免费久久久久久久清纯 | 国产精品影院久久| 啦啦啦视频在线资源免费观看| 如日韩欧美国产精品一区二区三区| 久久中文看片网| 亚洲专区国产一区二区| 国产成人欧美在线观看 | 国产一区二区三区在线臀色熟女 | 99国产精品99久久久久| 久久天躁狠狠躁夜夜2o2o| 激情视频va一区二区三区| 熟女少妇亚洲综合色aaa.| 日本a在线网址| 村上凉子中文字幕在线| av电影中文网址| 三级毛片av免费| 亚洲性夜色夜夜综合| 午夜精品国产一区二区电影| 成人永久免费在线观看视频| 欧美日韩福利视频一区二区| 国产精品综合久久久久久久免费 | 久久精品91无色码中文字幕| 美女午夜性视频免费| 激情在线观看视频在线高清 | 国产在视频线精品| 日本a在线网址| 18禁国产床啪视频网站| 精品电影一区二区在线| 日日爽夜夜爽网站| 久久久国产一区二区| 黄片大片在线免费观看| 高清视频免费观看一区二区| 欧美在线黄色| 成人精品一区二区免费| 两人在一起打扑克的视频| 欧美日韩乱码在线| 一级a爱片免费观看的视频| 国产精品亚洲一级av第二区| 脱女人内裤的视频| 大码成人一级视频| 18在线观看网站| 五月开心婷婷网| 老熟女久久久| 男人舔女人的私密视频| 亚洲人成电影免费在线| www.999成人在线观看| 国产日韩欧美亚洲二区| 手机成人av网站| www.熟女人妻精品国产| 老鸭窝网址在线观看| 亚洲国产看品久久| 变态另类成人亚洲欧美熟女 | 亚洲五月天丁香| 欧美日韩乱码在线| 国产成人精品在线电影| 天堂动漫精品| 国产蜜桃级精品一区二区三区 | 欧美色视频一区免费| 丝袜人妻中文字幕| a级毛片在线看网站| 热99久久久久精品小说推荐| 精品电影一区二区在线| 日韩免费高清中文字幕av| 黄色怎么调成土黄色| 精品久久久久久电影网| 欧美黄色淫秽网站| 久久久久久久久久久久大奶| 亚洲人成77777在线视频| 国产又爽黄色视频| 中文字幕高清在线视频| 最新美女视频免费是黄的| 久久久久久亚洲精品国产蜜桃av| 啦啦啦视频在线资源免费观看| 窝窝影院91人妻| 成年版毛片免费区| av电影中文网址| 国产高清国产精品国产三级| 亚洲熟女精品中文字幕| 欧美精品一区二区免费开放| 一区在线观看完整版| 中文字幕人妻丝袜制服| 国产精品一区二区在线观看99| 亚洲,欧美精品.| 欧美激情久久久久久爽电影 | 91在线观看av| 伦理电影免费视频| 人妻久久中文字幕网| 久9热在线精品视频| 男女免费视频国产| 黄频高清免费视频| 亚洲第一av免费看| 久久久精品区二区三区| 国产精品一区二区精品视频观看| 美女国产高潮福利片在线看| 亚洲中文日韩欧美视频| 久久国产亚洲av麻豆专区| 国产在视频线精品| 欧美日韩国产mv在线观看视频| 色播在线永久视频| 久久ye,这里只有精品| 黄色片一级片一级黄色片| 中文字幕人妻熟女乱码| 亚洲精品自拍成人| 一级作爱视频免费观看| 国产成人影院久久av| 99国产精品一区二区蜜桃av | 欧美久久黑人一区二区| 丰满迷人的少妇在线观看| 三级毛片av免费| 十分钟在线观看高清视频www| a级毛片在线看网站| 51午夜福利影视在线观看| 极品教师在线免费播放| 一二三四社区在线视频社区8| 精品国产一区二区三区四区第35| 午夜福利一区二区在线看| videos熟女内射| 中文字幕制服av| 免费在线观看影片大全网站| 亚洲三区欧美一区| 村上凉子中文字幕在线| 久久国产乱子伦精品免费另类| 国产亚洲一区二区精品| 黄网站色视频无遮挡免费观看| 亚洲国产欧美网| 精品国产国语对白av| 午夜日韩欧美国产| 少妇的丰满在线观看| 九色亚洲精品在线播放| 9热在线视频观看99| 亚洲成人手机| 手机成人av网站| 美女国产高潮福利片在线看| 老司机深夜福利视频在线观看| 欧美国产精品va在线观看不卡| 久久午夜综合久久蜜桃| 高清av免费在线| 99久久综合精品五月天人人| 欧美成人免费av一区二区三区 | 在线天堂中文资源库| 五月开心婷婷网| 亚洲男人天堂网一区| 99re6热这里在线精品视频| 久久久精品免费免费高清| 亚洲第一av免费看| 91成人精品电影| 午夜免费观看网址| 国产精品香港三级国产av潘金莲| 国产男靠女视频免费网站| 欧美亚洲日本最大视频资源| 黄网站色视频无遮挡免费观看| 亚洲精品一卡2卡三卡4卡5卡| 久久久久国产精品人妻aⅴ院 | 精品视频人人做人人爽| 精品人妻1区二区| 一边摸一边抽搐一进一出视频| 亚洲va日本ⅴa欧美va伊人久久| 男男h啪啪无遮挡| 又黄又粗又硬又大视频| 少妇猛男粗大的猛烈进出视频| 黄片播放在线免费| 国产高清videossex| 精品午夜福利视频在线观看一区| 777米奇影视久久| 正在播放国产对白刺激| 久久影院123| 两人在一起打扑克的视频| 欧美大码av| 欧美久久黑人一区二区| 两个人看的免费小视频| 两个人看的免费小视频| 99精品久久久久人妻精品| 大型av网站在线播放| 黄色女人牲交| 在线免费观看的www视频| 欧美黑人精品巨大| 80岁老熟妇乱子伦牲交| 两个人免费观看高清视频| 国产xxxxx性猛交| 国产一区在线观看成人免费| 国产欧美日韩一区二区三区在线| 曰老女人黄片| 手机成人av网站| 侵犯人妻中文字幕一二三四区| 国产乱人伦免费视频| 亚洲精品国产色婷婷电影| 校园春色视频在线观看| 在线播放国产精品三级| 我的亚洲天堂| 一级毛片精品| 国产激情欧美一区二区| 国产激情欧美一区二区| 久久 成人 亚洲| 咕卡用的链子| av不卡在线播放| 午夜视频精品福利| 日韩 欧美 亚洲 中文字幕| 一二三四社区在线视频社区8| 日韩欧美免费精品| 大香蕉久久成人网| 丝袜人妻中文字幕| 两人在一起打扑克的视频| 脱女人内裤的视频| 老司机在亚洲福利影院| 三上悠亚av全集在线观看| 国产一区在线观看成人免费| 岛国毛片在线播放| 91av网站免费观看| 成人免费观看视频高清| 中文字幕人妻丝袜一区二区| 成人亚洲精品一区在线观看| 精品福利永久在线观看| 日本wwww免费看| 黄色a级毛片大全视频| 不卡av一区二区三区| 老司机靠b影院| 伊人久久大香线蕉亚洲五| 亚洲精品久久成人aⅴ小说| 日韩三级视频一区二区三区| 麻豆av在线久日| 亚洲一卡2卡3卡4卡5卡精品中文| 少妇的丰满在线观看| 亚洲欧美日韩高清在线视频| 亚洲中文日韩欧美视频| 美女视频免费永久观看网站| 久久精品熟女亚洲av麻豆精品| 亚洲专区中文字幕在线| 亚洲专区国产一区二区| 国产精品一区二区精品视频观看| 91成人精品电影| 岛国毛片在线播放| 中文欧美无线码| 在线av久久热| 老司机在亚洲福利影院| 99久久综合精品五月天人人| 午夜老司机福利片| 操美女的视频在线观看| av网站在线播放免费| 我的亚洲天堂| 中文字幕高清在线视频| 久久精品亚洲熟妇少妇任你| 久热爱精品视频在线9| 纯流量卡能插随身wifi吗| 欧美国产精品va在线观看不卡| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美色视频一区免费| 欧美日韩一级在线毛片| 国产激情久久老熟女| 亚洲第一欧美日韩一区二区三区| 国产精品亚洲av一区麻豆| 久久久久视频综合| 我的亚洲天堂| 欧美精品啪啪一区二区三区| 日本黄色视频三级网站网址 | 自线自在国产av| 一本综合久久免费| 看片在线看免费视频| 91老司机精品| 成熟少妇高潮喷水视频| 午夜久久久在线观看| 成人三级做爰电影| 黄色a级毛片大全视频| 亚洲精品自拍成人| 一个人免费在线观看的高清视频| 老司机影院毛片| 欧美在线一区亚洲| 超色免费av| 可以免费在线观看a视频的电影网站| 亚洲国产中文字幕在线视频| 窝窝影院91人妻| 国产乱人伦免费视频| 天天躁夜夜躁狠狠躁躁| 日本五十路高清| 亚洲精品久久成人aⅴ小说| 久久久久久久午夜电影 | 黄色毛片三级朝国网站| 久久精品亚洲精品国产色婷小说| 亚洲精品在线美女| 一级a爱片免费观看的视频| 国产成人精品在线电影| 后天国语完整版免费观看| 日韩欧美免费精品| 久久久久国内视频| 日本vs欧美在线观看视频| 搡老乐熟女国产| 99精品在免费线老司机午夜| 9热在线视频观看99| 日韩免费av在线播放| 丁香欧美五月| 91精品三级在线观看| 90打野战视频偷拍视频| 19禁男女啪啪无遮挡网站| 大陆偷拍与自拍| 一级,二级,三级黄色视频| 这个男人来自地球电影免费观看| 亚洲欧美色中文字幕在线| 中文字幕精品免费在线观看视频| 超碰97精品在线观看| 午夜福利欧美成人| av有码第一页| 日韩人妻精品一区2区三区| 国产成人av教育| 国产精品 欧美亚洲| 免费一级毛片在线播放高清视频 | 午夜久久久在线观看| 91大片在线观看| 国产精品久久久久成人av| 在线观看66精品国产| 精品国产一区二区三区四区第35| 国产精品一区二区在线观看99| 亚洲精品自拍成人| 国内久久婷婷六月综合欲色啪| 日日爽夜夜爽网站| 久久久久国产精品人妻aⅴ院 | 亚洲午夜精品一区,二区,三区| 老司机深夜福利视频在线观看| 亚洲国产欧美日韩在线播放| 成年动漫av网址| 午夜福利视频在线观看免费| 成年人免费黄色播放视频| 交换朋友夫妻互换小说| 后天国语完整版免费观看| 精品久久久久久电影网| 99国产精品一区二区蜜桃av | av天堂久久9| 久久午夜综合久久蜜桃| 在线观看www视频免费| 亚洲,欧美精品.| 国产精品久久久久久人妻精品电影| 9色porny在线观看| 国产精品亚洲一级av第二区| 国产av一区二区精品久久| 香蕉丝袜av| 国产精品亚洲av一区麻豆| 高潮久久久久久久久久久不卡| 成人av一区二区三区在线看| 国产免费av片在线观看野外av| 天堂中文最新版在线下载| 人人妻人人澡人人看| 欧美久久黑人一区二区| 久久影院123| 久久久久久人人人人人| 黄片小视频在线播放| 黄频高清免费视频| 国产单亲对白刺激| 男女高潮啪啪啪动态图| 精品国产国语对白av| 精品福利观看| 丰满的人妻完整版| 高清毛片免费观看视频网站 | 久久久国产精品麻豆| aaaaa片日本免费| 757午夜福利合集在线观看| 国产主播在线观看一区二区| 亚洲一区二区三区欧美精品| 真人做人爱边吃奶动态| 热99久久久久精品小说推荐| 69精品国产乱码久久久| 亚洲色图av天堂| 19禁男女啪啪无遮挡网站| 国产高清国产精品国产三级| av中文乱码字幕在线| 免费观看a级毛片全部| 欧美日韩av久久| 人人妻人人澡人人爽人人夜夜| 50天的宝宝边吃奶边哭怎么回事| 成年动漫av网址| 国产精品秋霞免费鲁丝片| 不卡av一区二区三区| 国产一区在线观看成人免费| 国产精品av久久久久免费| 美女 人体艺术 gogo| 精品久久久久久久久久免费视频 | 国产单亲对白刺激| 中文字幕色久视频| svipshipincom国产片| 一本综合久久免费| 欧美亚洲日本最大视频资源| 一区二区日韩欧美中文字幕| 亚洲性夜色夜夜综合| 叶爱在线成人免费视频播放| 一级,二级,三级黄色视频| 久久久久久亚洲精品国产蜜桃av| 高清欧美精品videossex| 久久精品熟女亚洲av麻豆精品| 满18在线观看网站| 熟女少妇亚洲综合色aaa.| 天堂俺去俺来也www色官网| 精品视频人人做人人爽| 久久99一区二区三区| 国产麻豆69| 夫妻午夜视频| 亚洲一区中文字幕在线| 亚洲伊人色综图| 99国产综合亚洲精品| 少妇的丰满在线观看| 欧美日韩精品网址| 亚洲男人天堂网一区| 欧美成人免费av一区二区三区 | 人妻一区二区av| 国产一区二区三区综合在线观看| 中国美女看黄片| av片东京热男人的天堂| 国产欧美日韩一区二区三| 一夜夜www| 午夜福利,免费看| 欧美精品人与动牲交sv欧美| √禁漫天堂资源中文www| 午夜福利影视在线免费观看| 国产一区有黄有色的免费视频| 美女高潮喷水抽搐中文字幕| 成人特级黄色片久久久久久久| 久久久精品区二区三区| 99热只有精品国产| 新久久久久国产一级毛片| 婷婷成人精品国产| 亚洲男人天堂网一区| 一区二区三区精品91| 久久久国产一区二区| 国产精品 欧美亚洲| 亚洲午夜理论影院| 男人舔女人的私密视频| 国产成人欧美在线观看 | 国产精华一区二区三区| 午夜精品久久久久久毛片777| 国产精品免费大片| 欧美国产精品va在线观看不卡| 亚洲avbb在线观看| 亚洲欧美一区二区三区久久| 无遮挡黄片免费观看| 女人久久www免费人成看片| 在线观看午夜福利视频| 国产男女内射视频| 国产成人欧美| 亚洲精品美女久久久久99蜜臀| 黄片大片在线免费观看| 精品久久久久久久久久免费视频 | 欧美激情 高清一区二区三区| 最近最新免费中文字幕在线| √禁漫天堂资源中文www| 成年版毛片免费区| 又黄又粗又硬又大视频| 最新在线观看一区二区三区| 大型av网站在线播放| 日韩有码中文字幕| 老司机午夜福利在线观看视频| a级毛片黄视频| 亚洲色图综合在线观看| 久久久久久免费高清国产稀缺| 亚洲精品中文字幕一二三四区| 日本一区二区免费在线视频| 国产欧美日韩综合在线一区二区| 亚洲专区字幕在线| 久久天堂一区二区三区四区| 最近最新中文字幕大全免费视频| 亚洲精品一卡2卡三卡4卡5卡| 国产高清视频在线播放一区| 18禁黄网站禁片午夜丰满| 脱女人内裤的视频| 国产精品亚洲一级av第二区| 麻豆国产av国片精品| 多毛熟女@视频| 欧美av亚洲av综合av国产av| 亚洲久久久国产精品| 亚洲九九香蕉| 9191精品国产免费久久| 变态另类成人亚洲欧美熟女 | 国产精品一区二区精品视频观看| 国产精品香港三级国产av潘金莲| 十八禁高潮呻吟视频| 欧美日韩av久久| 在线播放国产精品三级| 90打野战视频偷拍视频| 19禁男女啪啪无遮挡网站| 91精品三级在线观看| 国产主播在线观看一区二区| 国产精品国产av在线观看| 中文字幕人妻丝袜一区二区| 午夜福利在线免费观看网站| 飞空精品影院首页| 亚洲成人免费av在线播放| 妹子高潮喷水视频| 久久久久久人人人人人| 天天躁夜夜躁狠狠躁躁| 久久中文看片网| 久久久久久久精品吃奶| 老司机午夜十八禁免费视频| 18禁黄网站禁片午夜丰满| 精品一区二区三区视频在线观看免费 | 欧美久久黑人一区二区| 午夜福利欧美成人| 777米奇影视久久| 色在线成人网| 精品熟女少妇八av免费久了| 亚洲伊人色综图| 国产免费av片在线观看野外av| 熟女少妇亚洲综合色aaa.| 久久久久久亚洲精品国产蜜桃av| svipshipincom国产片| 国产片内射在线| 精品国产国语对白av| 日本黄色视频三级网站网址 | 国产又爽黄色视频| 一区二区日韩欧美中文字幕| 国产xxxxx性猛交| 好男人电影高清在线观看| 99re在线观看精品视频| 91成年电影在线观看| 国产国语露脸激情在线看| 成人影院久久| 侵犯人妻中文字幕一二三四区| 巨乳人妻的诱惑在线观看| 亚洲成人免费av在线播放| 免费高清在线观看日韩| 无人区码免费观看不卡| 美女福利国产在线| 国产在线观看jvid| 精品国产一区二区三区久久久樱花| 久久天躁狠狠躁夜夜2o2o| 亚洲成国产人片在线观看| 手机成人av网站| 亚洲第一青青草原| 麻豆国产av国片精品| 脱女人内裤的视频| 一二三四在线观看免费中文在| 99re在线观看精品视频| 中文字幕人妻丝袜制服| cao死你这个sao货| 成人国语在线视频| 在线观看免费高清a一片| 欧美亚洲日本最大视频资源| 99re在线观看精品视频| 大陆偷拍与自拍| 欧美日韩福利视频一区二区| √禁漫天堂资源中文www| 亚洲自偷自拍图片 自拍| 日本五十路高清| 亚洲第一青青草原| 老鸭窝网址在线观看| 女人被狂操c到高潮| 黄色丝袜av网址大全| 久久精品亚洲熟妇少妇任你| 51午夜福利影视在线观看| 日日摸夜夜添夜夜添小说| 亚洲,欧美精品.| 人人澡人人妻人| 精品人妻在线不人妻| 国产高清国产精品国产三级| 波多野结衣av一区二区av| 亚洲人成电影免费在线| 免费看a级黄色片| 在线观看日韩欧美| 国产精品1区2区在线观看. | 一级作爱视频免费观看| 欧美日韩av久久| 欧美精品一区二区免费开放| 亚洲欧美精品综合一区二区三区| 欧美激情高清一区二区三区| 老司机亚洲免费影院| 久久久久国产精品人妻aⅴ院 | 欧美日韩国产mv在线观看视频| 91av网站免费观看| 欧美日韩精品网址| 国内毛片毛片毛片毛片毛片| 成人特级黄色片久久久久久久| 国产色视频综合| 好男人电影高清在线观看| 正在播放国产对白刺激| 19禁男女啪啪无遮挡网站| 国产精品1区2区在线观看. | 欧美久久黑人一区二区| 亚洲欧美一区二区三区黑人|