,,
(西南交通大學電氣工程學院,四川 成都 610031)
中國的能源資源非常豐富,但其分配極不均衡,煤炭資源80%集中在西部和北部,水資源80%集中在西南地區(qū)。但另一方面,隨著中國經(jīng)濟的快速發(fā)展,用電負荷急劇增加,尤其是中國的東部經(jīng)濟發(fā)達地區(qū),這一現(xiàn)狀決定了必須采用大容量、超高壓、遠距離輸電[1]。
高壓直流輸電具備損耗小、可以限制短路電流、線路造價低等優(yōu)點,因而在遠距離、大容量輸電方面具有不可替代的優(yōu)勢。越來越多的電力系統(tǒng)采用交、直流互聯(lián)電網(wǎng)[2,3],由于大型受端電網(wǎng)的形成,近年來的系統(tǒng)規(guī)劃已開始出現(xiàn)多條直流和多條交流線路并列運行的多饋入交直流混合輸電系統(tǒng)。
但是HVDC線路和汽輪發(fā)電機組之間的相互作用會引起發(fā)電機軸系與電氣系統(tǒng)以一個或多個低于同步頻率交換能量而損壞的現(xiàn)象,從而引發(fā)次同步振蕩現(xiàn)象。次同步振蕩是一類嚴重的系統(tǒng)穩(wěn)定性問題,不但會使系統(tǒng)產(chǎn)生振蕩現(xiàn)象,而且極易造成汽輪發(fā)電機組的大軸損毀[2]。如何采取有效措施抑制次同步振蕩是電力系統(tǒng)中一項重要的研究內(nèi)容。
文獻[4]采用人工神經(jīng)網(wǎng)絡(luò)法對扭振系統(tǒng)的特征值進行實時分析,可用于在線分析次同步振蕩(subsynchronous oscillation,SSO);文獻[5]采用多變量頻域法對次同步振蕩進行分析,可反映出發(fā)電機dq軸的不對稱性;文獻[6]采用開環(huán)系統(tǒng)頻率特性法對汽輪機調(diào)節(jié)系統(tǒng)的SSO特性進行分析;文獻[7]基于模態(tài)控制理論,利用特征值法設(shè)計次同步振蕩抑制器(subsynchronous damping controller,SSDC);文獻[8]提出了一種基于傳遞函數(shù)的波特圖設(shè)計SSDC參數(shù)的方法;文獻[9]提出了與遺傳算法相結(jié)合的SSDC設(shè)計;文獻[10]提出了基于H∞控制理論的SSDC,提高了SSDC的在線計算速度,并使其具有一定的魯棒性。
基于測試信號法,先介紹高壓直流次同步振蕩發(fā)生的原理,然后分析高壓直流次同步振蕩進行時域分析,最后根據(jù)高壓直流次同步振蕩抑制機理,設(shè)計SSDC,抑制次同步振蕩。最后利用PSCAD/EMTDC軟件在IEEE第一標準模型基礎(chǔ)上,對其抑制效果進行了仿真驗證。
圖1 準穩(wěn)態(tài)模型所依據(jù)的換流器電路結(jié)構(gòu)
圖2 HVDC引發(fā)次同步振蕩系統(tǒng)狀態(tài)量變化過程
SSDC 作為抑制 SSO 的有效而經(jīng)濟的手段,其控制性能受反饋信號的選取和控制方法確定的影響,同時還應(yīng)考慮其與其他設(shè)備控制特性的協(xié)調(diào)。在第二章中關(guān)于 SSO 產(chǎn)生機理的更全面解釋中提到,負阻尼的實質(zhì)是電磁轉(zhuǎn)矩偏差對轉(zhuǎn)子初始擾動產(chǎn)生助增作用,也就是說電磁轉(zhuǎn)矩偏差與發(fā)電機軸系轉(zhuǎn)速偏差之間的相位大于 90°,因此可以采用與 PSS 抑制低頻振蕩的原理相似的相位校正(phase correction, PC)來阻尼 SSO。也就是以發(fā)電機轉(zhuǎn)速偏差或者頻率偏差信號為反饋信號,經(jīng)過放大和相位校正處理,其輸出信號通過換流站控制回路提供一個附加的電磁轉(zhuǎn)矩,使其與原有電磁轉(zhuǎn)矩偏差的合成量與轉(zhuǎn)速偏差之間的相位小于 90°(如圖3所示),使整個系統(tǒng)呈現(xiàn)出正的電氣阻尼。
圖3 電氣轉(zhuǎn)矩的向量關(guān)系圖
如圖4所示為含HVDC電力系統(tǒng)的典型簡化模型,該模型包含存在次同步振蕩現(xiàn)象的待研機組(圖中虛框所示),交流網(wǎng)絡(luò)部分用無窮大電源S1和等值阻抗的串聯(lián)組合并與整流側(cè)連接,無窮大電源S2為逆變側(cè)的受端系統(tǒng)。
該系統(tǒng)模型發(fā)電機及軸系模型的參數(shù)均采用IEEE第一諧振模型的參數(shù),直流部分采用CIGER HVDC標準模型,S1和S2的額定頻率均為60 Hz,端電壓為26 kV,發(fā)電機的額定容量為892.4 MVA,直流額定輸送功率為1 000 MW,額定電壓為500 kV。
圖4 含HVDC次同步振蕩的典型簡化模型
圖5 發(fā)電機轉(zhuǎn)速FFT分析
在PSCAD/EMTDC中建立圖4的仿真模型,發(fā)電機軸系采用6軸段模型,機械阻尼設(shè)為零。待系統(tǒng)進入穩(wěn)態(tài)后,在發(fā)電機出線上于2.5 s時給出三相接地故障,故障持續(xù)0.05 s后切除,仿真時間為20 s,發(fā)電機各個軸系質(zhì)塊扭矩將發(fā)生次同步振蕩。
對發(fā)電機轉(zhuǎn)速偏差進行FFT分析得到其各頻率分量的幅值情況,如圖5所示,可以看出幅值較高的頻率均對應(yīng)于發(fā)電機軸系的軸系振蕩模態(tài)。其中幅值最高的為16 Hz,其次為32 Hz、25 Hz和20 Hz分量的幅值大小相近,而1 Hz和47 Hz分量的幅值非常小,可以忽略。
對發(fā)電機各質(zhì)量塊相對于發(fā)電機的機械位置和相對于額定轉(zhuǎn)速度,各質(zhì)量塊角速度偏差進行仿真分析,如圖6和7所示,各質(zhì)量塊相對于發(fā)電機的機械位置明顯處于振蕩狀態(tài),而且呈增大的趨勢。相對于額定轉(zhuǎn)速度,各質(zhì)量塊角速度偏差發(fā)散的趨勢非常明顯,這些都表明了次同步振蕩對發(fā)電機組危害相當嚴重。
圖6 各質(zhì)量塊相對于發(fā)電機的機械位置
圖7 相對于額定轉(zhuǎn)速度,各質(zhì)量塊角速度偏差
對發(fā)電機各軸段的扭矩、發(fā)電機轉(zhuǎn)速度、電磁轉(zhuǎn)矩進行仿真分析。如圖8至圖10得,在2.5 s施加擾動后,發(fā)電機各軸段的扭矩呈現(xiàn)發(fā)散現(xiàn)象,發(fā)電機轉(zhuǎn)速與發(fā)電機電磁轉(zhuǎn)矩呈現(xiàn)不穩(wěn)定狀態(tài),系統(tǒng)發(fā)生次同步振蕩。
圖8 發(fā)電機發(fā)生故障時各軸段間的扭矩
圖9 發(fā)電機轉(zhuǎn)速運行示意圖
圖10 發(fā)電機電磁轉(zhuǎn)矩示意圖
SSDC抑制SSO時需要向發(fā)電機組提供一個足夠大的正阻尼力矩才能抑制發(fā)電機發(fā)散的轉(zhuǎn)速振蕩,因此SSDC的控制策略為:當發(fā)電機轉(zhuǎn)速減小時,在SSDC的作用下HVDC的直流電流參考值減小,由于換流器的快速響應(yīng)特性,直流功率減小,則發(fā)電機輸出的電磁功率也將減小。對恒定的輸入機械功率,電磁功率的增加將導致轉(zhuǎn)子動能的增加,從而使得轉(zhuǎn)子轉(zhuǎn)速增加;反之,發(fā)電機轉(zhuǎn)速減小時HVDC定電流參考值增加,則直流功率增加,發(fā)電機的電磁功率增加,從而使發(fā)電機轉(zhuǎn)子減速。在HVDC換流器的快速響應(yīng)特性下,通過SSDC的這種控制策略能增強發(fā)電機組的次同步振蕩阻尼,達到抑制系統(tǒng)次同步振蕩的目的。
以圖4建立的模型為研究對象,其中,轉(zhuǎn)子軸系6個軸段構(gòu)成,6個軸段對應(yīng)轉(zhuǎn)子軸系6個扭振模式,除去一個剛體模式,進行 SSO 分析的有 5 個扭振模式,軸系的機械扭振模態(tài)頻率分別為 15.71 Hz、20.21 Hz、25.55 Hz、32.28 Hz、47.45 Hz。由于在47.45 Hz處,該模態(tài)近似為等幅振蕩模式,由于該分量所占比重非常小,所以在設(shè)計阻尼控制器時只用考慮前4個扭振模式。
圖11 電氣轉(zhuǎn)矩的向量關(guān)系圖
圖12 SSDC結(jié)構(gòu)示意圖
SSDC采用以發(fā)電機的轉(zhuǎn)速偏差作為反饋信號,采用分模態(tài)控制的方法,經(jīng)過4階Butterworth濾波器,通過相位補償環(huán)節(jié)補償負阻尼所需要的相位差,最后經(jīng)幅值增益和限幅環(huán)節(jié)得到電流補償量將輸出信號疊加至直流電流的整定值信號中,共同作為定電流控制器的輸入信號,消除己產(chǎn)生的次同步振蕩。
圖13 發(fā)電機轉(zhuǎn)速偏差為反饋信號的多模態(tài)阻尼控制器
SSDC2各個模式的濾波及相補環(huán)節(jié)如表1。
表1 SSDC參數(shù)
為進一步驗證加入SSDC后,抑制次同步振蕩的有效性,對圖4所示模型加入SSDC進行仿真分析。待系統(tǒng)進入穩(wěn)態(tài)后,在發(fā)電機出線上于2.5 s時給出三相接地故障,故障持續(xù)0.05 s后切除,仿真時間為20 s。
圖14 加入SSDC時發(fā)電機發(fā)生故障時各軸段間的扭矩
圖15 加入SSDC2時發(fā)電機轉(zhuǎn)速度示意圖
圖16 加入SSDC時發(fā)電機電磁轉(zhuǎn)矩示意圖
圖17 加入SSDC相對于額定轉(zhuǎn)速,各質(zhì)量塊角速度偏差示意圖
由圖14~圖18可得,發(fā)電機各軸段扭矩、電磁轉(zhuǎn)矩及發(fā)電機轉(zhuǎn)速度等振蕩都得到明顯的收斂,次同步振蕩得到了抑制。
圖18 各質(zhì)量塊相對于發(fā)電機的機械位置示意圖
通過上述時域仿真分析,得出下列結(jié)論。
(1)HVDC系統(tǒng)的不正當控制將會引發(fā)次同步振蕩現(xiàn)象,這將會引發(fā)系統(tǒng)發(fā)生故障乃至造成發(fā)電機損壞。
(2) 通過對發(fā)電機轉(zhuǎn)速度進行FFT分析可得,系統(tǒng)發(fā)生次同步的最大振蕩頻率為15.6 Hz。
(3) 設(shè)計的次同步阻尼控制器都可以達到抑制 SSO 的目的, 也就是說在軸系扭振模態(tài)頻率處電氣阻尼轉(zhuǎn)矩系數(shù)為正就可以抑制次同步振蕩。
[1] 張運洲,張衛(wèi)東.國家電網(wǎng)公司電網(wǎng)“十一五”發(fā)展規(guī)劃綜述[N].國家電網(wǎng)報, 2006-36-38(l).
[2] 趙遵廉.中國電網(wǎng)的發(fā)展與展望[J].中國電力,2004, 37(1):1-6.
[3] 于立宏.能源資源替代戰(zhàn)略研究[M].北京:中國時代經(jīng)濟出版社,2008:14-16.
[4] Hsu YY,Jeng I H.Analysis of Torsional Oscillations Using Anartifieial Neural Network [J] . IEEE Trans.on EC.1992,7(4):684-690.
[5] 陳陳.多變量頻域法分析電力系統(tǒng)次同步振蕩[J].電力系統(tǒng)自動化,1989(5):22-27.
[6] 于達仁,徐基豫.大型汽輪機調(diào)節(jié)系統(tǒng)的設(shè)計對軸系扭振的影響[J].中國電機工程學報,1992,12(4):35-39.
[7] YY.Hsu and L.Wang.Modal Control of an HVDC System for the Damping of Subsynchronous Oscillations[J].IEE proceedings,1989,136(2):78-86.
[8] R.J.Piwko,E.VLarsen.HVDC System Control for Damping of Subsynehronous Oscillations [J]. IEEE Transaetionson Power Apparatus and Systcms,1982,101(7):2203-2211.
[9] 江全元,程時杰,曹一家.基于遺傳算法的HVDC附加次同步阻尼控制器的設(shè)計[J].中國電機工程學報,2005,(1):87-91.
[10] 楊秀,王西田,陳陳.基于H∞魯棒控制理論的高壓直流輸電系統(tǒng)附加次同步振蕩阻尼控制設(shè)計[J].電網(wǎng)技術(shù),2006,30(9):57-61.