• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Responses of the ocean carbon cycle to climate change:Results from an earth system climate model simulation

    2014-03-20 21:37:46WANGShuangJingCAOLongLINa
    Advances in Climate Change Research 2014年3期

    WANG Shuang-Jing,CAO Long,LI Na*

    Department of Earth Sciences,Zhejiang University,Hangzhou 310027,China

    Responses of the ocean carbon cycle to climate change:Results from an earth system climate model simulation

    WANG Shuang-Jing,CAO Long,LI Na*

    Department of Earth Sciences,Zhejiang University,Hangzhou 310027,China

    Based on simulations using the University of Victoria's Earth System Climate Model,we analyzed the responses of the ocean carbon cycle to increasing atmospheric CO2levels and climate change from 1800 to 2500 following the RCP 8.5 scenario and its extension.Compared to simulations without climate change,the simulation with a climate sensitivity of 3.0 K shows that in 2100,due to increased atmospheric CO2concentrations,the simulated sea surface temperature increases by 2.7 K,the intensity of the North Atlantic deep water formation reduces by 4.5 Sv,and the oceanic uptake of anthropogenic CO2decreases by 0.8 Pg C.Climate change is also found to have a large effect on the North Atlantic's ocean column inventory of anthropogenic CO2.Between the years 1800 and 2500,compared with the simulation with no climate change,the simulation with climate change causes a reduction in the total anthropogenic CO2column inventory over the entire ocean and in North Atlantic by 23.1%and 32.0%,respectively.A set of simulations with climate sensitivity variations from 0.5 K to 4.5 K show that with greater climate sensitivity climate change would have a greater effect in reducing the ocean's ability to absorb CO2from the atmosphere.

    Climate change;Ocean carbon cycle;Carbon cycle modeling

    1.Introduction

    According to the Intergovernmental Panel on Climate Change(IPCC)Fifth Assessment Report(IPCC,2013),many currently observed climate changes are unprecedented and the existence of global warming since the 1950s is unequivocal. Due to human activities such as fossil fuel use and land use changes since pre-industrial times,CO2concentrations in the atmosphere have increased by about 40%.Also,only about half of the total anthropogenic CO2emissions remain in the atmosphere((240±10)Pg C);the rest is absorbed by land((160±90)Pg C)and the ocean((155±90)Pg C)(IPCC 2013).Based on simulations using 11 coupled climate-carbon cycle models,Friedlingstein et al.(2006)concluded tha climate change will reduce the efficiency of the land and the ocean in absorbing atmospheric CO2.Furthermore,the IPCC reported that CO2increases and climate change have differen effects on the land's and ocean's carbon storage.CO2increases will lead to the increased carbon storage by the land and ocean Climate change will reduce the land and ocean's capacity to absorb atmospheric CO2due to the increasing temperatures of both the land and ocean and increasing oceanic stratification The ocean,which has absorbed 27.9%of the anthropogenic CO2in the past 200 years(IPCC,2013),plays a crucial role in the global carbon cycle.

    The ocean carbon cycle is determined by a series of complex interactions involving the air-sea exchange,inorganic carbon chemistry,ocean general circulation,and marine biological processes(Plattner et al.,2001).Recently,manystudies have discussed the ocean carbon cycle impact of increased atmospheric CO2and climate change.These studies indicate that rising atmospheric CO2levels lead to increased radiative forcing produced by greenhouse gases(IPCC,2013), which causes sea surface warming.Warming seawater will decrease the CO2solubility of seawater(Plattner et al.,2001), resulting in a reduction in oceanic CO2uptake.Furthermore, global warming will cause increased ocean stratification (Sarmiento et al.,1998),which then will cause a reorganization of the thermohaline circulation and the reduction or even collapse of the North Atlantic deep water formation(Manabe and Stouffer,1994;Stocker and Schmittner,1997).These changes will reduce the total transport of oceanic CO2from the ocean surface to the deep ocean(Maier-Reimer et al., 1996;Matebr and Hirst,1999).The reduction in oceanic carbon uptake,caused by the processes mentioned above,will in turn accelerate the increase in atmospheric CO2(Joos et al., 1999).Ocean carbon cycle studies in China began later than other studies worldwide,but have developed rapidly.The early studies mainly used two-dimensional carbon cycle models.For example,Xu et al.(1997)discussed the inorganic carbon cycle,and the sinks and sources of oceanic carbon uptake.Pu and Wang(2000,2001)analyzed the distribution of chemical components related to carbon and the critical factors influencing the distribution of carbon in the Indian Ocean.At present,three-dimensional ocean carbon cycle models are being widely used in climate change research.Xing(2000) and Jin and Shi(2001)pointed out that the biological pump plays an important role in the ocean carbon cycle.Li and Xu (2012)used a perturbation approach to compare the different effects on oceanic CO2uptake in the Pacific Ocean and also modeled its biological processes.In addition to discussing the factors that influence oceanic CO2uptake,other studies(Xu and Li,2009;Bao et al.,2012)have analyzed oceanic CO2uptake and distribution based on simulations.Moreover,Wei et al.(2012,2014)employed an earth system model(BNUESM)to investigate the different climate change and ocean warming responses,including oceanic CO2uptake,carbon sequestration,and ocean acidification,to various anthropogenic CO2emission scenarios.

    Based on the previous work noted above,this study uses an earth climate model to simulate the effect of increased atmospheric CO2and associated climate changes on oceanic CO2uptake and the ocean carbon cycle.

    2.Model and methods

    2.1.Model description

    The University of Victoria Earth System Climate Model (UVic)was used,which consists of an energy-moisture balance atmospheric model(Fanning and Weaver,1996),a dynamic-thermodynamic sea-ice model(Bitz et al.,2001; Hibler,1979;Hunke and Dukowicz,1997),and a primitive equation ocean general circulation model(Pacanowski,1995). This model has a horizontal resolution of 3.6°longitude and 1.8°latitude,and divides the ocean into 19 vertical layers.

    In order to guarantee the model's computational efficiency, we used a simplified atmospheric model with only one layer, and included only CO2forcing,with no other greenhouse gas forcing such as CH4or aerosol forcing.The vertically integrated thermodynamic energy balance equations assume that the energy and specific humidity decrease vertically with specified scale heights.Momentum conservation equations are replaced by specified wind data,and the atmospheric heat and moisture transport by diffusion are parameterized for simplification(Weaver et al.,2001).The model's wind stress data, 1958-1998 daily reanalysis data(Kalnay et al.,1996),are used to force the ocean and ice components and to calculate the latent heat and sensible heat fluxes between the atmosphere and ocean or ice components.The coupled model's ocean component is Modular Ocean Model(MOM)version 2.2,which is based on Navier Stokes equations that are conditional on Boussinesq and hydrostatic approximations.In the sea-ice component,an elastic-viscous-plastic rheology represents the sea-ice dynamics,and various options for the sea-ice thermodynamics and thickness distribution are included.More information and equations may be found in Weaver et al. (2001).

    In addition,our model simulations of the ocean carbon cycle are based not only on the inorganic carbon cycle, following the protocol of the Ocean Carbon Cycle Model Intercomparison Project(Orr et al.,1999),but also take into consideration the ocean ecosystem,including the interactions between nutrients,phytoplankton,zooplankton,and detritus (Schmittner et al.,2008).Model simulations of the terrestrial carbon cycle and vegetation are based on the Met Office-HadleyCentreTRIFFIDdynamicvegetationmodel (Meissner et al.,2003).The model we used in this paper simulates well the large-scale distribution of key climate variables(Weaver et al.,2001)and the ocean carbon cycle (Schmittner et al.,2008),and has been widely used in various global climate and carbon cycle studies(Friedlingstein et al., 2006;Schmittner et al.,2008).

    2.2.Simulation experiments

    Before conducting the sensitivity simulations,we first set the atmospheric CO2concentration at the pre-industrial level of 280×10-6,and set the mean state of the climate from 1960 to 1990 as the initial condition(Weaver et al.,2001).Then we spun up the model for 10,000 years to reach a quasiequilibrium state between the climate and carbon cycle.At this time,the air-sea carbon flux is close to zero.Then we conducted transient simulations based on specified atmospheric CO2levels.Starting from the end of the spin-up simulation,the atmospheric CO2concentration is based on observations made from 1800 to 2005,and under the RCP 8.5 scenario after 2005.According to the IPCC(2013),the Representative Concentration Pathways(RCPs)usually refer to the pathways extending to 2100 and their corresponding emission scenarios.Extended Concentration Pathways(ECPs) describe the RCPs'extensions from 2100 to 2500.Specifically, RCP 8.5 is a relatively high CO2concentration pathway;theatmospheric CO2concentration reaches to 935.9×10-6by year 2100,then continues to rise over time,and the corresponding ECP maintains a constant concentration after 2250 (Fig.1a).

    Based on the speci fied atmospheric CO2concentration,two simulations were performed.One simulation considers climate change due to atmospheric CO2increase and the impact on the ocean carbon cycle due to climate change.The other simulation does not consider climate change due to the atmospheric CO2increase,but assumes that while the change in atmospheric CO2has no direct radiation effect on global climate, the atmospheric CO2increase has a small effect on global warming due to its in fluence on terrestrial vegetation.In the first simulation,we speci fied different climate sensitivity values.The equilibrium climate sensitivity refers to the change in the annual and global mean surface temperature when the climate system reaches a steady state,following a doubling of the atmospheric CO2concentration.Empirical equations are adopted in the model to calculate the radiative forcing by the change in the atmospheric CO2concentration,and therefore radiative forcing can be modi fied by changing the empirical equations'coef ficient,thus changing the climate sensitivity.In our simulations,the climate sensitivity ΔT2xvaries from 0.5 K to 4.5 K at intervals of 0.5 K(ΔT2x=0.5 K,1.0 K,1.5 K, 2.0 K,2.5 K,3.0 K,3.5 K,4.0 K,and 4.5 K).Current estimates of climate sensitivity are 1.5-4.5 K,according to IPCC Fifth Assessment Report(IPCC,2013).In this study,we focus on the difference between the simulation with a climate sensitivity of 3.0 K and the simulation with no climate change with respect to the ocean carbon cycle and the ocean's ability to uptake atmospheric CO2.We also analyze the possible responses of the ocean carbon cycle to different climate sensitivities.

    3.Results

    Given a specified CO2concentration(RCP 8.5,Fig.1a) the responses of the oceanic CO2uptake to increasing atmospheric CO2concentrations and/or climate change are as follows.If increased atmospheric CO2has no influence on climate change through radiation,the changes in the globa mean land surface air and sea surface temperatures are smal enough to be ignored(Fig.1b and c),and can be regarded as resulting in no climate change(climate sensitivity is 0).When the climate sensitivity is set to 3.0 K,global mean land surface air and sea surface temperatures show a rising trend Even if the CO2concentration remains constant after the year 2250,these temperatures still continue to rise at a relatively slower rate(Fig.1b and c).Relative to the year 1800,the global mean land surface air and sea surface temperatures increase by nearly 8.6 K and 6.6 K by the year 2500 respectively.Research has indicated that,under the same salinity,alkalinity,and dissolved inorganic carbon concentrations,a sea surface warming of 1 K will increase the sea surface CO2partial pressure about 4%(Takahashi et al. 1993).Meanwhile,seasurfacewarmingwillreduce seawaterCO2solubility(Plattneretal.,2001),thus decreasing the oceanic CO2uptake.As shown in Fig.1e-g compared with the simulations with no climate change,decreases in the global mean surface dissolved inorganic carbon(DIC)concentrations,alkalinity,and salinity by year 2500 are 83.4 μmol kg-1(3.7%),57.2 μmol kg-1(2.5%),and 0.2 psu (0.4%)respectively,all of which reach maximum values.In addition,the changes in DIC concentrations and alkalinity have opposite effects on sea surface CO2partial pressure whereby one can nearly offset the other(Plattner et al.,2001). Moreover,Zhou et al.(2005)reported that global warming leads to a rise in sea surface temperature and a dilution in sea surface water at the high latitudes of the North Atlantic Ocean.This will reduce the density of seawater and weaken the meridional density gradient between the high and low latitudes,which will result in the weakening of the thermohaline circulation.This weakening will mainly be limited to the North Atlantic rather than the whole conveyor belt.As shown in Fig.1d,in our simulation,compared with the no climate change case,the intensity of the North Atlantic deep water formation,represented by the maximum meridional overturning stream function,decreases by about 7 Sv at most (1 Sv=106m3s-1,year 2185).The weakening of the North Atlantic deep water formation affects the transport of carbon from the sea surface to deep water,thereby influencing the oceanic CO2uptake(Friedlingstein et al.,2006).Since the rate of oceanic CO2uptake depends on CO2solubility,the differences between atmospheric and sea surface CO2partial pressure,and the ocean dynamic transport of DIC,climate change reduces the oceanic uptake of anthropogenic CO2emissions,and the specific tendencies over time are shown in Fig.1h.In our simulations,the oceanic uptake of anthropogenic CO2(this year's total oceanic CO2uptake minus that in 1800)reaches a maximum of 6.0 Pg C in 2093 with no climate change,while it reaches a maximum of 5.3 Pg C in 2083 with climate change.And the maximum difference of 1.2 Pg C between the two simulations occurs in 2180.

    In order to investigate the distribution of anthropogenic CO2in the ocean,we vertically integrated the DIC concentration change(DIC concentration in a given year minus that in 1800)in all 19 layers to produce a global distribution map of the anthropogenic CO2column inventory with and without climate change,as shown in Fig.2.Anthropogenic CO2is not uniformly distributed throughout the ocean.Whether or not there is climate change,the maximum vertically integrated anthropogenic CO2concentration is always found in the North Atlantic Ocean.Due to the formation of North Atlantic deep water,this basin is a major area where seawater sinks(Stocker et al.,1994;Sabine et al.,2004).As it sinks,this seawater can transport the anthropogenic CO2absorbed by the ocean surface to depth more efficiently than in other basins,and thus accumulates a large concentration of anthropogenic CO2. According to our model,the North Atlantic(north to the equator)and the Arctic Ocean account for 10%of the global ocean area and 11.9%of the global ocean volume,but they stored 24.0%(without climate change)and 23.5%(with climate change)of the global oceanic uptake of anthropogenic CO2in 2010,respectively,and 22.0%and 19.5%in 2500, respectively.In 2010,there were no obvious differences in the vertically integrated anthropogenic CO2concentrations between the simulations with and without climate change;the difference in the column inventory of anthropogenic CO2is just 4.1 Pg C(Table 1).However,as atmospheric CO2is absorbed continuously by the ocean and is then transported to the deep ocean,the difference becomes more significant (Fig.2b and c).By 2500,compared to the simulation with no climate change,climate change results in a decrease of 23.1% in the column inventory of anthropogenic CO2in the entire ocean,and of 32.0%in the North Atlantic-Arctic ocean (Table 1).

    Next,we divided the ocean into the Atlantic-Arctic and the Pacific-Indian basins and analyzed the latitude-depth distribution of anthropogenic CO2to gain a better understanding of the distribution and transport of anthropogenic CO2.

    Anthropogenic CO2enters the ocean via the air-sea exchange and the contours of the highest anthropogenic CO2concentrations appear in basins shallower than 500 m under each scenario(Fig.3).This means that anthropogenic CO2concentrates in the near surface water,and the thermocline is a crucial area for the oceanic uptake of anthropogenic CO2. As shown in Fig.3,the highest concentration of anthropogenic CO2is found in the subtropics where near surface seawater shows convergence and subsidence,thus allowing DIC to be transported to the deep ocean,and benefitting further oceanic uptake of anthropogenic CO2(Bao et al., 2012).

    The penetration depth of anthropogenic CO2in the ocean depends on the rate that the near sea surface anthropogenic CO2is transported to the interior(Sabine et al.,2004).And the transport rate mainly depends on ocean circulation factors, such as thermocline ventilation,deep water and intermediate water formation,and so on(Friedlingstein et al.,2006).As it is affected by these factors,the penetration of anthropogenic CO2absorbed by the Pacific-Indian ocean is shallower and slower,and the penetration of anthropogenic CO2absorbed by the basins with deep water formation,such as the North Atlantic Ocean,is deeper and faster(Fig.3).One study reports that regardless of whether basins are characterized by deep water formation or not,the time scales of the near surface water being mixed to the deep ocean may be centuries(Sabine et al.,2004).Climate change increases sea surface temperature (Fig.1b),which causes a decrease in the oceanic CO2uptake by reducing the seawater's CO2solubility(Plattner et al., 2001).This also leads to increased stratification(Sarmiento et al.,1998).The increased stratification leads to a decrease in vertical mixing along the isopycnals and overturning circulation,which decreases the carbon vertical transport.The increased stratification also causes a gradual collapse of thermohaline circulation throughout the entire deep oceanthe thermohaline circulation plays the major role in the carbon balance on a century time scale(Sarmiento et al.,1998),and its collapse has been verified in related early simulations(Joos et al.,1999).As Fig.3 shows,in the year 2500 the 240 μmol kg-1contour of the DIC concentration can extend to a depth of 4,000 m in the Atlantic-Arctic ocean without climatechange(Fig.3a),butinthesimulationwith ΔT2x=3.0 K,it is confined to the sea surface in most of the world ocean(Fig.3b).

    To further analyze the effects of climate change on the ocean carbon cycle,we calculated changes in the global oceanic anthropogenic CO2uptake for the years 2100,2500, and 1800-2100,as well as the 1800-2500 cumulative uptake for different climate sensitivities.The climate sensitivities range from 0.5 K to 4.5 K at intervals of 0.5 K,and with no climate change the climate sensitivity is 0,as shown in Fig.4. In 2100,the oceanic uptake of anthropogenic CO2shows a linear change along with the climate sensitivity.When climate sensitivity increases by 0.5 K,the annual uptake decreases by about 0.1 Pg C,and cumulative uptake decreases by about 6.5 Pg C.In 2500,the change does not display a linear trend. Without climate change,the oceanic anthropogenic CO2uptake is 1.5 Pg C and the cumulative uptake is 1,996.0 Pg C. When the climate sensitivity reaches 4.5 K,the annual uptake is 0.9 Pg C and the cumulative uptake is 1,502.8 Pg C,representing decreases of 39.9%and 24.7%,respectively.As shown in Table 2,both the global mean surface air warming and global mean ocean warming values become larger as climate sensitivity increases.Regarding the global mean ocean warming,simulated under different climate sensitivities(horizontal axis),the oceanic carbon uptake and cumulative uptake of anthropogenic CO2show a similar trend in the Figures whose horizontal axis is climate sensitivity.This series of simulations illustrate that climate warming decreases oceanic carbon uptake,and the higher the climate sensitivity or the greater the ocean warming,the larger is the reduction in the oceanic uptake of anthropogenic CO2.

    4.Conclusions and discussion

    (1)For the same CO2concentrations,relative to simulations without climate change(climate sensitivity is 0),when the climate sensitivity is set as 3.0 K,the changes in global mean surface air temperature and global mean sea surface temperature become larger over time,showing increases of 8.2 K and 6.4 K,respectively,by the year 2500.This warming has direct impacts on the sea surface partial pressure and the solubility of CO2.Owing to climate change,the sea surface DIC concentration, alkalinity,and salinity also decrease by 3.7%,2.5%,and 0.4%,respectively.Moreover,the North Atlantic thermohaline circulation weakens as a result of ocean warming and freshening,and the intensity of the North Atlantic deep water formation decreases by 7 Sv by the year 2185.Due to the net effect of climate change,the oceanic uptake of anthropogenic CO2decreases by 1.2 Pg C by the year 2180.

    (2)Anthropogenic CO2is not evenly distributed in the ocean,and the maximum vertically integrated values are found in the North Atlantic basin because of the characteristic North Atlantic deep water formation.The largest vertically integrated differences induced by climate change(ΔT2x=3.0 K)are also found in the North Atlantic basin.By the year 2500,the total anthropogenic CO2in the entire ocean and in the North Atlantic-Arctic basins decrease by 23.1%and 32.0%,respectively,as a result of climate change,and the reduction in the North Atlantic-Arctic basin accounts for 30.4%of the total reduction,despite the fact that the area accounts for just 16.1%of the total ocean area,the volume accounts for just 11.9%of the total ocean volume.

    (3)Anthropogenic CO2is also unevenly distributed with increasing depth in the ocean.Anthropogenic CO2mainly concentrates in the thermocline and its highest concentrations are found in subtropical surface waters. In the simulation with a climate sensitivity of 3.0 K,the concentrations of anthropogenic CO2in subtropical surface water decreased by about 20%in 2500 relative to the case without climate change.Compared with the Pacific and Indian oceans,the transport rate is faster and the concentration of anthropogenic CO2is higher in deep water formation regions such as the North Atlantic basin.

    (4)Different climate sensitivities have different effects on the ocean carbon cycle.The greater the climate sensitivity,the less the annual oceanic and cumulative uptakes.

    In this study,we chose a specified atmospheric CO2concentration to simulate resultant changes in the oceanic CO2uptake and the ocean carbon cycle affected by climate change The ocean is an important carbon sink.In reality,if the CO2uptake by the ocean decreases,the anthropogenic CO2accumulating in the atmosphere will increase,which will in turn affect climate change.Therefore,it is necessary to study the impact of climate change on the ocean carbon cycle and the resulting feedback of the ocean carbon cycle to climate change.In future studies,we will use a specified CO2emission to investigate the feedback interactions between climate change,atmospheric CO2concentrations,and the ocean carbon cycle.

    Acknowledgements

    This work is supported by National Natural Science FoundationofChina(41276073)andtheFundamenta Research Funds for the Central Universities(2102XZZX012)

    Bao,Y.,Qiao,F.-L.,Song,Z.-Y.,2012.The 3-dimensional numerical simulation of global ocean carbon cycle.Acta Oceanol.Sin.34(3),19-26(in Chinese).

    Bitz,C.M.,Holland,M.M.,Weaver,A.J.,et al.,2001.Simulating the icethickness distribution in a coupled climate model.J.Geophys.Res. Oceans 106(C2),2441-2463.

    Fanning,A.F.,Weaver,A.J.,1996.An atmospheric energy-moisture balance model:climatology,interpentadal climate change,and coupling to an ocean general circulation model.J.Geophys.Res.Atmospheres 101(D10), 15111-15128.

    Friedlingstein,P.,Cox,P.,Betts,R.,et al.,2006.Climate-carbon cycle feedback analysis:results from the C4MIP model intercomparison.J.Clim.19 (14),3337-3353.

    Hibler III,W.D.,1979.A dynamic thermodynamic sea ice model.J.Phys. Oceanography 9(4),815-846.

    Hunke,E.C.,Dukowicz,J.K.,1997.An elastic-viscous-plastic model for sea ice dynamics.J.Phys.Oceanography 27(9),1849-1867.

    IPCC,2013.Climate Change 2013:The Physical Science Basis.Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge University Press,Cambridge. Accessed.http://www.climatechange2013.org/images/report/WG1AR5_ ALL_FINAL.pdf.

    Jin,X.,Shi,G.-Y.,2001.The role of biological pump in ocean carbon cycle. Chin.J.Atmos.Sci.25(5),683-688(in Chinese).

    Joos,F.,Plattner,G.K.,Stocker,T.F.,et al.,1999.Global warming and marine carbon cycle feedbacks on future atmospheric CO2.Science 284(5413), 464-467.

    Kalnay,E.,Kanamitsu,M.,Kistler,R.,et al.,1996.The NCEP/NCAR 40-year reanalysis project.Bull.Am.Meteorol.Soc.77(3),437-471.

    Li,Y.-C.,Xu,Y.-F.,2012.Uptake and storage of anthropogenic CO2in the Pacific Ocean estimated using two modeling approaches.Adv.Atmos.Sci. 29(4),795-809.

    Maier-Reimer,E.,Mikolajewicz,U.,Winguth,A.,1996.Future ocean uptake of CO2:interaction between ocean circulation and biology.Clim.Dyn.12 (10),711-722.

    Manabe,S.,Stouffer,R.J.,1994.Multiple-century response of a coupled ocean-atmosphere model to an increase of atmospheric carbon dioxide.J. Clim.7(1),5-23.

    Matebr,R.J.,Hirst,A.C.,1999.Climate change feedback on the future oceanic CO2uptake.Tellus B 51(3),722-733.

    Meissner,K.J.,Weaver,A.J.,Matthews,H.-D.,et al.,2003.The role of land surface dynamics in glacial inception:a study with the UVic Earth System Model.Clim.Dyn.21(7-8),515-537.

    Orr,J.C.,Najjar,R.,Sabine,C.L.,et al.,1999.Abiotic-howto,Internal OCMIP Report.LSCE/CEA Saclay,p.25.

    Pacanowski,R.C.,1995.MOM 2 documentation,user's guide and reference manual.GFDL Ocean Group Tech.Rep.3(3),232.

    Plattner,G.K.,Joos,F.,Stocker,T.F.,et al.,2001.Feedback mechanisms and sensitivities of ocean carbon uptake under global warming.Tellus B 53(5), 564-592.

    Pu,Y.-F.,Wang,M.-X.,2000.An ocean carbon cycle model part I:establishing of carbon model including an oceanic dynamic general circulation field,chemical,physical and biological processes occurred in the ocean. Climatic Environ.Res.5(2),129-140(in Chinese).

    Pu,Y.-F.,Wang,M.-X.,2001.An ocean carbon cycle model part II:simulation analysis on the Indian Ocean.Climatic Environ.Res.6(1),67-76(in Chinese).

    Sabine,C.L.,Feely,R.A.,Gruber,N.,et al.,2004.The oceanic sink for anthropogenic CO2.Science 305(5682),367-371.

    Sarmiento,J.L.,Hughes,T.M.C.,Stouffer,R.J.,et al.,1998.Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature 393(6682),245-249.

    Schmittner,A.,Oschlies,A.,Matthews,H.D.,et al.,2008.Future changes in climate,ocean circulation,ecosystems,and biogeochemical cycling simulated for a business-as-usual CO2emission scenario until year 4000 AD.Glob.Biogeochem.Cycles 22,1013.

    Stocker,T.F.,Schmittner,A.,1997.In fluence of CO2emission rates on the stability of the thermohaline circulation.Nature 388(6645), 862-865.

    Stocker,T.F.,Broecker,W.S.,Wright,D.G.,1994.Carbon uptake experiments with a zonally-averaged global ocean circulation model.Tellus B 46(2), 103-122.

    Takahashi,T.,Olafsson,J.,Goddard,J.G.,et al.,1993.Seasonal variation of CO2and nutrients in the high-latitude surface oceans:a comparative study. Glob.Biogeochem.Cycles 7(4),843-878.

    Weaver,A.J.,Eby,M.,Wiebe,E.C.,et al.,2001.The UVic Earth System Climate Model:model description,climatology,and applications to past, present and future climates.Atmos.Ocean 39(4),361-428.

    Wei,T.,Yang,S.,Moore,J.C.,et al.,2012.Developed and developing world responsibilities for historical climate change and CO2mitigation.Proc. Natl.Acad.Sci.109(32),12911-12915.

    Wei,T.,Dong,W.,Yuan,W.,et al.,2014.In fluence of the carbon cycle on the attribution of responsibility for climate change.Chin.Sci.Bull.59(19), 2356-2362.

    Xing,R.-N.,2000.A three-dimensional world ocean carbon cycle model with ocean biota.Chin.J.Atmos.Sci.24(3),333-340(in Chinese).

    Xu,Y.-F.,Li,Y.-C.,2009.Estimates of anthropogenic CO2uptake in a global ocean model.Adv.Atmos.Sci.26(2),265-274.

    Xu,Y.-F.,Wang,M.-X.,Jin,X.-Z.,1997.A two-dimensional ocean thermohaline circulation carbon cycle model.Sci.Atmos.Sin.21(5),573-580 (in Chinese).

    Zhou,T.-R.,Yu,X.,Liu,Y.,et al.,2005.Weak response of the Atlantic thermohaline circulation to an increase of atmospheric carbon dioxide in IAP/LASG Climate System Model.Chin.Sci.Bull.50(3),269-275(in Chinese).

    Received 26 May 2014;revised 24 July 2014;accepted 1 August 2014

    Available online 30 December 2014

    *Corresponding author.

    E-mail address:lina2012@zju.edu.cn(LI N.).

    Peer review under responsibility of National Climate Center(China Meteorological Administration).

    http://dx.doi.org/10.1016/j.accre.2014.11.004

    1674-9278/Copyright?2014,National Climate Center(China Meteorological Administration).Production and hosting by Elsevier B.V.on behalf of KeAi This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/3.0/).

    中文字幕另类日韩欧美亚洲嫩草| 级片在线观看| 一个人免费在线观看的高清视频| 男女床上黄色一级片免费看| 精品一区二区三卡| 好男人电影高清在线观看| 亚洲 欧美 日韩 在线 免费| 777久久人妻少妇嫩草av网站| 免费一级毛片在线播放高清视频 | 免费观看人在逋| 琪琪午夜伦伦电影理论片6080| 色综合欧美亚洲国产小说| 黑人巨大精品欧美一区二区蜜桃| 欧美精品啪啪一区二区三区| 一级毛片女人18水好多| 中文字幕最新亚洲高清| 91大片在线观看| 成人18禁在线播放| 午夜久久久在线观看| 欧美日韩亚洲国产一区二区在线观看| 日本wwww免费看| 免费看十八禁软件| 久久亚洲真实| 淫秽高清视频在线观看| 亚洲成av片中文字幕在线观看| 日本 av在线| 在线永久观看黄色视频| 欧美成人午夜精品| 亚洲精品一卡2卡三卡4卡5卡| 免费在线观看视频国产中文字幕亚洲| 丝袜美足系列| 国产精品电影一区二区三区| 制服人妻中文乱码| www.精华液| 色尼玛亚洲综合影院| 国内久久婷婷六月综合欲色啪| 大型av网站在线播放| 欧美老熟妇乱子伦牲交| 国产主播在线观看一区二区| 国产又色又爽无遮挡免费看| 精品久久久久久,| 亚洲精品一区av在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 99国产极品粉嫩在线观看| 午夜影院日韩av| 涩涩av久久男人的天堂| 久久国产乱子伦精品免费另类| 男人舔女人下体高潮全视频| 免费av毛片视频| 亚洲熟妇中文字幕五十中出 | 午夜免费激情av| 香蕉国产在线看| 久久久国产成人免费| 操出白浆在线播放| 十分钟在线观看高清视频www| 老司机午夜福利在线观看视频| 精品久久久久久成人av| 级片在线观看| 黄色怎么调成土黄色| 国产1区2区3区精品| 韩国av一区二区三区四区| 国产精品久久久久成人av| 久久午夜综合久久蜜桃| av国产精品久久久久影院| 日日摸夜夜添夜夜添小说| netflix在线观看网站| 757午夜福利合集在线观看| 久久国产精品影院| 一进一出抽搐gif免费好疼 | 国产精华一区二区三区| 久久午夜亚洲精品久久| 麻豆国产av国片精品| 欧美日韩一级在线毛片| 在线观看日韩欧美| 成人手机av| tocl精华| 免费高清在线观看日韩| 久久久精品欧美日韩精品| 亚洲av日韩精品久久久久久密| 淫秽高清视频在线观看| 久久久久久久午夜电影 | 亚洲欧美日韩高清在线视频| 一级毛片精品| 女人爽到高潮嗷嗷叫在线视频| 亚洲欧美一区二区三区久久| 757午夜福利合集在线观看| 欧美日韩精品网址| 麻豆成人av在线观看| 亚洲三区欧美一区| 老汉色∧v一级毛片| 大型黄色视频在线免费观看| 亚洲av成人不卡在线观看播放网| 天天躁狠狠躁夜夜躁狠狠躁| 丰满的人妻完整版| 欧美激情极品国产一区二区三区| 成人免费观看视频高清| 男女下面插进去视频免费观看| 啪啪无遮挡十八禁网站| 欧美乱妇无乱码| 国产成人啪精品午夜网站| 视频区图区小说| 色综合欧美亚洲国产小说| 老司机午夜福利在线观看视频| 两个人看的免费小视频| 麻豆一二三区av精品| 中文字幕高清在线视频| 高清欧美精品videossex| 一边摸一边抽搐一进一出视频| 久久国产精品影院| 999久久久国产精品视频| www.自偷自拍.com| 婷婷精品国产亚洲av在线| 美女午夜性视频免费| 亚洲av美国av| 琪琪午夜伦伦电影理论片6080| av在线天堂中文字幕 | 少妇裸体淫交视频免费看高清 | 一a级毛片在线观看| 另类亚洲欧美激情| 亚洲男人天堂网一区| 99国产精品免费福利视频| 亚洲男人天堂网一区| 久久久水蜜桃国产精品网| 亚洲成人国产一区在线观看| 中文字幕人妻丝袜一区二区| 亚洲中文av在线| 国产av精品麻豆| 国产亚洲精品久久久久5区| 最近最新免费中文字幕在线| 视频在线观看一区二区三区| 国产色视频综合| av福利片在线| 成人国语在线视频| 国产精品 欧美亚洲| 一级毛片精品| 在线观看免费高清a一片| 欧美精品啪啪一区二区三区| 一级黄色大片毛片| 天堂俺去俺来也www色官网| 老汉色∧v一级毛片| 午夜精品国产一区二区电影| 国产野战对白在线观看| 久久精品国产亚洲av香蕉五月| 一级a爱片免费观看的视频| 欧美午夜高清在线| 黄色视频,在线免费观看| 精品福利永久在线观看| 日本wwww免费看| 久久午夜综合久久蜜桃| 一区二区三区国产精品乱码| 在线十欧美十亚洲十日本专区| 水蜜桃什么品种好| 国产精品综合久久久久久久免费 | 免费在线观看日本一区| 国产激情欧美一区二区| 国产伦一二天堂av在线观看| 成年版毛片免费区| 精品一区二区三区视频在线观看免费 | 国产日韩一区二区三区精品不卡| 国产精品一区二区在线不卡| 脱女人内裤的视频| 黑人操中国人逼视频| 色婷婷久久久亚洲欧美| 777久久人妻少妇嫩草av网站| 一进一出抽搐gif免费好疼 | 一进一出抽搐动态| 成人三级做爰电影| 久久热在线av| 在线国产一区二区在线| 国产精品免费视频内射| 99久久人妻综合| 80岁老熟妇乱子伦牲交| 黑丝袜美女国产一区| 久久天躁狠狠躁夜夜2o2o| 欧美日韩福利视频一区二区| 欧美成人免费av一区二区三区| 午夜久久久在线观看| 午夜91福利影院| 日韩中文字幕欧美一区二区| 亚洲美女黄片视频| 男女床上黄色一级片免费看| 国产有黄有色有爽视频| tocl精华| 免费久久久久久久精品成人欧美视频| 麻豆一二三区av精品| 九色亚洲精品在线播放| 乱人伦中国视频| 精品国产美女av久久久久小说| 久久久国产精品麻豆| 高清毛片免费观看视频网站 | 女人爽到高潮嗷嗷叫在线视频| 亚洲专区国产一区二区| 亚洲伊人色综图| 脱女人内裤的视频| 免费日韩欧美在线观看| 好男人电影高清在线观看| 精品国产美女av久久久久小说| 久久久国产精品麻豆| 中文欧美无线码| 中出人妻视频一区二区| 免费观看精品视频网站| 午夜激情av网站| 国产高清视频在线播放一区| 久久国产乱子伦精品免费另类| 成人亚洲精品一区在线观看| 制服诱惑二区| 中文字幕最新亚洲高清| 亚洲va日本ⅴa欧美va伊人久久| 日本免费一区二区三区高清不卡 | 男女下面进入的视频免费午夜 | 欧美人与性动交α欧美精品济南到| 老鸭窝网址在线观看| 欧美黄色淫秽网站| 麻豆一二三区av精品| 黄网站色视频无遮挡免费观看| 午夜福利欧美成人| 国产免费现黄频在线看| 欧美精品一区二区免费开放| 国产区一区二久久| 亚洲 欧美一区二区三区| 一边摸一边做爽爽视频免费| 亚洲自拍偷在线| 91精品三级在线观看| 欧美在线一区亚洲| 极品人妻少妇av视频| 国产精品一区二区免费欧美| 热99国产精品久久久久久7| 黑人巨大精品欧美一区二区蜜桃| 黄片小视频在线播放| cao死你这个sao货| 日本一区二区免费在线视频| 久久国产精品人妻蜜桃| 免费日韩欧美在线观看| 午夜免费成人在线视频| 亚洲精品久久成人aⅴ小说| 国内毛片毛片毛片毛片毛片| 一级作爱视频免费观看| 国产精品 欧美亚洲| 欧美人与性动交α欧美软件| 每晚都被弄得嗷嗷叫到高潮| 国产蜜桃级精品一区二区三区| 久久精品国产亚洲av高清一级| 日本wwww免费看| 可以在线观看毛片的网站| 国产亚洲av高清不卡| av欧美777| 叶爱在线成人免费视频播放| 在线观看日韩欧美| 搡老乐熟女国产| 一区二区三区激情视频| 国产xxxxx性猛交| 久久人妻福利社区极品人妻图片| 热99re8久久精品国产| xxx96com| 亚洲欧美精品综合一区二区三区| 无遮挡黄片免费观看| 1024香蕉在线观看| 99精国产麻豆久久婷婷| 别揉我奶头~嗯~啊~动态视频| 精品日产1卡2卡| 国产免费男女视频| 欧美+亚洲+日韩+国产| videosex国产| 99在线视频只有这里精品首页| 免费av中文字幕在线| 99国产精品一区二区三区| 欧美日本亚洲视频在线播放| 长腿黑丝高跟| 亚洲色图 男人天堂 中文字幕| 黑人猛操日本美女一级片| 777久久人妻少妇嫩草av网站| 午夜福利欧美成人| 中文字幕人妻丝袜制服| 91国产中文字幕| 免费搜索国产男女视频| 午夜福利欧美成人| 亚洲av日韩精品久久久久久密| 88av欧美| 超色免费av| 中文字幕最新亚洲高清| 曰老女人黄片| 男女午夜视频在线观看| 成人亚洲精品一区在线观看| 制服诱惑二区| 久久人人爽av亚洲精品天堂| 一级黄色大片毛片| 日本 av在线| 欧美日韩乱码在线| av片东京热男人的天堂| 可以在线观看毛片的网站| 女人被躁到高潮嗷嗷叫费观| 国产精品二区激情视频| 久久久久国内视频| 日本撒尿小便嘘嘘汇集6| 在线国产一区二区在线| 18禁观看日本| 88av欧美| 91国产中文字幕| svipshipincom国产片| 啦啦啦在线免费观看视频4| 色哟哟哟哟哟哟| 国产成年人精品一区二区 | 一区二区三区国产精品乱码| 女人爽到高潮嗷嗷叫在线视频| 女人被躁到高潮嗷嗷叫费观| 亚洲熟妇熟女久久| 成年人黄色毛片网站| 成人18禁在线播放| 激情在线观看视频在线高清| 亚洲片人在线观看| 亚洲国产精品一区二区三区在线| 99久久综合精品五月天人人| 免费日韩欧美在线观看| 久久国产精品男人的天堂亚洲| 国产成人精品久久二区二区91| 校园春色视频在线观看| 在线观看66精品国产| 一进一出好大好爽视频| a在线观看视频网站| 久久影院123| 999久久久精品免费观看国产| 深夜精品福利| 桃红色精品国产亚洲av| 50天的宝宝边吃奶边哭怎么回事| 在线观看www视频免费| 日韩欧美一区视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 桃色一区二区三区在线观看| av电影中文网址| 在线观看一区二区三区激情| 欧美激情高清一区二区三区| 99久久精品国产亚洲精品| 国产精品久久久久成人av| 美女大奶头视频| 亚洲黑人精品在线| 久久人妻av系列| 午夜视频精品福利| av有码第一页| 色婷婷av一区二区三区视频| 热re99久久国产66热| 神马国产精品三级电影在线观看 | 女性生殖器流出的白浆| 热99re8久久精品国产| 麻豆一二三区av精品| 国产av在哪里看| а√天堂www在线а√下载| 日韩欧美在线二视频| 黄色成人免费大全| 免费在线观看完整版高清| 69精品国产乱码久久久| 亚洲情色 制服丝袜| 99久久久亚洲精品蜜臀av| 国产精品爽爽va在线观看网站 | 黄色怎么调成土黄色| 老熟妇仑乱视频hdxx| 成人免费观看视频高清| 国产亚洲欧美98| 亚洲一区中文字幕在线| 国产精品国产av在线观看| 国产黄色免费在线视频| 久久影院123| 天堂俺去俺来也www色官网| 十八禁网站免费在线| 中文欧美无线码| 一区二区三区国产精品乱码| 日韩欧美国产一区二区入口| 男女下面插进去视频免费观看| 一进一出抽搐动态| 中文字幕av电影在线播放| 久久久久久免费高清国产稀缺| 一区二区日韩欧美中文字幕| 母亲3免费完整高清在线观看| 欧美日韩亚洲国产一区二区在线观看| 久久精品亚洲精品国产色婷小说| 精品一区二区三区视频在线观看免费 | 99在线视频只有这里精品首页| 少妇的丰满在线观看| 久久精品国产综合久久久| 最好的美女福利视频网| 国产一区二区三区在线臀色熟女 | 国产高清视频在线播放一区| 日本精品一区二区三区蜜桃| 欧美色视频一区免费| 人人澡人人妻人| 黄色 视频免费看| 叶爱在线成人免费视频播放| av片东京热男人的天堂| 精品福利观看| 久久精品影院6| 国产亚洲欧美98| 一级a爱视频在线免费观看| 女生性感内裤真人,穿戴方法视频| 狂野欧美激情性xxxx| 国产亚洲精品久久久久久毛片| 长腿黑丝高跟| 婷婷丁香在线五月| 妹子高潮喷水视频| 香蕉丝袜av| 国产aⅴ精品一区二区三区波| 99国产极品粉嫩在线观看| 久久亚洲真实| 久久 成人 亚洲| 国产又色又爽无遮挡免费看| 久久午夜亚洲精品久久| 亚洲国产欧美网| 男女做爰动态图高潮gif福利片 | 欧美日本中文国产一区发布| 夜夜夜夜夜久久久久| 一二三四在线观看免费中文在| 久久香蕉国产精品| 老司机午夜福利在线观看视频| 动漫黄色视频在线观看| 91av网站免费观看| av天堂久久9| 国产男靠女视频免费网站| 成人免费观看视频高清| av网站在线播放免费| 中文亚洲av片在线观看爽| 99国产精品免费福利视频| 国产精品美女特级片免费视频播放器 | 亚洲少妇的诱惑av| 最近最新免费中文字幕在线| 国产精品电影一区二区三区| 成人三级黄色视频| 亚洲五月婷婷丁香| 精品卡一卡二卡四卡免费| 欧美日韩亚洲国产一区二区在线观看| 97人妻天天添夜夜摸| 中文字幕人妻丝袜一区二区| 热99re8久久精品国产| 一级a爱视频在线免费观看| 88av欧美| 欧美成人免费av一区二区三区| 不卡一级毛片| 18禁美女被吸乳视频| 国产av一区在线观看免费| 日韩欧美国产一区二区入口| 1024视频免费在线观看| 亚洲精品av麻豆狂野| 亚洲国产毛片av蜜桃av| 丝袜人妻中文字幕| 国产成人精品久久二区二区免费| 久久精品国产亚洲av香蕉五月| 中国美女看黄片| 国产极品粉嫩免费观看在线| 97人妻天天添夜夜摸| 国产一区二区在线av高清观看| 国产单亲对白刺激| 999精品在线视频| 一个人观看的视频www高清免费观看 | 国产极品粉嫩免费观看在线| 午夜久久久在线观看| 午夜激情av网站| 俄罗斯特黄特色一大片| 9色porny在线观看| 亚洲国产精品999在线| 波多野结衣一区麻豆| 老司机在亚洲福利影院| 国产成人精品在线电影| 91老司机精品| 国产又色又爽无遮挡免费看| 国产熟女午夜一区二区三区| 变态另类成人亚洲欧美熟女 | 国产成人精品在线电影| 怎么达到女性高潮| 亚洲激情在线av| 自拍欧美九色日韩亚洲蝌蚪91| 婷婷精品国产亚洲av在线| 真人一进一出gif抽搐免费| 亚洲专区国产一区二区| 最近最新中文字幕大全免费视频| 在线国产一区二区在线| 欧美黑人欧美精品刺激| 色尼玛亚洲综合影院| 亚洲国产毛片av蜜桃av| 久久这里只有精品19| ponron亚洲| 制服诱惑二区| 欧美成人午夜精品| 在线观看午夜福利视频| 不卡av一区二区三区| 亚洲中文av在线| 国产高清国产精品国产三级| 色在线成人网| 精品国产一区二区久久| 亚洲欧美日韩另类电影网站| 久久人妻熟女aⅴ| 看免费av毛片| 国产av一区二区精品久久| 国产精品亚洲av一区麻豆| 天天躁夜夜躁狠狠躁躁| 嫁个100分男人电影在线观看| 色婷婷久久久亚洲欧美| 欧美日韩中文字幕国产精品一区二区三区 | 精品人妻1区二区| 国产欧美日韩综合在线一区二区| 热99国产精品久久久久久7| 国产一区二区在线av高清观看| 丰满人妻熟妇乱又伦精品不卡| av中文乱码字幕在线| 久久久久九九精品影院| 一本综合久久免费| 深夜精品福利| 欧洲精品卡2卡3卡4卡5卡区| 国产深夜福利视频在线观看| 十八禁人妻一区二区| 一边摸一边抽搐一进一出视频| 黑丝袜美女国产一区| xxxhd国产人妻xxx| 免费av毛片视频| 国产精品秋霞免费鲁丝片| 夜夜看夜夜爽夜夜摸 | 久久草成人影院| 自线自在国产av| 国产熟女午夜一区二区三区| 麻豆成人av在线观看| 亚洲黑人精品在线| 国产精品乱码一区二三区的特点 | 淫秽高清视频在线观看| 淫妇啪啪啪对白视频| 1024香蕉在线观看| 亚洲精品国产一区二区精华液| 国产三级在线视频| 18禁黄网站禁片午夜丰满| 侵犯人妻中文字幕一二三四区| cao死你这个sao货| 一本大道久久a久久精品| 久久中文字幕一级| 久久久久久久久中文| 黄色视频不卡| 国产日韩一区二区三区精品不卡| 在线观看免费视频网站a站| 国产区一区二久久| 国产精品综合久久久久久久免费 | 欧美老熟妇乱子伦牲交| 国产一卡二卡三卡精品| 精品午夜福利视频在线观看一区| 精品电影一区二区在线| 99热国产这里只有精品6| 亚洲精品在线美女| 国产成人影院久久av| 美女国产高潮福利片在线看| 国产伦人伦偷精品视频| 国产伦一二天堂av在线观看| 日韩欧美免费精品| 欧美乱码精品一区二区三区| 淫秽高清视频在线观看| 色播在线永久视频| 一进一出好大好爽视频| 夜夜夜夜夜久久久久| 亚洲成人久久性| 亚洲色图 男人天堂 中文字幕| 少妇 在线观看| 久久久久久久久久久久大奶| 一本大道久久a久久精品| 午夜福利在线免费观看网站| 真人做人爱边吃奶动态| 欧美日本中文国产一区发布| 校园春色视频在线观看| 国产精品香港三级国产av潘金莲| 亚洲第一欧美日韩一区二区三区| 男人舔女人的私密视频| 三级毛片av免费| 好男人电影高清在线观看| 亚洲人成电影免费在线| 一进一出抽搐gif免费好疼 | 手机成人av网站| 久久亚洲真实| 黄色成人免费大全| 久久99一区二区三区| 午夜日韩欧美国产| 久久香蕉国产精品| 亚洲中文日韩欧美视频| 久久精品国产清高在天天线| 正在播放国产对白刺激| 国产蜜桃级精品一区二区三区| 欧美另类亚洲清纯唯美| 日本五十路高清| 黄色片一级片一级黄色片| 999久久久国产精品视频| 真人一进一出gif抽搐免费| 欧美亚洲日本最大视频资源| 欧美精品一区二区免费开放| 亚洲精品在线美女| 欧美成狂野欧美在线观看| 欧美日韩黄片免| 国产av又大| 久久香蕉精品热| 国产精品成人在线| 亚洲成人免费电影在线观看| 欧美精品一区二区免费开放| 久久香蕉精品热| 成人手机av| ponron亚洲| 亚洲人成伊人成综合网2020| 韩国精品一区二区三区| 国产成人一区二区三区免费视频网站| 国产男靠女视频免费网站| 在线av久久热| 亚洲国产毛片av蜜桃av| 久久久久国产一级毛片高清牌| 精品一区二区三卡| 自拍欧美九色日韩亚洲蝌蚪91| 80岁老熟妇乱子伦牲交| 国产高清国产精品国产三级| 国产成年人精品一区二区 | 国产又色又爽无遮挡免费看| www.精华液| 天堂动漫精品| 看免费av毛片| 久久久国产精品麻豆| 亚洲午夜理论影院| 午夜亚洲福利在线播放| 国产成人免费无遮挡视频| 一a级毛片在线观看|