李瓊毅,馮若飛,喬自林,馬忠仁,*
(1.西北民族大學(xué)生命科學(xué)與工程學(xué)院,甘肅蘭州 730030;2.西北民族大學(xué)甘肅省動(dòng)物細(xì)胞工程技術(shù)研究中心,甘肅蘭州 730030)
缺氧誘導(dǎo)因子-1(hypoxia-inducible factor-1,HIF-1)是由β和α2種不同亞單位組成的異二聚體轉(zhuǎn)錄因子。該因子可直接引起缺氧應(yīng)答基因轉(zhuǎn)錄[1-2],其表達(dá)產(chǎn)物參與細(xì)胞的許多生理過(guò)程,包括葡萄糖攝取、糖酵解、血管形成、釋放炎癥因子和紅細(xì)胞生成等。這些產(chǎn)物對(duì)細(xì)胞在生理及病理情況下適應(yīng)缺氧環(huán)境均有重要影響[1-3]。越來(lái)越多的研究提示HIF-1在感染和炎癥性疾病中也發(fā)揮重要作用[4],因此研究者開始將目光轉(zhuǎn)向HIF-1的功能研究。盡管已有確切證據(jù)表明HIF-1對(duì)宿主應(yīng)答具有影響,但是對(duì)HIF-1在病毒感染中的作用仍知之甚少。在此,本文通過(guò)檢索相關(guān)文獻(xiàn),對(duì)HIF-1的活性改變及其在病毒感染中的作用進(jìn)行了綜述。
哺乳動(dòng)物時(shí)常會(huì)面臨不同的缺氧水平,因此需要進(jìn)化出能夠快速適應(yīng)缺氧條件的相應(yīng)機(jī)制。在這些調(diào)控因子中,最為主要的就是HIF-1。HIF-1是由HIF-1β和HIF-1α亞單位組成的異二聚體轉(zhuǎn)錄因子[3-5-6]。HIF-1β為DNA結(jié)合元件,組成性表達(dá)于細(xì)胞核內(nèi);而HIF-1α為調(diào)節(jié)元件,其表達(dá)水平主要受氧分壓調(diào)控[3]。目前普遍認(rèn)為HIF-1活化主要通過(guò)缺氧時(shí)抑制輔氨酰羥化酶結(jié)構(gòu)域(PHDs)的酶活性實(shí)現(xiàn)[7]。當(dāng)氧分壓正常時(shí),PHDs介導(dǎo)HIF-1α輔氨酰殘基羥化,von-Hippel-Lindau(VHL)蛋白與羥化的輔氨酰殘基結(jié)合并經(jīng)蛋白酶體途徑降解[1,8]。相反,當(dāng)氧分壓下降時(shí),PHDs的功能受到抑制,HIF-1α累積并與HIF-1β結(jié)合形成活化的HIF-1異二聚體,啟動(dòng)缺氧誘導(dǎo)基因表達(dá),因此,HIF-1α的穩(wěn)定表達(dá)決定了HIF-1是否活化[1,8]。研究發(fā)現(xiàn),當(dāng)鐵離子缺乏時(shí)(如脫鐵氨等鐵離子螯合劑存在時(shí))也可以導(dǎo)致HIF-1的活化[9]。鐵離子是PHDs保持酶活性的重要輔因子,因此,鐵離子螯合劑可抑制PHDs的活性,減少HIF-1α降解,從而引發(fā)HIF-1的活化[10]。
非缺氧機(jī)制也可以誘導(dǎo)HIF-1α的產(chǎn)生。盡管在氧濃度正常時(shí)HIF-1α的降解主要通過(guò)脯氨酸羥化/VHL通路進(jìn)行,但是,當(dāng)有刺激因素存在時(shí),如氧化應(yīng)激、激素刺激、生長(zhǎng)因子或細(xì)胞因子以及病原體感染時(shí),HIF-1α的mRNA的數(shù)量或翻譯效率可明顯提高,HIF-1α的濃度也隨之升高[11-13]。多種細(xì)胞信號(hào)級(jí)聯(lián)反應(yīng)均可活化HIF-1α的mRNA轉(zhuǎn)錄,而翻譯則受磷脂酰肌醇-3激酶Akt通路和鈉巴霉素哺乳動(dòng)物靶子(mTOR)的控制[12,14-16]。這種級(jí)聯(lián)反應(yīng)特性極大地提高了細(xì)胞在外界刺激下的存活率[17-21]。
Price等[22-23]發(fā)現(xiàn)HIV相關(guān)病毒蛋白Tat和gp-120能夠引起活性氧(ROS)的產(chǎn)生,而氧化應(yīng)激中活性氧產(chǎn)生可以穩(wěn)定HIF-1α。因此Mermis檢測(cè)了ROS介導(dǎo)的HIF-1α活化是否與gp-120誘導(dǎo)的血小板源性生長(zhǎng)因子(PDGF)表達(dá)增加相關(guān)。結(jié)果表明,gp-120處理組HIF-1α表達(dá)水平明顯高于未處理組,而且這一作用可被抗氧化劑阻斷。為了進(jìn)一步確定HIF-1α是否參與gp-120介導(dǎo)的PDGF-BB表達(dá),Mermis[24]進(jìn)行了HIF-1α特異性小分子干擾RNΑ敲除實(shí)驗(yàn)。經(jīng)HIF-1α特異性小干擾RNΑ轉(zhuǎn)染后,gp-120誘導(dǎo)的人原代肺微血管上皮細(xì)胞PDGF表達(dá)明顯下降。這說(shuō)明HIF-1α的活化在gp-120介導(dǎo)的PDGF表達(dá)中發(fā)揮了重要作用。
HIV-1輔助蛋白-病毒R蛋白(Vpr)于病毒復(fù)制周期的后期合成并包裝在病毒粒子內(nèi)部,對(duì)病毒在巨噬細(xì)胞內(nèi)的復(fù)制發(fā)揮重要作用[25]。Vpr具有多種功能,包括參與HIV-1前整合復(fù)合體的入核轉(zhuǎn)運(yùn)[26],使宿主細(xì)胞停滯于G2期,反式激活病毒和宿主基因復(fù)制以及誘導(dǎo)宿主細(xì)胞凋亡[27]。Deshmαne等[29]發(fā)現(xiàn)Vpr可引起ROS的聚集,后者則導(dǎo)致缺氧誘導(dǎo)因子HIF-1α的活化[28-29]。HIF-1α內(nèi)部結(jié)構(gòu)域與HIV啟動(dòng)子活化相關(guān),適當(dāng)濃度的HIF-1α對(duì)于HIV啟動(dòng)子活化必不可少。
引起人戊型肝炎的HEV是一類重要的病原體。Moin等[30]發(fā)現(xiàn)HEV的ORF3蛋白可以增加宿主細(xì)胞的存活時(shí)間。原因是ORF3表達(dá)陽(yáng)性的細(xì)胞內(nèi),HIF-1α穩(wěn)定性增加,該分子的穩(wěn)定表達(dá)可促進(jìn)糖酵解途徑相關(guān)酶基因表達(dá)增加。該研究證實(shí)HEV可通過(guò)ORF3改變細(xì)胞的能量代謝從而使其更利于自身的繁殖。
在丙型肝炎病毒(HCV)感染中,丙肝病毒糖蛋白可以干擾肝細(xì)胞緊密連接相關(guān)蛋白的表達(dá),增加肝細(xì)胞的遷移,并且上皮間質(zhì)轉(zhuǎn)變標(biāo)志分子也有表達(dá)。而這些標(biāo)志分子的出現(xiàn)是通過(guò)HIF-1α的穩(wěn)定表達(dá)實(shí)現(xiàn)的。當(dāng)HIF-1α的表達(dá)抑制后,病毒感染和糖蛋白表達(dá)均出現(xiàn)下降,HCV的復(fù)制也明顯減慢,這一實(shí)驗(yàn)結(jié)果證實(shí)HIF-1α不僅在肝細(xì)胞遷移中發(fā)揮作用,同時(shí)對(duì)病毒復(fù)制周期也有影響[31]。
HIF-1α穩(wěn)定表達(dá)在RSV感染引起的炎癥反應(yīng)和水腫形成中亦發(fā)揮重要作用[32]。Kilani等[32]研究證實(shí)RSV通過(guò)誘導(dǎo)呼吸道上皮細(xì)胞釋放一氧化氮,隨后引起HIF-1α穩(wěn)定表達(dá)。RSV感染細(xì)胞的HIF-1α穩(wěn)定性明顯高于未感染細(xì)胞,當(dāng)加入NO抑制劑后阻斷了RSV介導(dǎo)的HIF-1α穩(wěn)定增加。因此,Kilani認(rèn)為RSV引起的HIF-1α穩(wěn)定是由NO引起的。Masaki等[2]在實(shí)驗(yàn)中發(fā)現(xiàn),當(dāng)RSV感染人鼻上皮細(xì)胞時(shí)(human nasal epithelial cells,HNECs),緊密連接分子claudin-4的表達(dá)升高,而claudin-4的表達(dá)升高有利于前炎癥因子如IL-8和TNF-α的產(chǎn)生,同時(shí)試驗(yàn)證實(shí)claudin-4的表達(dá)增加、HNECs對(duì)病毒感染的應(yīng)答以及病毒的復(fù)制和出芽均受到 PKC δ/HIF-1α/NK-κB信號(hào)通路的調(diào)節(jié)。
當(dāng)人成纖維細(xì)胞感染人巨細(xì)胞病毒(HCMV)9 h或經(jīng)紫外線照射后,HIF-1α被誘導(dǎo)表達(dá),提示其主要在轉(zhuǎn)錄水平具有刺激作用[1]。HCMV經(jīng)紫外線照射后仍可產(chǎn)生此效應(yīng),說(shuō)明該應(yīng)答與病毒粒子和感染細(xì)胞之間的相互作用有關(guān),但與病毒基因是否表達(dá)無(wú)關(guān)。Mcfarlane等[1]認(rèn)為病毒感染早期的某些事件觸發(fā)宿主細(xì)胞發(fā)生一系列改變,從而最終引起HIF-1α的表達(dá)。
Kondo等[33]則發(fā)現(xiàn)EB病毒的潛伏膜蛋白1(LMP1)可以活化上皮細(xì)胞內(nèi)HIF-1α分子及后續(xù)的應(yīng)答基因。LMP1通過(guò)增加Siah1 E3泛素連接酶的穩(wěn)定性,上調(diào)了Siah1 E3泛素連接酶的含量,從而阻止了VHL與HIF-1α復(fù)合體的形成。這一過(guò)程不但調(diào)節(jié)了HIF-1α而且與EBV誘導(dǎo)的腫瘤發(fā)生息息相關(guān)。
在水痘帶狀皰疹病毒感染的皮膚或Kaposi’s sarcoma相關(guān)皰疹病毒(KSHV)的活組織檢查中也可以檢測(cè)到HIF-1α表達(dá)增加[3],KSHV潛伏期相關(guān)核抗原(LANA)介導(dǎo)了HIF-1α轉(zhuǎn)錄活化[34]。KSHV誘導(dǎo)HIF-1α表達(dá)增加主要與正反饋通路相連,在缺氧的條件下,HIF-1α和LANA可協(xié)同刺激病毒RTA轉(zhuǎn)錄激活因子的表達(dá)[34]。
目前在漢塞巴爾通體引起的桿菌性血管瘤病和紫癜肝病的體外和活體檢查中均證實(shí)有HIF-1的活化[35-36]。在該疾病發(fā)生發(fā)展過(guò)程中,漢塞巴爾通體通過(guò)HIF-1誘導(dǎo)宿主血管生成基因重排。感染細(xì)胞分泌血管生成相關(guān)因子如血管內(nèi)皮生長(zhǎng)因子促進(jìn)內(nèi)皮細(xì)胞增生[35]。腸桿菌科部分成員如小腸結(jié)腸炎耶爾森菌、產(chǎn)氣腸桿菌和腸炎沙門菌等已證實(shí)通過(guò)氧依賴途徑活化HIF-1。在這類激活途徑中,由于腸桿菌分泌的鐵載體與宿主競(jìng)爭(zhēng)鐵離子從而影響PHD2的活性,最終導(dǎo)致HIF-1的活化[37]。敲除HIF-1α基因小鼠往往表現(xiàn)出對(duì)經(jīng)口感染的小腸結(jié)腸炎耶爾森菌的高易感性,因此細(xì)菌感染后HIF-1活化往往是宿主免疫防御機(jī)制的體現(xiàn)[37]。事實(shí)上,由于HIF-1在樹突狀細(xì)胞刺激活化T細(xì)胞的過(guò)程中必不可少,調(diào)節(jié)吞噬細(xì)胞的殺菌活性[38],產(chǎn)生抗微生物肽如抗菌肽[39],因此HIF-1在宿主固有免疫和細(xì)胞免疫中均發(fā)揮重要作用[40]。
HIF-1活化在許多感染性疾病中均可發(fā)現(xiàn),眾多人源性細(xì)菌、真菌及病毒感染結(jié)果證實(shí)在機(jī)體與病原體的相互作用中HIF-1必不可少。隨著對(duì)這些結(jié)果的深入研究,將會(huì)發(fā)現(xiàn)動(dòng)物源性病原體感染后引起的HIF-1活化對(duì)患畜的生理及病理所產(chǎn)生影響。而在不久的將來(lái),在嚴(yán)重感染中HIF-1相關(guān)的抑制性藥物的治療作用也會(huì)進(jìn)一步被闡明并最終發(fā)揮出相應(yīng)的作用。
[1]McFarlane S,Nicholl MJ,Sutherland JS,et al.Interaction of the human cytomegalovirus particle with the host cell induces hypoxia-inducible factor 1 alpha[J].Virology,2011,414(1):83-90.
[2]Masaki T,Kojima T,Okabayashi T,et al.A nuclear factorkappaB signaling pathway via protein kinase C delta regulates replication of respiratory syncytial virus in polarized normal human nasal epithelial cells[J].Mol Biol Cell,2011,22(13):2144-2156.
[3]Werth N,Beerlage C,Rosenberger C,et al.Activation of hypoxia inducible factor 1 is a general phenomenon in infections with human pathogens[J].PLoS One,2010,5(7):e11576.
[4]Cramer T,Yamanishi Y,Clausen BE,et al.HIF-1alpha is essential for myeloid cell-mediated inflammation[J].Cell,2003,112(5):645-657.
[5]Bruick RK.Oxygen sensing in the hypoxic response pathway:regulation of the hypoxia-inducible transcription factor[J].Genes Dev,2003,17(21):2614-2623.
[6]Semenza GL.Hypoxia-inducible factor 1:master regulator of O2homeostasis[J].Curr Opin Genet Dev,1998,8(5):588-594.
[7]Nasimuzzaman M,Waris G,Mikolon D,et al.Hepatitis C virus stabilizes hypoxia-inducible factor 1alpha and stimulates the synthesis of vascular endothelial growth factor[J].J Virol,2007,81(19):10249-10257.
[8]Pugh CW,Ratcliffe PJ.Regulation of angiogenesis by hypoxia:role of the HIF system[J].Nat Med,2003,9(6):677-684.
[9]Ivan M,Kondo K,Yang H,et al.HIFalpha targeted for VHL-mediated destruction by proline hydroxylation:implications for O2sensing[J].Science,2001,292(5516):464-468.
[10]Mazure NM,Brahimi-Horn MC,Berta MA,et al.HIF-1:master and commander of the hypoxic world.A pharmacological ap-proach to its regulation by siRNAs[J].Biochem Pharmacol,2004,68(6):971-980.
[11]Dery MA,Michaud MD,Richard DE.Hypoxia-inducible factor 1:regulation by hypoxic and non-hypoxic activators[J].Int J Biochem Cell Biol,2005,37(3):535-540.
[12]Hellwig-Burgel T,Stiehl DP,Wagner AE,et al.Review:hypoxia-inducible factor-1(HIF-1):a novel transcription factor in immune reactions[J].J Interferon Cytokine Res,2005,25(6):297-310.
[13]Zinkernagel AS,Johnson RS,Nizet V.Hypoxia inducible factor(HIF)function in innate immunity and infection[J].J Mol Med(Berl),2007,85(12):1339-1346.
[14]Fukuda R,Hirota K,F(xiàn)an F,et al.Insulin-like growth factor 1 induces hypoxia-inducible factor 1-mediated vascular endothelial growth factor expression,which is dependent on MAP kinase and phosphatidylinositol 3-kinase signaling in colon cancer cells[J].J Biol Chem,2002,277(41):38205-38211.
[15]Laughner E,Taghavi P,Chiles K,et al.HER2(neu)signaling increases the rate of hypoxia-inducible factor 1alpha(HIF-1alpha)synthesis:novel mechanism for HIF-1-mediated vascular endothelial growth factor expression[J].Mol Cell Biol,2001,21(12):3995-4004.
[16]Page EL,Robitaille GA,Pouyssegur J,et al.Induction of hypoxia-inducible factor-1alpha by transcriptional and translational mechanisms[J].J Biol Chem,2002,277(50):48403-48409.
[17]Alessi DR,Cohen P.Mechanism of activation and function of protein kinase B[J].Curr Opin Genet Dev,1998,8(1):55-62.
[18]Bhaskar PT,Hay N.The two TORCs and Akt[J].Dev Cell,2007,12(4):487-502.
[19]Bai X,Jiang Y.Key factors in mTOR regulation[J].Cell Mol Life Sci,2010,67(2):239-253.
[20]Engelman JA,Luo J,Cantley LC.The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism[J].Nat Rev Genet,2006,7(8):606-619.
[21]Shaw RJ,Cantley LC.Ras,PI(3)K and mTOR signalling controls tumour cell growth[J].Nature,2006,441(7092):424-430.
[22]Price TO,Ercal N,Nakaoke R,et al.HIV-1 viral proteins gp120 and Tat induce oxidative stress in brain endothelial cells[J].Brain Res,2005,1045(1-2):57-63.
[23]Price TO,Uras F,Banks WA,et al.A novel antioxidant N-acetylcysteine amide prevents gp120-and Tat-induced oxidative stress in brain endothelial cells[J].Exp Neurol,2006,201(1):193-202.
[24]Mermis J,Gu H,Xue B et al.Hypoxia-inducible factor-1 alpha/platelet derived growth factor axis in HIV-associated pulmonary vascular remodeling[J].Respir Res,2011,12:103.
[25]Pandey RC,Datta D,Mukerjee R,et al.HIV-1 Vpr:a closer look at the multifunctional protein from the structural perspective[J].Curr HIV Res,2009,7(2):114-128.
[26]Sherman MP,Greene WC.Slipping through the door:HIV entry into the nucleus[J].Microbes Infect,2002,4(1):67-73.
[27]Amini S,Khalili K,Sawaya BE.Effect of HIV-1 Vpr on cell cycle regulators[J].DNA Cell Biol,2004,23(4):249-260.
[28]Deshmane SL,Mukerjee R,F(xiàn)an S,et al.Activation of the oxidative stress pathway by HIV-1 Vpr leads to induction of hypoxia-inducible factor 1alpha expression[J].J Biol Chem,2009,284(17):11364-11373.
[29]Deshmane SL,Amini S,Sen S,et al.Regulation of the HIV-1 promoter by HIF-1alpha and Vpr proteins[J].Virol J,2011,8:477.
[30]Moin SM,Chandra V,Arya R,et al.The hepatitis E virus ORF3 protein stabilizes HIF-1alpha and enhances HIF-1-mediated transcriptional activity through p300/CBP[J].Cell Microbiol,2009,11(9):1409-1421.
[31]Wilson GK,Brimacombe CL,Rowe IA,et al.A dual role for hypoxia inducible factor-1alpha in the hepatitis C virus lifecycle and hepatoma migration[J].J Hepatol,2012,56(4):803-809.
[32]Kilani MM,Mohammed KA,Nasreen N,et al.RSV causes HIF-1alpha stabilization via NO release in primary bronchial epithelial cells[J].Inflammation,2004,28(5):245-251.
[33]Kondo S,Seo SY,Yoshizaki T,et al.EBV latent membrane protein 1 up-regulates hypoxia-inducible factor 1alpha through Siah1-mediated down-regulation of prolyl hydroxylases 1 and 3 in nasopharyngeal epithelial cells[J].Cancer Res,2006,66(20):9870-9877.
[34]Cai Q,Lan K,Verma SC,et al.Kaposi’s sarcoma-associated herpesvirus latent protein LANA interacts with HIF-1 alpha to upregulate RTA expression during hypoxia:Latency control under low oxygen conditions[J].J Virol,2006,80(16):7965-7975.
[35]Kempf VA,Volkmann B,Schaller M,et al.Evidence of a leading role for VEGF in Bartonella henselae-induced endothelial cell proliferations[J].Cell Microbiol,2001,3(9):623-632.
[36]Riess T,Andersson SG,Lupas A,et al.Bartonella adhesin a mediates a proangiogenic host cell response[J].J Exp Med,2004,200(10):1267-1278.
[37]Hartmann H,Eltzschig HK,Wurz H,et al.Hypoxia-independent activation of HIF-1 by enterobacteriaceae and their siderophores[J].Gastroenterology,2008,134(3):756-767.
[38]Peyssonnaux C,Datta V,Cramer T,et al.HIF-1alpha expression regulates the bactericidal capacity of phagocytes[J].J Clin Invest,2005,115(7):1806-1815.
[39]Peyssonnaux C,Cejudo-Martin P,Doedens A,et al.Cutting edge:Essential role of hypoxia inducible factor-1alpha in development of lipopolysaccharide-induced sepsis[J].J Immunol,2007,178(12):7516-7519.
[40]Jantsch J,Chakravortty D,Turza N,et al.Hypoxia and hypoxia-inducible factor-1 alpha modulate lipopolysaccharide-induced dendritic cell activation and function[J].J Immunol,2008,180(7):4697-4705.