• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      瑞士乳桿菌生長(zhǎng)動(dòng)力學(xué)模型的建立與評(píng)價(jià)

      2014-03-15 08:09:17林巧
      食品研究與開發(fā) 2014年15期
      關(guān)鍵詞:平方根瑞士動(dòng)力學(xué)

      林巧

      (西昌學(xué)院,四川西昌615000)

      瑞士乳桿菌生長(zhǎng)動(dòng)力學(xué)模型的建立與評(píng)價(jià)

      林巧

      (西昌學(xué)院,四川西昌615000)

      采用修正的Gompertz方程和平方根模型建立了不同溫度條件下瑞士乳桿菌生長(zhǎng)的動(dòng)力學(xué)模型,分別在20、28、36、44℃液態(tài)培養(yǎng)條件下,測(cè)定不同培養(yǎng)期內(nèi)的菌數(shù)。結(jié)果表明:利用Matlab工具擬合不同溫度下的生長(zhǎng)情況,Gompertz模型能較好地描述瑞士乳桿菌在不同溫度下的生長(zhǎng)動(dòng)態(tài),平方根模型能很好地呈現(xiàn)溫度對(duì)最大比生長(zhǎng)速率的影響關(guān)系,通過在30℃和40℃溫度下培養(yǎng)得到的瑞士乳桿菌生長(zhǎng)實(shí)驗(yàn)值來驗(yàn)證瑞士乳桿菌生長(zhǎng)動(dòng)力學(xué)模型的可靠性,結(jié)果表明模型與試驗(yàn)數(shù)據(jù)能夠很好的擬合。由此所建立的次級(jí)模型可以有效預(yù)測(cè)在20℃~44℃條件下瑞士乳桿菌的生長(zhǎng)情況。

      瑞士乳桿菌;Gompertz方程;平方根模型

      微生物建模的實(shí)驗(yàn)數(shù)據(jù)一般采用液體培養(yǎng)基進(jìn)行數(shù)據(jù)采集,但是食品本身具有其復(fù)雜性,液體培養(yǎng)基相對(duì)較為單一,能否真正代替食物進(jìn)行實(shí)驗(yàn)仍然是爭(zhēng)論的話題。不過有研究人員做了對(duì)比實(shí)驗(yàn)[1-2]用培養(yǎng)基建立模型,把得到的預(yù)測(cè)值與文獻(xiàn)中微生物的生長(zhǎng)情況進(jìn)行對(duì)比,結(jié)果發(fā)現(xiàn),大多情況下不會(huì)出現(xiàn)大的差異。因此,在多數(shù)情況下,可以在實(shí)驗(yàn)室通過培養(yǎng)基來獲取大量的實(shí)驗(yàn)建模數(shù)據(jù),并同時(shí)做好相應(yīng)的對(duì)比實(shí)驗(yàn),用真正的食品得到相應(yīng)數(shù)據(jù)對(duì)模型進(jìn)行驗(yàn)證。

      本動(dòng)力學(xué)模型與試驗(yàn)數(shù)據(jù)是否能夠很好的擬合,證明了整個(gè)工藝過程中瑞士乳桿菌能否最大限度的滿足其自然生長(zhǎng)代謝變化規(guī)律。從而有助于系統(tǒng)有效地控制瑞士乳桿菌工業(yè)擴(kuò)大培養(yǎng)過程。

      1材料與方法

      1.1 材料

      1.1.1 菌種

      菌株:瑞士乳桿菌(Lactobacillus helveticus):由西昌學(xué)院輕化工程學(xué)院生物實(shí)驗(yàn)室保存。

      1.1.2 儀器

      采樣板、手術(shù)刀、手術(shù)剪、磨口廣口瓶、酒精燈、磨口三角瓶、燒杯、三角燒瓶、培養(yǎng)皿、移液管、試管、膠頭吸管、接種環(huán)、玻棒、量筒、脫脂棉、紗布等。

      1.1.3 設(shè)備

      MJ-250B-Ⅱ微機(jī)霉菌培養(yǎng)箱,西安唯信機(jī)電設(shè)備有限公司;SW-CJ-1F型單人雙面凈化工作臺(tái),上虞市道墟杰達(dá)儀器廠;全溫度恒溫培養(yǎng)振蕩器,上海滬粵明科學(xué)儀器有限公司;不繡鋼雙層立式電熱蒸汽壓力消毒器,北京中諾遠(yuǎn)東科技有限公司。

      1.1.4 培養(yǎng)基

      MRS肉湯:按照GB 4789.35—2010食品安全國(guó)家標(biāo)準(zhǔn)食品微生物學(xué)檢驗(yàn)、乳酸菌檢驗(yàn)進(jìn)行配置。

      1.2 方法

      1.2.1 菌種計(jì)數(shù)

      計(jì)數(shù)參照GB/T4789.2—2010《食品安全國(guó)家標(biāo)準(zhǔn)食品微生物學(xué)檢驗(yàn)、菌落總數(shù)測(cè)定》。

      1.2.2 瑞士乳桿菌的培養(yǎng)

      選取20、28、36、44℃為實(shí)驗(yàn)溫度,按1.2.1操作程序進(jìn)行試驗(yàn)。每隔8 h,從生長(zhǎng)培養(yǎng)基中取1mL培養(yǎng)液作系列梯度稀釋,取合適的稀釋度,每個(gè)稀釋度做3個(gè)平行實(shí)驗(yàn),用平板計(jì)數(shù)法于37℃條件下培養(yǎng)24 h后測(cè)瑞士乳桿菌數(shù),對(duì)有效的菌落數(shù)取平均數(shù),此數(shù)據(jù)即為該溫度下特定培養(yǎng)時(shí)間的菌數(shù)。

      1.3 數(shù)據(jù)處理

      實(shí)驗(yàn)數(shù)據(jù)應(yīng)用Matlab 7.0統(tǒng)計(jì)分析軟件(Statsoft),采用軟件中的非線性最小二乘法(Levenberg-marquardt),選取適當(dāng)?shù)臄?shù)學(xué)模型進(jìn)行回歸擬合。

      1.4 數(shù)學(xué)模型的建立

      1.4.1 瑞士乳桿菌生長(zhǎng)動(dòng)力學(xué)模型(初級(jí)模型)

      將20、28、36、44℃培養(yǎng)條件下得到的瑞士乳桿菌實(shí)驗(yàn)數(shù)據(jù),分別用修正的Gompertz方程[3]描述不同溫度下的生長(zhǎng)動(dòng)態(tài)。修正的Gompertz方程如式(1)所示。

      1.4.2 溫度對(duì)瑞士乳桿菌生長(zhǎng)影響的動(dòng)力學(xué)模型(二級(jí)模型)

      溫度對(duì)瑞士乳桿菌生長(zhǎng)影響的動(dòng)力學(xué)模型用平方根(Belehradck)方程描述,是Ratkow sky等[4]根據(jù)微生物在0~40℃溫度條件下,最大比生長(zhǎng)速率(μmax)和延滯時(shí)間(Lag)倒數(shù)的平方根與溫度之間存在線性關(guān)系,提出的一個(gè)簡(jiǎn)單的經(jīng)驗(yàn)?zāi)P?。方程式如下?/p>

      式中:T是培養(yǎng)溫度,℃;Tmin是一個(gè)假設(shè)的概念,指微生物沒有代謝活動(dòng)時(shí)的溫度,℃,即在此溫度下最大比生長(zhǎng)速率為零;b是方程的常數(shù)。

      2結(jié)果與討論

      2.1 不同溫度下瑞士乳桿菌在培養(yǎng)基上的生長(zhǎng)參數(shù)

      表1 瑞士乳桿菌在20、28、36、44℃培養(yǎng)條件下的生長(zhǎng)參數(shù)表(cfu/m L)Tab le1 Lactobacillus helveticus in 20,28,36,44℃culture conditions on the growth parameters table(cfu/m L)

      由表1可知,溫度對(duì)瑞士乳桿菌的生長(zhǎng)有明顯的影響,且各溫度下,時(shí)間與生物量的關(guān)系是隨著時(shí)間的延長(zhǎng)微生物的量也在加,當(dāng)時(shí)間為32 h時(shí),微生物的總量最大。過了32 h微生物的總量就逐漸下降。這是因?yàn)殡S著時(shí)間的延長(zhǎng)微生物逐漸增多消耗了培養(yǎng)基中的營(yíng)養(yǎng)成分,使其不能滿足大量微生物的生長(zhǎng)、繁殖的需要;而且微生物在代謝過程中也會(huì)釋放出一些代謝物,這些代謝物也可能反過來對(duì)微生物本身的成長(zhǎng)起抑制作用,從而導(dǎo)致微生物的總量下降。在不同溫度下,同一時(shí)間段微生物的生長(zhǎng)情況也不相同。其變化是隨著溫度的升高,微生物含量呈先上升在下降的趨勢(shì)。其中在36℃下,瑞士乳桿菌生長(zhǎng)情況最佳。這是由于生長(zhǎng)代謝以及繁殖都是酶參加的。根據(jù)酶促反應(yīng)的動(dòng)力學(xué)[5]來看,溫度升高,反應(yīng)速度加快,呼吸強(qiáng)度增加,最終導(dǎo)致細(xì)胞生長(zhǎng)繁殖加快。但隨著溫度的上升,酶失活的速度也越大,降低代謝速率,使微生物的總量不高。

      2.2 瑞士乳桿菌生長(zhǎng)動(dòng)力學(xué)模型

      根據(jù)修正的Gompertz方程回歸得到瑞士乳桿菌在不同溫度下的生長(zhǎng)動(dòng)力學(xué)模型:

      1.1 研究對(duì)象 先證者出生時(shí)臨床表現(xiàn)為頭發(fā)根部發(fā)白,發(fā)梢淡黃;3個(gè)月時(shí)整根頭發(fā)白中帶淡黃色,眉毛白色,睫毛白色,眼球水平震顫。父母否認(rèn)雙方家族存在其他患者,父母本人表型均正常,非近親婚配,否認(rèn)孕期存在用藥史或不良環(huán)境接觸史。本研究經(jīng)廣東省婦幼保健院醫(yī)學(xué)倫理委員會(huì)批準(zhǔn),所有基因診斷工作均取得患者家屬的同意并簽署知情同意書。

      當(dāng)試驗(yàn)溫度為20℃時(shí):

      所以,

      由上式,同理可得:

      結(jié)果表明,修正Gompertz方程能較好地預(yù)測(cè)本實(shí)驗(yàn)中瑞士乳桿菌生長(zhǎng)的S型曲線,在4種溫度下所得到的回歸相關(guān)系數(shù)值均較高,R2分別為0.937 8、0.944 3、0.986 2、0.966 5,表明上述方程的擬合性很好。

      2.3 瑞士乳桿菌生長(zhǎng)動(dòng)力學(xué)參數(shù)

      表2是瑞士乳桿菌在不同溫度下的生長(zhǎng)動(dòng)力學(xué)參數(shù),利用修正Gompertz方程求得瑞士乳桿菌動(dòng)力學(xué)參數(shù)的R2在0.937 8到0.986 2之間,表明不同溫度下瑞士乳桿菌的生長(zhǎng)動(dòng)力學(xué)模型擬合度較好,能準(zhǔn)確可靠地預(yù)測(cè)MRS肉湯中瑞士乳桿菌的生長(zhǎng)狀態(tài)。利用Gompertz方程由表1所建立模型可求得瑞士乳桿菌的生長(zhǎng)動(dòng)力學(xué)參數(shù),20、28、36、44℃延滯時(shí)間分別為1.238、0.934、0.638、0.584 h,最大比生長(zhǎng)速率分別為0.041 4、0.067 9、0.097 5、0.121 7 h-1。

      表2 瑞士乳桿菌的Gompertz模型參數(shù)表Table2 Characteristic param etersof the Gompertz model developed for lactobacillus helveticus

      2.4 二級(jí)模型的擬合

      由上述分析可知,應(yīng)用修正Gompertz方程能很好地預(yù)測(cè)在20、28、36、44℃溫度條件下瑞士乳桿菌的生長(zhǎng),但卻無法描述溫度的變化對(duì)瑞士乳桿菌生長(zhǎng)的影響。在實(shí)際中微生物的培養(yǎng)過程中,溫度會(huì)在一定范圍內(nèi)波動(dòng)。溫度對(duì)微生物生長(zhǎng)動(dòng)力學(xué)的影響一般用平方根模型來進(jìn)行描述[6-9]。

      圖1 溫度與延滯時(shí)間(Lag)的關(guān)系Fig.1 Temperature and delay time(Lag)relationship

      圖2溫度與最大比生長(zhǎng)速率(μmax)的關(guān)系Fig.2 The tem perature and them aximum specific grow th rate(μmax)relationship

      圖1 、圖2分別是應(yīng)用平方根模型描述的溫度與延滯時(shí)間(Lag)及最大比生長(zhǎng)速率(μmax)之間的關(guān)系。由圖1可以看出,溫度與Lag、μmax間均呈現(xiàn)良好的線性關(guān)系,兩種模型的R2分別為0.958 7和0.991。溫度與Lag、μmax間的Belehradck方程為:

      表3 溫度與延滯時(shí)間(Lag)及最大比生長(zhǎng)速率(μmax)平方根模型的殘差值Table3 Temperature and delay time(Lag)and the maximum specific growth rate(μmax)square root model residual value

      表3是根據(jù)溫度與Lag及μmax平方根模型得到的實(shí)測(cè)值和預(yù)測(cè)值,從中可以看出,它們的殘差絕對(duì)值均小于0.1,說明上述模型描述的溫度與Lag和μmax的關(guān)系是完全可信的。

      2.5 瑞士乳桿菌生長(zhǎng)動(dòng)力學(xué)模型的驗(yàn)證和評(píng)價(jià)

      為了評(píng)價(jià)瑞士乳桿菌生長(zhǎng)動(dòng)力學(xué)模型的可靠性,圖3、圖4將在30℃和40℃溫度下擴(kuò)大培養(yǎng)得到的瑞士乳桿菌生長(zhǎng)實(shí)驗(yàn)值,用修正Gompertz方程得到的生長(zhǎng)曲線與瑞士乳桿菌生長(zhǎng)動(dòng)力學(xué)預(yù)測(cè)模型得到的預(yù)測(cè)生長(zhǎng)曲線進(jìn)行了比較??梢园l(fā)現(xiàn),無論對(duì)于30℃還是40℃,模型都能較好地預(yù)測(cè)出瑞士乳桿菌的生長(zhǎng)動(dòng)態(tài),預(yù)測(cè)值的上下波動(dòng)幅度較小。表4在30、40℃溫度下瑞士乳桿菌的生長(zhǎng)動(dòng)力學(xué)參數(shù)Nmax、Lag和μmax的實(shí)驗(yàn)值與利用平方根模型求得的預(yù)測(cè)值進(jìn)行了比較。由表4可見,在30、40℃條件下瑞士乳桿菌數(shù)及其生長(zhǎng)動(dòng)力學(xué)參數(shù)的預(yù)測(cè)值與實(shí)測(cè)值均吻合良好。

      圖3 在30℃條件下預(yù)測(cè)和實(shí)測(cè)的瑞士乳桿菌的生長(zhǎng)曲線Fig.3 Under the condition of 30℃predicted and measured lactobacillus helveticus growth curve

      圖4 在40℃條件下預(yù)測(cè)和實(shí)測(cè)的瑞士乳桿菌的生長(zhǎng)曲線Fig.4 Under the condition of40℃predicted and measured lactobacillus helveticus growth curve

      表4 在30、40℃貯藏中瑞士乳桿菌生長(zhǎng)動(dòng)力學(xué)參數(shù)的預(yù)測(cè)值與實(shí)測(cè)值Table4 In 30,40 degrees in the storage of lactobacillus helveticus growth kinetics parameters of the predicted and measured values

      3結(jié)論

      本試驗(yàn)旨在為瑞士乳桿菌建立生長(zhǎng)動(dòng)力學(xué)模型,為以后瑞士乳桿菌的工業(yè)擴(kuò)大化生產(chǎn)打下基礎(chǔ),因此本文只建立了一級(jí)與二級(jí)模型。而微生物生長(zhǎng)動(dòng)力學(xué)模型很多文獻(xiàn)[12-15]報(bào)道,大多數(shù)文獻(xiàn)都選用了修正的Gompertz模型作為初級(jí)模型,并聯(lián)用平方根方程來描述不同溫度下瑞士乳桿菌的生長(zhǎng)動(dòng)態(tài)。選用修正的Gompertz模型,聯(lián)用平方根方程可獲得一些重要數(shù)據(jù),如最大比生長(zhǎng)速率(μmax)、遲滯期(Lag)及所需溫度下的菌數(shù),這也是多數(shù)研究選用該模型的原因。

      對(duì)于初級(jí)模型,采用修正的Gompertz模型來擬合不同溫度下瑞士乳桿菌的生長(zhǎng)情況,可以發(fā)現(xiàn),在20℃~44℃條件下模型的回歸相關(guān)系數(shù)R2都在0.9以上,模型極顯著,表明該方程可以很好地描述不同溫度下瑞士乳桿菌的生長(zhǎng)動(dòng)態(tài)。對(duì)于次級(jí)模型,用平方根模型來描述溫度與Lag、μmax之間的關(guān)系,從而可以計(jì)算得到二級(jí)模型如下式:=0.0071(T+8.662),其中T的取值范圍為2℃~53℃[15]。其判定系數(shù)R2分別為0.958 7和0.991,呈現(xiàn)良好的線性關(guān)系。

      最后,通過在30℃和40℃溫度下培養(yǎng)得到的瑞士乳桿菌生長(zhǎng)實(shí)驗(yàn)值來驗(yàn)證瑞士乳桿菌生長(zhǎng)模型的可靠性,研究發(fā)現(xiàn)所建立的模型對(duì)于瑞士乳桿菌生長(zhǎng)動(dòng)態(tài)的模擬比較準(zhǔn)確。在20℃~44℃范圍內(nèi)溫度與Lag和μmax呈現(xiàn)較好的線性關(guān)系,R2值分別為0.958 7和0.991,模型的殘差值的絕對(duì)值均小于0.1,在0上下浮動(dòng),表明該模型描述的溫度與Lag和μmax的關(guān)系是完全可信的。

      [1]何國(guó)慶,丁立孝.食品微生物學(xué)[M].北京:中國(guó)農(nóng)業(yè)大學(xué)出版社, 2009:165-166

      [2]GIBSON A M,BRATCHELLN,ROBERTST A.Predicting microbial growth:growth responses of salmonellae in a laboratory medium as affected by pH,sodium chloride and storage temperature[J].Int J Food Microbiol,1988,6(2):155-178

      [3]WIJTZEST,MCCLURE P J,ZWIETERINGM H,et al.Modelling bacterial growth of Listeria monocytogenes as a function of water activity,pH and temperature[J].Int JFood Microbiol,1993,18(2):139-149

      [4]ZWIETERING M H,JONGERBERGER I,ROMBOUTSFM,etal. Modeling of the bacterial growth curve[J].Application Environment Micribiology,1990,6(6):1875-1881

      [5]王鏡巖.生物化學(xué)[M]。北京:高等教育出版社,2007年.245-246

      [6]LEBERTI,ROBLES-OLVERAV,LEBERTA.Application of polyno-mial models to predict growth of mixed cultures of Pseudomonas spp.and Listeria in meat[J].International Journal of Food Microbiology,2000,61:27-39.

      [7]BARANYI J,ROBERTS T A.A dynamic approach to predictingbac-terial growth in food[J].International Journal of Food Microbiology,1994,23:277-294

      [8]BUCHANANR L,WHITINGRC,DAMERTW C.When is simple good enough:a comparison of the gompertz,baranyi,and three phaselinear models for fitting bacterial growth curves[J].Food Microbiology,997,14:313-326

      [9]GILLC,DUSSAULTR,HOLLEY R A,etal.Evaluation of the hygienic performances of the processes for cleaning,dressing and cooling of pig carcasses in eight packing plants[J].International Journal of Food Microbiology,2000,58:65-72

      [10]Baranyi J.Roberts TA.A terminology for models in predictive microbiology—A reply to K.R.Davey.Food Mirobiology.1992,9:355

      [11]Whiting RC,Buchanan R L.A classification of models for predictive microbiology.Food Microbiology,1993,10:175-177

      [12]李苗云,朱應(yīng)舉,趙改名.微生物預(yù)測(cè)模型研究及其在肉品工業(yè)中的應(yīng)用[J].食品科技,2008(2):58-61

      [13]吳偉偉,張曉東,周光宏.冷卻豬肉中小腸結(jié)腸炎耶爾森氏菌生長(zhǎng)動(dòng)力學(xué)模型的建立與評(píng)價(jià)[J].江西農(nóng)業(yè)學(xué)報(bào),2007(5):96-99

      [14]王宇光,徐暉,王克明.共固定化雙菌種發(fā)酵海藻酒動(dòng)力學(xué)的研究[J].浙江科技學(xué)院學(xué)報(bào),2003(1):5-8

      [15]李苗云,張秋會(huì),趙改名.冷卻豬肉中單增李斯特氏菌生長(zhǎng)動(dòng)力學(xué)模型的建立與評(píng)價(jià)[J].食品科技,2009(30):234-236

      [16]王欽德,楊堅(jiān).食品試驗(yàn)設(shè)計(jì)與分析[M].北京:中國(guó)農(nóng)業(yè)大學(xué)出版,200:38-40

      The Establishment and Evaluation of Lactobacillus Helveticus Grow th Kinetics Model

      LINQiao
      (Xichang college,Xichang 615000,Sichuan,China)

      In this exprimenr,the dynamic model of the growth of Lactobacillus helveticus under different temperature conditions using the modified Gompertz equation and the square root model,under the20,28,36,44℃liquid culture conditions,determined the number of bacteria at different culture period.The results showed that: using Matlab tools fit different temperatures of growth,Gompertz model can betterdescribe thegrowth dynamicsof Lactobacillus helveticus atdifferent temperatures,square root model showing the relationship of temperature on the maximum specific growth rate,verifing the reliability of Lactobacillus helveticus growth kinetics model by temperature at30℃and 40℃culture of Lactobacillus growth experimental values,results showed that the model with the experimental data can be a good fit.Thus the establishment of sub-model can effectively predict the growth in the20℃~44℃under the conditions of Lactobacillus helveticus.

      Lactobacillus helveticus;Gompertz equation;Square root model

      10.3969/j.issn.1005-6521.2014.15.012

      2013-07-18

      林巧(1978—),女(漢),副教師,碩士,研究方向:食品安全檢測(cè)。

      猜你喜歡
      平方根瑞士動(dòng)力學(xué)
      《空氣動(dòng)力學(xué)學(xué)報(bào)》征稿簡(jiǎn)則
      為什么瑞士巧克力這么出名
      “平方根”學(xué)習(xí)法升級(jí)版
      平方根易錯(cuò)點(diǎn)警示
      幫你學(xué)習(xí)平方根
      如何學(xué)好平方根
      瑞士鎮(zhèn)迷陣
      基于隨機(jī)-動(dòng)力學(xué)模型的非均勻推移質(zhì)擴(kuò)散
      TNAE的合成和熱分解動(dòng)力學(xué)
      C36團(tuán)簇生長(zhǎng)動(dòng)力學(xué)及自由能
      石家庄市| 黑龙江省| 双城市| 西城区| 泰安市| 仙游县| 平陆县| 西和县| 新巴尔虎左旗| 海口市| 汉沽区| 广汉市| 华池县| 留坝县| 通城县| 榆社县| 郴州市| 乾安县| 定西市| 五台县| 弥渡县| 陆丰市| 陇南市| 息烽县| 吴堡县| 岳池县| 靖边县| 碌曲县| 霍林郭勒市| 沭阳县| 武宣县| 轮台县| 秦安县| 沿河| 志丹县| 西乡县| 沂水县| 双流县| 余江县| 文成县| 寿阳县|