孟慶鵬 柴鳳梅 李強(qiáng) 鄭佳浩 邵發(fā)志 耿新霞 韓文清MENG QingPeng, CHAI FengMei*, LI Qiang, ZHENG JiaHao, SHAO FaZhi, GENG XinXia and HAN WenQing
1. 新疆大學(xué)新疆中亞造山帶大陸動(dòng)力學(xué)與成礦預(yù)測(cè)實(shí)驗(yàn)室,烏魯木齊 8300462. 中國(guó)地質(zhì)科學(xué)院礦產(chǎn)資源研究所 國(guó)土資源部成礦作用與資源評(píng)價(jià)重點(diǎn)實(shí)驗(yàn)室,北京 1000373. 寶鋼集團(tuán)八鋼公司新疆鋼鐵雅滿蘇礦業(yè)有限責(zé)任公司,哈密 8390001. Xinjiang Key Laboratory for Geodynamic Processes and Metallogenic Prognosis of the Central Asian Orogenic Belt, Xinjiang University, Urumqi 830046, China2. Key Laboratory of Metallogeny and Mineral Assessment, Ministry of Land and Resources, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China3. Bayi Iron and Steel Company of Xinjiang Yamansu Mining Company of Baosteel Group, Hami 839000, China2013-08-10 收稿, 2013-11-22 改回.
新疆北山地區(qū)位于塔里木板塊東北緣,賦存有豐富的銅鎳、鐵和金礦床,是我國(guó)重要的銅鎳金鐵礦產(chǎn)勘查區(qū)和后備基地之一(程松林等,2008)。位于北山地區(qū)的磁海鐵(鈷)礦床,是20世紀(jì)70年代發(fā)現(xiàn)的一大型富鈷鐵礦床,礦床產(chǎn)于輝綠巖中,其賦礦圍巖和蝕變特征與國(guó)內(nèi)外為數(shù)不多的Cornwall型鐵礦床較為相似。Cornwall型鐵礦以其儲(chǔ)量大、富含Co、Au和Ag等金屬備受世人矚目(Hansetal., 1979; Arthuretal., 1985; Patrick, 2001),但其礦床成因等問(wèn)題長(zhǎng)期以來(lái)未有定論。因此,磁海鐵(鈷)礦床是研究Cornwall型鐵礦床的很好典例。前人對(duì)磁海鐵(鈷)礦床的地質(zhì)特征(盛繼福,1985;薛春紀(jì)等,2000;左國(guó)朝等,2004)、礦物學(xué)特征(秦淑英,1983;王玉往等,2006;唐萍芝等,2011,2012)、礦床的形成時(shí)代以及與鐵礦相關(guān)的巖漿巖特征(唐萍芝等,2010;齊天驕等,2012;Houetal., 2013;Huangetal.,2013)開(kāi)展了研究,但是礦床形成時(shí)代不夠精確,時(shí)間跨度較大,對(duì)與鐵礦相關(guān)的鎂鐵質(zhì)巖形成的地球動(dòng)力學(xué)背景有不同的見(jiàn)解,對(duì)礦床成因也存有不同的觀點(diǎn)。這些問(wèn)題的關(guān)鍵在于對(duì)賦含鐵礦的鎂鐵質(zhì)巖漿巖的特征不清楚。此外,北山地區(qū)被認(rèn)為是晚古生代發(fā)育起來(lái)的裂谷(肖淵甫等,2000;姜常義等,2006;徐學(xué)義等,2009;齊天驕等,2012),但是對(duì)區(qū)內(nèi)出露眾多的二疊紀(jì)含銅鎳鎂鐵-超鎂鐵質(zhì)巖體(姜常義等,2006;李華芹等,2006,2009;孫燕等,2009;蘇本勛等,2009,2010;孫赫等,2010)的巖漿來(lái)源和構(gòu)造背景還存在著分歧,部分學(xué)者認(rèn)為形成于活動(dòng)大陸邊緣(范育新等,2007; 頡偉等,2011)或碰撞后伸展環(huán)境(李華芹等,2006,2009),部分學(xué)者認(rèn)為形成于裂谷環(huán)境(李錦軼等,2000,2006;左國(guó)朝等,2004;鄭勇等,2009);巖漿來(lái)源于受交代的富集型巖石圈地幔(頡偉等,2011)或者虧損的地幔(姜常義等,2006;蘇本勛等,2010);還有部分學(xué)者認(rèn)為是地幔柱活動(dòng)的產(chǎn)物(毛景文等,2006;Maoetal., 2008; Pirajnoetal., 2008; 齊天驕等,2012)。幔源鎂鐵質(zhì)巖也是研究地幔特征和殼幔相互作用的窗口。
本文對(duì)磁海鐵(鈷)礦區(qū)出露的鎂鐵質(zhì)巖石(輝綠巖、輝長(zhǎng)巖)開(kāi)展研究,厘定它們的形成時(shí)代,探討巖漿來(lái)源、演化以及形成的大地構(gòu)造背景,為揭示北山地區(qū)晚古生代時(shí)期巖漿作用特征提供依據(jù),也為磁海鐵(鈷)礦床成因研究提供重要信息。
新疆北山地區(qū)位于新疆東部,中天山地塊與塔里木盆地和敦煌地塊之間,其北以中天山南緣斷裂為界,南以疏勒河斷裂為界,呈北東東向展布(蘇本勛等,2010)。該地區(qū)地層自太古界至第四系均有出露,以中下元古界和石炭系為主。其中前寒武紀(jì)結(jié)晶基底包括北山群及長(zhǎng)城系古硐井群、楊吉布拉克群和薊縣系愛(ài)爾蘭基干群;其上部為震旦系馬蹄山組和白頭山組變質(zhì)巖(新疆維吾爾自治區(qū)地質(zhì)勘查開(kāi)發(fā)局,1979a*新疆維吾爾自治區(qū)地質(zhì)勘查開(kāi)發(fā)局. 1979a. 五堡幅1:20 萬(wàn)區(qū)域地質(zhì)調(diào)查報(bào)告);寒武-泥盆紀(jì)時(shí)期是一套完整的淺海-半深海沉積建造,伴有少量的基性火山巖(姜常義等,2006;蘇本勛等,2010);石炭-二疊紀(jì)巖漿活動(dòng)強(qiáng)烈,廣泛出露中性-基性火山巖,并分布有大量的花崗質(zhì)巖體和二十多個(gè)鎂鐵-超鎂鐵質(zhì)巖體(新疆維吾爾自治區(qū)地質(zhì)礦產(chǎn)局,1993)。這些鎂鐵-超鎂鐵質(zhì)巖體(如磁海、漩渦嶺、筆架山、紅石山、坡北、羅東等),主要沿紅柳河斷裂呈帶狀分布(圖1a)。與東天山的黃山(269±2Ma)(Zhouetal., 2004)、黃山東(274±3Ma)(毛景文等,2002;韓寶福等,2004)、香山(298±7.1Ma)(李月臣等,2006)、葫蘆(283±13Ma)(陳世平等,2005),中天山的天宇(290.2±3.4Ma)(唐冬梅等,2009)、白石泉(284±8Ma;281.2±0.9Ma)(吳華等,2005;毛啟貴等,2006),阿爾泰造山帶南緣的喀拉通克(274±3Ma)(韓寶福等,2004)含銅鎳礦鎂鐵-超鎂鐵質(zhì)巖體是同時(shí)代的產(chǎn)物。
磁海鎂鐵-超鎂鐵質(zhì)雜巖體位于塔里木盆地東北緣,紅柳河斷裂和柳園斷裂之間(圖1a),白地洼-淤泥河大斷裂南側(cè),毗鄰紅石山含銅鎳鎂鐵-超鎂鐵質(zhì)巖體。巖體呈北東東向的紡錘形,東西長(zhǎng)約6km,南北寬約3km,向東被第四系覆蓋,地表出露面積約12km2。巖體東部侵位于震旦系白頭山組長(zhǎng)英質(zhì)片巖、大理巖和白云巖,西部侵位于二疊統(tǒng)紅柳河組中基性火山巖。雜巖體主要有輝長(zhǎng)巖、輝綠巖、輝長(zhǎng)輝綠巖和橄欖輝長(zhǎng)巖, 輝長(zhǎng)巖與輝綠巖無(wú)明顯界限, 巖體侵位深度自南西向北東逐漸變淺。此外,雜巖體外圍也發(fā)育有輝石閃長(zhǎng)巖、石英閃長(zhǎng)巖、閃長(zhǎng)巖和花崗閃長(zhǎng)巖等,且中酸性巖體晚于基性巖體侵入,局部呈漸變過(guò)渡關(guān)系(新疆維吾爾自治區(qū)地質(zhì)勘查開(kāi)發(fā)局,1979a)。
圖1 新疆磁海鐵礦區(qū)地質(zhì)圖(據(jù)蘇本勛等,2010;新疆維吾爾自治區(qū)地質(zhì)勘查開(kāi)發(fā)局,1979b*新疆維吾爾自治區(qū)地質(zhì)勘查開(kāi)發(fā)局. 1979b. 白山幅1:20 萬(wàn)區(qū)域地質(zhì)調(diào)查報(bào)告修改)
Fig.1 Geological map of the Cihai iron deposit in Xinjiang (modified after Suetal., 2010)
磁海鐵(鈷)礦床由磁海、磁南和磁西三個(gè)礦段組成,其中磁海礦段為主礦段,位于礦區(qū)東北部,磁南礦段和磁西礦段規(guī)模相對(duì)較小,分別位于磁海礦段的南部和西部(圖1b)。磁海鐵(鈷)礦床主要賦存于輝綠巖中(圖1c),輝綠巖在成礦前后均有產(chǎn)出,其中成礦前的輝綠巖分布范圍較大,主要呈巖株?duì)町a(chǎn)出,總體呈NEE走向,產(chǎn)狀近于直立。成礦后的輝綠巖呈脈狀產(chǎn)出,穿切早期形成的輝綠巖和鐵礦體。輝長(zhǎng)巖地表出露較少,在磁海和磁南礦段有少量出露,磁海礦段為角閃輝長(zhǎng)巖,磁南礦段為粗晶輝長(zhǎng)巖。各類(lèi)型巖石巖相學(xué)特征如下:
角閃輝長(zhǎng)巖呈淺灰白色,中細(xì)粒結(jié)構(gòu),塊狀構(gòu)造,與輝綠巖呈漸變接觸。主要由單斜輝石(約占總量的45%)、斜長(zhǎng)石(約占40%)和角閃石(約占10%)組成(圖2a)。其中單斜輝石呈自形短柱狀,偶見(jiàn)雙晶,晶體大小變化不大,長(zhǎng)度大約在0.2~0.6mm左右,部分輝石破碎程度強(qiáng)烈,多已發(fā)生綠泥石和綠簾石化蝕變。斜長(zhǎng)石呈長(zhǎng)柱狀,長(zhǎng)約0.2~0.4mm,聚片雙晶發(fā)育,多數(shù)較破碎,表面多因鈉黝簾石化和碳酸鹽化蝕變而顯較臟。角閃石自形程度較差,大小約0.2~0.5mm之間,多已發(fā)生碳酸鹽化蝕變。副礦物有磁鐵礦、磷灰石和鋯石(圖2b)。
圖2 磁海鎂鐵質(zhì)巖體的巖石學(xué)特征Fig.2 Photographs of representatives rocks from the Cihai mafic intrusion
圖3 磁海鎂鐵質(zhì)巖體中輝長(zhǎng)巖的LA-ICP-MS鋯石U-Pb年齡諧和圖Fig.3 LA-ICP-MS U-Pb concordia diagrams of zircons separated from gabbros of the Cihai mafic intrusion
輝綠巖呈灰綠色,具輝綠結(jié)構(gòu),塊狀構(gòu)造。主要由斜長(zhǎng)石(50%)、單斜輝石(40%)、黑云母(10%)和磁鐵礦等組成。其中斜長(zhǎng)石呈自形的長(zhǎng)板狀,常組成三角形骨架包裹輝石而顯典型輝綠結(jié)構(gòu),晶體大小變化較大,最大者可達(dá)1mm左右,大多數(shù)長(zhǎng)約0.4~0.6mm左右,聚片雙晶發(fā)育,多已發(fā)生鈉黝簾石化蝕變;單斜輝石呈短柱狀或粒狀,大小約0.2~0.6mm左右,自形程度較差,多已蝕變?yōu)榫G泥石;黑云母呈他形片狀,具有一組極完全解理,晶體大小<4mm。副礦物有磁鐵礦、磷灰石和鋯石等(圖2c, d)。
粗晶輝長(zhǎng)巖呈灰褐色,輝長(zhǎng)結(jié)構(gòu),塊狀構(gòu)造。主要以斜長(zhǎng)石(40%~50%)和單斜輝石(40%~45%)為主,也見(jiàn)少量角閃石和黃鐵礦。斜長(zhǎng)石呈自形長(zhǎng)板狀,大小約為1.6~3mm,聚片雙晶發(fā)育,晶體較大者蝕變強(qiáng)烈,較小者相對(duì)新鮮;單斜輝石呈自形短柱狀,長(zhǎng)約1.5~2.5mm,部分發(fā)生綠泥石化蝕變。角閃石呈半自形晶,多已蝕變。副礦物有磁鐵礦、磁黃鐵礦和鋯石等(圖2e, f)。
測(cè)年樣品采自磁海礦段的角閃輝長(zhǎng)巖(N41°08′09.4″,E93°19′55.9″)和磁南礦段的粗晶輝長(zhǎng)巖(N41°6′26.1″,E93°18′44″),具體采樣位置見(jiàn)圖1c。用于定年的鋯石按照常規(guī)方法從待測(cè)的巖石樣品中分離,在雙目鏡下挑選出晶形好、無(wú)包體和裂隙干凈透明的鋯石,將其粘在環(huán)氧樹(shù)脂靶上,并拋光至露出內(nèi)部。對(duì)待測(cè)的鋯石進(jìn)行透反射、陰極發(fā)光圖像分析,選出表面無(wú)裂紋、內(nèi)部干凈、環(huán)帶發(fā)育的晶體及測(cè)試部位。分析測(cè)試在中國(guó)地質(zhì)科學(xué)院礦產(chǎn)資源研究所同位素實(shí)驗(yàn)室完成。所用儀器為Finnigan Neptune型MC-ICP-MS及與之配套的Newwave UP 213激光剝蝕系統(tǒng)。激光剝蝕所用束斑直徑為25μm,頻率為10Hz,能量密度約為2.5J/cm2,以He為載氣。詳細(xì)分析原理和流程可參考文獻(xiàn)(侯可軍等,2009)。每測(cè)定5~7個(gè)樣品點(diǎn)測(cè)定一次標(biāo)準(zhǔn)鋯石(GJ-1和Plesovice),用于觀察儀器的狀態(tài)以保證測(cè)試的精確度。樣品的同位素比值和元素含量計(jì)算采用ICP-MS-DataCal 4.3 程序處理(Liuetal., 2008),年齡計(jì)算及諧和圖的繪制采用Isoplot 3.0 (Ludwig, 2001)軟件處理。分析結(jié)果列于表1。
圖4 磁海鎂鐵質(zhì)巖的SiO2和Mg#與主要氧化物和相容元素關(guān)系圖Fig.4 SiO2 and Mg# vs. major elements and compatible elements diagrams of the Cihai mafic intrusion
所有用于定年的鋯石晶形較好(圖3),均呈半自形-自形柱狀及雙錐狀,晶棱及晶面清楚,晶體大小變化較大,其中角閃輝長(zhǎng)巖中鋯石長(zhǎng)軸變化于70~130μm之間,長(zhǎng)短軸比一般為2:1~4:1左右,粗晶輝長(zhǎng)巖中鋯石長(zhǎng)軸變化于30~100μm之間,長(zhǎng)短軸比一般為1:1~3:1。大部分晶體具有典型的結(jié)晶環(huán)帶,個(gè)別鋯石可見(jiàn)核幔結(jié)構(gòu)。
對(duì)2件樣品分別測(cè)定了30個(gè)鋯石顆粒。角閃輝長(zhǎng)巖(樣品號(hào): CH12-22)中鋯石的Th/U比值介于0.70~3.86之間(表1),24個(gè)分析點(diǎn)的206Pb/238U表面年齡在誤差范圍內(nèi)一致,介于288.8~299.6Ma之間,其加權(quán)平均值為294.8±1.3Ma(MSWD=0.63)。在6個(gè)年齡不諧和分析點(diǎn)中,2個(gè)較小的年齡值(279Ma和289Ma)可能是由于Pb的丟失造成;3個(gè)分析點(diǎn)(296Ma、289.6Ma和297Ma)與其他24個(gè)分析點(diǎn)的年齡在誤差范圍內(nèi)重合,但它們的207Pb/238U較大,可能主要是207Pb難以測(cè)準(zhǔn)導(dǎo)致的;1個(gè)分析點(diǎn)的較老的年齡(376Ma)可能代表了捕獲鋯石的年齡。粗晶輝長(zhǎng)巖(樣品號(hào): CN12-31)中鋯石的Th/U比值介于0.60~1.9之間(表1),26個(gè)分析點(diǎn)的206Pb/238U表面年齡非常一致,介于271~279.6Ma之間,3個(gè)分析點(diǎn)具有較老的年齡值(299Ma、325Ma和454.4Ma),可能代表了捕獲鋯石的年齡,1個(gè)分析點(diǎn)的年齡值較小(266Ma),可能是由于Pb丟失造成的。26個(gè)接近年齡的加權(quán)平均值為276.1±0.63Ma(MSWD=0.45)。在年齡諧和圖上,26個(gè)分析點(diǎn)均聚集在一致線上及其附近一個(gè)小范圍內(nèi)(圖3),表明這些鋯石形成后U-Pb體系保持封閉,沒(méi)有明顯的U或Pb同位素的丟失和加入。結(jié)合鋯石陰極發(fā)光圖像分析,這些年齡可以代表角閃輝長(zhǎng)巖和粗晶輝長(zhǎng)巖的侵入年齡。
野外系統(tǒng)采集了磁海鎂鐵質(zhì)巖體的輝長(zhǎng)巖(角閃輝長(zhǎng)巖5件、粗晶輝長(zhǎng)巖6件)和輝綠巖(5件)樣品(采樣位置見(jiàn)圖1)。選擇新鮮的或蝕變較弱的樣品進(jìn)行了主量、微量元素分析。全巖地球化學(xué)元素測(cè)試在國(guó)家地質(zhì)實(shí)驗(yàn)測(cè)試中心完成。主量元素采用熔片XRF方法(國(guó)家標(biāo)準(zhǔn)GB/T 14506.28—2010j監(jiān)控)在X熒光光譜儀2100上測(cè)定,其中FeO采用容量滴定法(國(guó)家標(biāo)準(zhǔn)GB/T 14506.14—2010監(jiān)控),稀土和微量先采用Teflon熔樣罐進(jìn)行熔樣,然后采用Finnigan MAT公司生產(chǎn)的雙聚焦高分辨ICP-MS進(jìn)行測(cè)定(標(biāo)準(zhǔn)DZ/T 0223—2001監(jiān)控),相對(duì)標(biāo)準(zhǔn)偏差優(yōu)于5%。分析結(jié)果列于表2。
圖5 磁海鎂鐵質(zhì)巖的FeOT/MgO-FeOT圖解(據(jù)Winchester et al., 1977; Miyashiro, 1974)Fig.5 FeOT/MgO-FeOT diagram of the Cihai mafic intrusion (after Winchester et al., 1977; Miyashiro, 1974)
由表2可以看出,角閃輝長(zhǎng)巖、輝綠巖和粗晶輝長(zhǎng)巖的元素成分具有不同的特征。角閃輝長(zhǎng)巖較粗晶輝長(zhǎng)巖的SiO2含量高(分別為52.9%~54.4%和42.2%~47.3%),MgO、CaO和Al2O3含量低(前者分別為4.2%~4.5%,9.8%~12.5%和13.8%~14.2%,后者分別為8.0%~20.9%,8.1%~13.1%和12.9%~18.1%),Na2O和TiO2含量顯著高(前者分別為5.3%~5.6%和2.27%~2.35%,后者分別為0.9%~2.0%和0.24%~0.4%)。輝綠巖較角閃輝長(zhǎng)巖的SiO2含量低,除MgO含量略高外(5.3%~6.3%),CaO、Na2O、Al2O3和TiO2含量相當(dāng)(圖4)。輝長(zhǎng)巖屬鈣堿性系列,輝綠巖屬拉斑玄武巖系列(圖5)。
在微量元素成分上,各巖性也顯示了不同的特征。角閃輝長(zhǎng)巖(112×10-6~186×10-6)和輝綠巖(110×10-6~141×10-6)的稀土元素總量(∑REE)高于粗晶輝長(zhǎng)巖(9.7×10-6~12×10-6)。在稀土元素球粒隕石標(biāo)準(zhǔn)化圖解上(圖6a),角閃輝長(zhǎng)巖與輝綠巖顯示了一致的輕稀土略富集((La/Yb)N=1.1~2.2和1.3~1.9)的右傾型分布模式,并具有一致的Eu負(fù)異常特征(δEu分別為0.64~0.77(除一個(gè)點(diǎn)達(dá)1.0外)和0.77~0.85);粗晶輝長(zhǎng)巖具有較為平緩的輕稀土略富集((La/Yb)N=1.2~1.5)的右傾型分布模式,顯示了明顯的Eu正異常(δEu=1.2~3.5)。在微量元素原始地幔蛛網(wǎng)圖上(圖6b),角閃輝長(zhǎng)巖與輝綠巖顯示了一致的特征,即具有U的正異常,Nb和Pb的明顯負(fù)異常以及Sr和Ti的弱負(fù)異常;粗晶輝長(zhǎng)巖具有明顯不同的特征,顯示Ba、U、Pb、Sr和Ti正異常,Th、Nb、P、Zr和Hf負(fù)異常。
鋯石原位Lu-Hf同位素分析在天津地質(zhì)礦產(chǎn)研究所進(jìn)行,所用儀器為Finnigan Neptune多接收電感耦合等離子體質(zhì)譜儀(LA-MC-ICP-MS)及與之配套的Newwave UP 213激光剝蝕系統(tǒng)。激光束斑直徑為25μm,所用的激光脈沖頻率為10Hz,能量密度約為2.5J/cm2,以He為剝蝕物質(zhì)載氣。測(cè)定時(shí)用鋯石國(guó)際標(biāo)樣91500作外標(biāo)。
對(duì)角閃輝長(zhǎng)巖和粗晶輝長(zhǎng)巖進(jìn)行了鋯石Lu-Hf同位素分析(表3)。所有分析點(diǎn)的176Hf/177Hf比值均小于0.002,表明鋯石在形成以后有較少的放射成因Hf的累積(楊進(jìn)輝等,2006),獲得的176Hf/177Hf比值能夠代表其形成時(shí)體系的Hf同位素組成(吳福元等,2007)。
表2磁海鎂鐵質(zhì)巖的主量(wt%)和微量(×10-6)元素組成
Table 2 Major (wt%) and trace (×10-6) element data for the Cihai mafic intrusion
樣品號(hào)CH12-54CH12-55CH12-56CH12-57CH12-58CH12-59CH12-60CH12-61CH12-62CH12-63CN12-25CN12-26CN12-27CN12-28CN12-29CN12-30巖性角閃輝長(zhǎng)巖輝綠巖輝長(zhǎng)巖SiO253.0954.3652.9453.5653.4449.3149.7749.5449.8150.0346.3945.9246.7447.3344.9742.19TiO22.332.312.292.272.352.552.562.532.562.570.240.300.310.40.250.39Al2O314.1613.7514.0713.8714.1613.8213.9313.5613.7613.6316.4915.5318.0318.0218.0712.85CaO10.299.8110.9312.539.998.077.978.968.439.4811.5313.1112.2313.1111.688.05Fe2O30.110.060.590.320.710.991.550.731.250.940.130.420.160.460.591.17K2O0.500.750.340.300.231.701.611.671.772.100.230.160.220.160.220.12MgO4.354.384.344.214.466.275.975.285.746.2212.4413.0210.239.46820.93MnO0.090.100.100.070.110.240.210.210.220.180.120.120.110.090.090.15Na2O5.335.485.425.265.603.603.883.633.643.331.781.241.881.731.990.90P2O50.370.400.370.370.390.300.300.300.310.300.010.010.010.020.010.03LOI2.632.343.212.812.431.951.981.931.762.201.562.231.582.703.054.00CO21.501.501.921.661.420.250.580.580.421.000.420.250.250.260.170.42H2O+1.981.342.001.882.022.842.342.522.342.322.062.662.043.283.004.74TOTAL96.796.698.599.197.391.992.791.492.094.393.495.093.897.092.195.9FeO5.735.515.033.935.9510.0810.0110.5110.068.18.076.887.534.88.038.68Mg#59616066575451495158757872786681Sc29.527.830.22929.339.33736.837.638.828.93928.433.426.213.8V2962642942682844063713623763691211431461501355.96Cr7839.642.539.239.172.666.961.567.867.36131004452912421361Co16.214.814.813.133.340.337.837.538.330.773.865.764.346.891.25.18Ni4015.117.89.5638.936.432.231.834.529.524426424110333815.6Cu4.066.623.9630.147.330.836.436.334.532.229824729512653021.1Zn25.324.126.425.928.748.151.349.750.866.150.846.65238.550.77.44Ga21.519.321.819.522.923.522.321.92221.112.31114.313.4145Ge1.461.211.381.31.471.631.351.711.481.511.111.161.0110.970.13As0.570.261.30.20.480.960.550.540.720.320.920.170.650.071.130.01Rb17.126.511.810.76.8658.959.849.95971.86.514.615.193.465.851.79Sr364517301370175394374407369420217178246214230132Zr4243844144014152913022592552778.428.878.5513.713.83.02Nb7.487.187.5310.97.655.35.255.185.345.450.190.150.190.360.270.05Mo0.630.071.120.240.120.340.431.050.110.290.050.050.190.050.370.05Ba78.411236.421.52929420831430428932.320.435.529.445.223.2Hf8.457.898.448.228.46.736.216.26.016.070.310.350.330.430.430.09Ta0.550.550.570.570.550.420.410.420.420.420.050.050.050.050.050.05Pb1.680.981.031.12.361.181.311.431.128.013.822.214.185.835.323.26Th2.742.72.984.693.061.371.451.551.261.510.080.060.10.130.090.09U0.870.950.851.840.670.50.470.520.450.510.050.050.050.050.050.05Se0.030.030.010.040.40.160.160.330.110.10.690.370.580.251.20.69Y60.56557.178.364.45153.353.255.4615.036.835.656.425.47.14La10.111.410.624.312.411.811.414.412.516.30.890.81.041.041.091.45Ce29.431.629.25634.530.530.336.132.839.92.142.142.42.732.512.39Pr4.734.94.617.535.354.454.525.144.875.910.340.370.380.410.380.53Nd2425.323.134.826.522.122.224.624.5291.692.031.942.11.912.65Sm7.117.747.1610.17.956.466.66.937.28.150.590.790.660.750.640.86Eu2.071.871.913.662.131.851.952.022.042.570.690.530.890.780.810.39Gd9.4710.38.8612.210.58.428.488.859.2810.50.831.10.911.050.891.15Tb1.61.721.522.121.781.411.481.511.541.730.150.190.170.190.150.2Dy10.511.39.8513.811.49.029.389.489.8510.90.951.251.051.181.051.29Ho2.162.342.012.822.381.941.911.982.032.240.190.260.210.240.210.28Er6.87.156.48.837.336.015.936.116.226.870.570.760.630.740.650.83Tm0.930.980.841.160.960.790.790.80.840.920.080.10.080.090.080.11Yb6.316.415.767.786.485.255.255.255.516.060.510.640.560.620.530.76Lu0.930.950.911.120.970.770.780.780.80.870.080.10.090.10.090.11∑REE116.1124.0112.7186.2130.6110.8111.0124.0120.0141.99.70011.1011.0012.0011.0013.00
注:Mg#= Mg2+/(Mg2++FeT2+)×100
表3磁海鎂鐵質(zhì)巖的鋯石Hf同位素組成
Table 3 Zircon hafnium isotopic composition of the Cihai mafic intrusion
測(cè)點(diǎn)號(hào)176Yb177Hf2σ176Lu177Hf2σ176Hf177Hf2σAge(Ma)176Hf177HfεHf(0)εHf(t)tDM1(Ma)tDM2(Ma)fLu/HfCH12-22角閃輝長(zhǎng)巖CH12-22.10.2131150.0057070.0086810.0002690.2827920.000051CH12-22.20.1165060.0004640.0024270.0000060.2829450.000024CH12-22.30.1024510.0007550.0021380.0000230.2829100.000023CH12-22.50.1949510.0008530.0037630.0000120.2829700.000079CH12-22.70.1258780.0008340.0024440.0000210.2829860.000021CH12-22.90.1774050.0016280.0043910.0000640.2830030.000023CH12-22.100.1395530.0009540.0034360.0000390.2829120.000024CH12-22.110.1514280.0009380.0033340.0000250.2831030.000021CH12-22.120.1128030.0014490.0025510.0000190.2830180.000019CH12-22.130.0680520.0007010.0015220.0000090.2829150.000019CH12-22.140.0976200.0009470.0026390.0000240.2830400.000019CH12-22.150.1150620.0011120.0026700.0000230.2829040.000018CH12-22.160.1072810.0008500.0027880.0000230.2830220.000022CH12-22.190.0904350.0008040.0023030.0000250.2829990.000019CH12-22.200.1291680.0003480.0028500.0000100.2829800.000021CH12-22.210.1633210.0014980.0037870.0000170.2830130.000021CH12-22.220.0978730.0020620.0023950.0000430.2829020.000023CH12-22.230.2167370.0023350.0047160.0000630.2830400.000029CH12-22.250.2049130.0012560.0044850.0000230.2830310.000031CH12-22.260.1716470.0004760.0033630.0000200.2830730.000023CH12-22.270.1328390.0016060.0034390.0000870.2830180.000023CH12-22.280.1129020.0014050.0021700.0000320.2829770.000024CH12-22.290.2233560.0008260.0041360.0000120.2829730.000028CH12-22.300.1684660.0013900.0041550.0001190.2831380.0000272950.2827440.75.5820962-0.740.2829316.112.1453537-0.930.2828984.910.9500613-0.940.2829497.012.8431496-0.890.2829737.613.6392443-0.930.2829798.213.8387429-0.870.2828935.010.8515624-0.900.28308411.717.5225189-0.900.2830048.714.7345372-0.920.2829075.111.3484593-0.950.2830259.515.4314324-0.920.2828894.710.6516632-0.920.2830078.814.8342366-0.920.2829868.014.1372413-0.930.2829647.313.3406463-0.910.2829938.514.3365398-0.890.2828894.610.6515633-0.930.2830149.515.1333349-0.860.2830079.214.8344366-0.860.28305410.616.5270258-0.900.2829998.714.5355384-0.900.2829657.213.3403462-0.930.2829507.112.8431494-0.880.28311613.018.6174118-0.87CN12-31輝長(zhǎng)巖CN12-31.10.0527650.0002460.0014030.0000170.2828210.000022CN12-31.20.0527080.0004180.0015740.0000230.2827990.000028CN12-31.40.0319320.0001070.0007580.0000030.2828650.000019CN12-31.50.0453990.0003700.0013460.0000180.2828270.000023CN12-31.60.0586000.0002030.0013230.0000090.2827630.000018CN12-31.70.0586790.0001440.0015350.0000110.2828170.000022CN12-31.80.0521150.0002190.0015210.0000120.2827930.000025CN12-31.100.0494580.0001730.0014090.0000100.2827940.000022CN12-31.110.0455040.0005430.0011460.0000110.2828310.000021CN12-31.120.0075550.0000440.0002150.0000010.2829010.000018CN12-31.130.0045790.0000120.0001390.0000020.2828530.000015CN12-31.140.0742760.0003160.0021520.0000300.2828410.000022CN12-31.150.0673020.0001300.0016840.0000030.2827860.000019CN12-31.160.0613930.0002840.0013280.0000050.2827860.000027CN12-31.170.0574480.0005300.0016080.0000060.2828290.000021CN12-31.180.0510630.0005070.0013340.0000090.2827920.000019CN12-31.190.0496940.0002470.0014780.0000110.2827290.000019CN12-31.200.0526640.0006790.0013060.0000110.2828190.000022CN12-31.210.0561430.0005630.0015140.0000090.2827740.000022CN12-31.230.0530300.0004450.0014570.0000090.2828020.000018CN12-31.240.0583710.0003110.0015390.0000050.2827880.000021CN12-31.250.0388390.0004920.0012450.0000120.2827490.000029CN12-31.260.0522650.0006180.0015060.0000090.2827740.000021CN12-31.270.0552680.0001250.0013240.0000030.2828180.000022CN12-31.280.0526100.0002250.0015560.0000150.2827650.000019CN12-31.290.0703410.0036070.0018360.0000680.2829100.000021CN12-31.300.0545520.0005780.0016990.0000110.2829150.0000232760.2828141.71.5617815-0.960.2827911.06.7651867-0.950.2828613.39.2545708-0.980.2828201.97.8608802-0.960.282757-0.35.5698945-0.960.2828091.67.4625826-0.950.2827850.76.5660882-0.950.2827870.86.6656876-0.960.2828252.17.9600791-0.970.2829004.610.6487621-0.990.2828522.88.9553730-1.000.2828302.58.1600779-0.940.2827770.56.3672898-0.950.2827790.56.3667895-0.960.2828212.07.8609799-0.950.2827850.76.5658881-0.960.282721-1.54.37501025-0.960.2828131.77.5618819-0.960.2827660.15.8687925-0.950.2827941.16.9646860-0.960.2827800.66.4667892-0.950.282743-0.85.0717976-0.960.2827660.15.9686923-0.950.2828121.67.5620821-0.960.282757-0.25.5700944-0.950.2829004.910.6496620-0.940.2829065.110.8487607-0.95
圖6 磁海鎂鐵質(zhì)巖稀土元素配分模式圖(a)和微量元素原始地幔配分模式圖(b)(標(biāo)準(zhǔn)化值據(jù)Sun and McDonough, 1989)Fig.6 Plots of chondrite-normalized REE patterns (a) and primitive mantle-normalized trace elements patterns (b) for the Cihai mafic intrusion (normalized values after Sun and McDonough, 1989)
角閃輝長(zhǎng)巖的鋯石176Lu/177Hf比值主要介于0.001522~0.004485,僅一個(gè)點(diǎn)的176Hf/177Hf較其它的數(shù)據(jù)點(diǎn)低,可能是鋯石出現(xiàn)了放射成因的Hf丟失或者后期熱液事件的擾動(dòng)(Blichertetal., 2004; Daietal., 2008)。鋯石具有一致的176Hf/177Hf初始比值,24個(gè)點(diǎn)的(176Hf/177Hf)i比值變化于0.282744~0.283116,εHf(295Ma)相對(duì)集中且較高,介于0.7~13.0,平均值為7.6。fLu/Hf變化于-0.93~-0.87;其二階段Hf模式年齡(tDM2)范圍為118~633Ma。粗晶輝長(zhǎng)巖中鋯石的27個(gè)點(diǎn)的(176Hf/177Hf)i比值變化于0.282721~0.282906,εHf(276Ma)值介于-1.5~5.1,其二階段Hf模式年齡(tDM2)范圍為607~1025Ma(表3),遠(yuǎn)高于巖體的結(jié)晶年齡。
前人利用各種測(cè)年方法對(duì)磁海鎂鐵-超鎂鐵質(zhì)巖體及磁海鐵(鈷)礦床的形成時(shí)代開(kāi)展了研究,如張明書(shū)等(1980年)獲得了角閃石的K-Ar年齡為196.6Ma、215Ma和260Ma,認(rèn)為磁海鐵(鈷)礦床形成于二疊紀(jì);盛繼福(1985年)獲得了黑云母輝綠巖和角閃石蝕變巖的K-Ar年齡分別為247.3Ma和259.3Ma;薛春紀(jì)等(2000)獲得了輝綠巖Rb-Sr等時(shí)線年齡為268Ma,認(rèn)為礦床形成于早二疊世晚期;齊天驕等(2012)獲得了輝綠巖的SHRIMP鋯石U-Pb年齡為263.8Ma。Houetal. (2013)獲得了磁海輝綠巖的LA-MC-ICP MS鋯石U-Pb年齡為128.5±0.3Ma;Huangetal. (2013)測(cè)得黃鐵礦平均Re-Os模式年齡為262.3±5.6Ma (n=13,包括磁西礦段),其中磁海礦段Re-Os等時(shí)線年齡為262±34Ma(n=4,MSWD=0.06)。然而這些年齡變化范圍較大,從128Ma到268Ma,相差140Ma,并且該雜巖體屬多期次巖漿活動(dòng)的產(chǎn)物,因此它們不能反映該雜巖體精確的形成時(shí)代。
本研究利用LA-ICP-MS鋯石U-Pb定年法,獲得的磁海鎂鐵質(zhì)雜巖體中角閃輝長(zhǎng)巖和粗晶輝長(zhǎng)巖年齡分別為295Ma和276Ma。我們課題組還獲得了成礦前輝綠巖年齡為286Ma,成礦后輝綠巖脈的年齡為276Ma(鄭佳浩等,未刊資料),這表明磁海鐵(鈷)礦區(qū)的基性巖漿活動(dòng)至少持續(xù)了19Ma,同時(shí)限定了磁海鐵礦床巖漿成礦階段的成礦時(shí)代上限為早二疊世。也表明了磁海鎂鐵質(zhì)雜巖體與北山地區(qū)分布的大量二疊紀(jì)(時(shí)代集中于289~261Ma)鎂鐵-超鎂鐵質(zhì)巖體屬同時(shí)代巖漿活動(dòng)的產(chǎn)物,如漩渦嶺(261Ma)、筆架山(279Ma)、紅石山(286Ma)、坡北(274Ma))(趙澤輝等,2004;姜常義等,2006;李華芹等,2006,2009;蘇本勛等,2009,2010;周鼎武等,2006)。因此該年齡對(duì)研究北山地區(qū)乃至塔里木東北部的構(gòu)造演化和巖漿作用具有重要意義,也為磁海鐵礦床的成因研究提供重要參考依據(jù)。
圖7 磁海鎂鐵質(zhì)巖的單階段模式年齡計(jì)算示意圖(a)及值與年齡相關(guān)圖(b)(據(jù)唐冬梅等,2009 修改)Fig.7 Single-stage Hf model age calculation (a) and correlated diagram of zircon εHf vs. U-Pb age (b) of the Cihai mafic intrusion (modified after Tang et al., 2009)
角閃輝長(zhǎng)巖和輝綠巖具有低的SiO2(49.3%~54.4%),高M(jìn)gO(4.21%~6.27%)和FeOT(3.9%~10.5%),Cr、Co和Ni含量較低,表明它們不可能是原始地幔和虧損的軟流圈地幔直接熔融形成,應(yīng)該為演化巖漿的產(chǎn)物。巖石具有高的εHf(t)值,在(176Hf/177Hf)i和εHf(t)與U-Pb年齡圖中(圖7),所有樣品落入球粒隕石和虧損地幔之間接近球粒隕石演化線的上側(cè),表明鋯石由較球粒隕石稍分異的虧損地幔形成的巖漿結(jié)晶。所有巖石富集大離子親石元素及輕稀土元素,暗示可能是虧損地幔的巖漿受到了地殼物質(zhì)或者是富集的巖石圈地幔物質(zhì)的混染。所有巖石具有年輕的tDM和高的εHf(t)值,說(shuō)明不可能遭受過(guò)古老的大陸巖石圈地幔的混染,暗示了巖漿中有大量的幔源物質(zhì)。所有巖石虧損高場(chǎng)強(qiáng)元素Nb、Ta、Ti,但Nb含量(5.2×10-6~10.9×10-6)較高,明顯高于原始地幔、N-MORB和E-MORB的相應(yīng)值(分別為0.7×10-6,2.3×10-6和8.3×10-6),低于OIB的相應(yīng)值(48×10-6)(Sun and McDonough, 1989),具有高于E-MORB和OIB的Zr/Nb比值(介于36.8~57.5),Nb/Ta (12.7~19.1)、Zr/Hf (41~49.4)的值也不同于原始地幔(17.8與37)(McDonough and Sun, 1995)和地殼的相應(yīng)值(11和33)(Taylor and Mclennan, 1985),尤其是TiO2含量較高(>2%)。這些特征表明有俯沖板片熔體的加入。低的Nb/U比值(5.9~11.9)、Ce/Pb比值(5.0~50.9),高的Th和Pb含量表明可能有大洋板片攜帶的沉積物的加入。
粗晶輝長(zhǎng)巖的元素組成也表明其為演化巖漿的產(chǎn)物,為虧損地幔與大洋俯沖物質(zhì)混合來(lái)源。它的εHf(t)值較角閃輝長(zhǎng)巖和輝綠巖的低,變化范圍大(-1.5~5.1),它們的Nb/Ta、Zr/Hf、Zr/Nb、Nb/U和Ce/Pb比值也有區(qū)別,說(shuō)明虧損地幔和俯沖板片所占比例不同,粗晶輝長(zhǎng)巖中俯沖板片所占比例高。因此,輝長(zhǎng)巖與輝綠巖石可能是虧損地幔與大洋俯沖物質(zhì)(洋殼熔體、沉積物熔體以及流體)共同作用的結(jié)果。
圖8 磁海鎂鐵質(zhì)巖La/Yb-Dy/Yb圖解(據(jù)徐學(xué)義等,2009修改;模式計(jì)算方法見(jiàn)Bogaard and Wǒrner, 2003)Fig.8 La/Yb vs. Dy/Yb diagram of the Cihai mafic intrusion (modified after Xu et al., 2009; the method of model calculation from Bogaard and Wǒrner, 2003)
所有巖石的MgO與FeO含量高,REE含量低,輕重稀土元素分異不明顯等特點(diǎn),表明源區(qū)的部分熔融程度介于10%~20%。有研究表明,虧損地幔源區(qū)的部分熔融程度超過(guò)20%形成的巖漿虧損輕稀土和強(qiáng)不相容元素(Haskin,1984),部分熔融程度低于10%形成的巖漿強(qiáng)烈富集輕稀土和強(qiáng)不相容元素(Cullers and Graf, 1983)。在Dy/Yb-La/Yb圖解上(圖8),所有樣品位于石榴石橄欖巖的熔融軌跡上方,表明部分熔融發(fā)生在石榴子石穩(wěn)定區(qū)內(nèi)。它們的Mg#值(49~65),相容元素Cr、Ni含量遠(yuǎn)低于原生玄武巖漿范圍,說(shuō)明它們的母巖漿在巖漿房或在上升過(guò)程中經(jīng)歷了結(jié)晶分異作用。角閃輝長(zhǎng)巖的SiO2與MgO、CaO、Al2O3和FeOT具有良好的負(fù)相關(guān)性,與TiO2、P2O5具明顯的正相關(guān),Mg#與Sc、Co、Ni具明顯的負(fù)相關(guān),與Cr呈正相關(guān),并且CaO與Al2O3呈負(fù)相關(guān),暗示它們經(jīng)過(guò)了橄欖石、單斜輝石和斜長(zhǎng)石的分離結(jié)晶。輝綠巖位于角閃輝長(zhǎng)巖的分離結(jié)晶趨勢(shì)線上,并且它們具有相似的稀土元素配分模式和微量元素配分模式,表明它們是同源巖漿演化的產(chǎn)物。角閃輝長(zhǎng)巖在演化過(guò)程中逐漸富鐵形成輝綠巖,而使輝綠巖顯拉斑系列巖石特征。粗晶輝長(zhǎng)巖的SiO2與CaO、Al2O3和TiO2呈正相關(guān),與MgO、FeOT呈負(fù)相關(guān),Mg#與Co、Ni呈負(fù)相關(guān),與Sc、Cr呈正相關(guān),表明母巖漿發(fā)生了單斜輝石的分離結(jié)晶,其高的Mg#值和正的Eu異常暗示有橄欖石和斜長(zhǎng)石的堆積,可能是攜帶橄欖石和斜長(zhǎng)石的晶粥就地結(jié)晶的結(jié)果。
綜上所述,磁海鎂鐵質(zhì)巖的母巖漿來(lái)源于虧損的軟流圈地幔與俯沖板片物質(zhì),在巖漿上升過(guò)程中均經(jīng)過(guò)了結(jié)晶分異作用。不同的巖石類(lèi)型應(yīng)該是部分熔融程度不同和板片物質(zhì)混入程度不同導(dǎo)致的原始巖漿的成分差異,加之上升過(guò)程中的演化過(guò)程不同導(dǎo)致的。角閃輝長(zhǎng)巖和輝綠巖是同源巖漿演化的產(chǎn)物,與粗晶輝長(zhǎng)巖具有不同的巖漿來(lái)源和演化過(guò)程。
圖9 磁海鎂鐵質(zhì)巖Nb-Zr-Y (a)和Hf-Th-Ta (b)圖解(據(jù)Meschede, 1986)N-MORB-正常洋脊玄武巖;E-MORB-富集型洋脊玄武巖;WPAB-板內(nèi)堿性玄武巖;WPT-板內(nèi)拉斑玄武巖;VAB-火山弧玄武巖;IAT-初始島弧拉斑玄武巖;CAB-鈣堿性島弧火山巖Fig.9 The Nb-Zr-Y (a) and Hf-Th-Ta (b) diagrams for discriminating the tectonic setting of the Beitashan Fm. Cihai mafic intrusion (after Meschede, 1986)
前已述及,磁海鎂鐵質(zhì)巖石與北山地區(qū)出露的大量具銅鎳礦化的鎂鐵-超鎂鐵質(zhì)巖石為同時(shí)代巖漿活動(dòng)的產(chǎn)物,與這些巖體應(yīng)該具有相同的構(gòu)造背景。前已述及,北山地區(qū)二疊紀(jì)時(shí)期巖石形成的地球動(dòng)力學(xué)背景長(zhǎng)期存有爭(zhēng)議。而且對(duì)北山地區(qū)出露的二疊紀(jì)基性巖形成的構(gòu)造背景也有不同的認(rèn)識(shí),如李華芹等(2006,2009)認(rèn)為該區(qū)含銅鎳的坡一和坡十巖體是后碰撞構(gòu)造背景下幔源巖漿上侵的產(chǎn)物;頡偉等(2011)認(rèn)為坡一和坡十巖體形成于活動(dòng)大陸邊緣或者碰撞造山后伸展階段,與地幔柱無(wú)關(guān);校培喜等(2006)認(rèn)為北山地區(qū)的基性巖(墻)脈與新疆庫(kù)魯克塔格地區(qū)的基性巖墻群十分相似,可能是地幔柱上涌巖漿作用的產(chǎn)物;Pirajnoetal.(2008)對(duì)整個(gè)新疆北部二疊紀(jì)巖漿活動(dòng)的時(shí)空分布規(guī)律分析后認(rèn)為,整個(gè)新疆北部是地幔柱巖漿活動(dòng)的產(chǎn)物;唐萍芝等(2010)認(rèn)為磁海鐵(鈷)礦區(qū)的基性巖是后碰撞環(huán)境的產(chǎn)物;齊天驕等(2012)認(rèn)為磁海礦區(qū)基性巖與塔里木和東天山二疊紀(jì)基性巖均是塔里木地幔柱的一支。
磁海鎂鐵質(zhì)巖石形成于二疊紀(jì)時(shí)期,既有鈣堿質(zhì)也有拉斑質(zhì)系列巖石,暗示了其為板塊邊緣環(huán)境,而非板內(nèi)環(huán)境。它們富集輕稀土的稀土配分模式明顯不同于輕稀土虧損的N-MORB和輕稀土強(qiáng)烈富集的OIB稀土配分模式,排除了它們形成于洋脊玄武巖(E型和N型洋脊玄武巖)的可能。角閃輝長(zhǎng)巖和輝綠巖的原始地幔標(biāo)準(zhǔn)化圖解具有高場(chǎng)強(qiáng)元素(Nb、Ta、Ti)相對(duì)虧損和大離子親石元素(Th、U、Sr、Rb、Pb)富集,與活動(dòng)大陸邊緣及島弧區(qū)的拉斑玄武巖特征相近,但是巖石的Nb(5.2×10-6~10.9×10-6)和TiO2(>2%)含量明顯高于島弧玄武巖的相應(yīng)元素含量(Elthon and Casey, 1985)。粗晶輝長(zhǎng)巖在原始地幔微量元素蛛網(wǎng)圖上顯示的Ta、Ti、Pb和Sr的正異常等特征,與島弧玄武巖和虧損型洋中脊玄武巖特征明顯不同(Elthon and Casey, 1985)。在Nb-Zr-Y圖解上(圖9a),角閃輝長(zhǎng)巖和輝綠巖位于板內(nèi)拉斑玄武巖與火山弧玄武巖區(qū),粗晶輝長(zhǎng)巖位于正常洋脊玄武巖與火山弧玄武巖區(qū);在Hf-Th-Ta圖解上(圖9b),大部分樣品位于初始島弧拉斑玄武巖區(qū)和N-MORB區(qū),暗示其并非形成于島弧或者大陸邊緣弧環(huán)境。盡管磁海鎂鐵質(zhì)巖體的物質(zhì)來(lái)源與地幔柱來(lái)源的巖漿均含有軟流圈和巖石圈物質(zhì),但是前人研究成果表明,地幔柱活動(dòng)一般具有巨量的玄武巖流、放射狀巖墻群、裂谷系和直徑約1000~2000km的大范圍(1~2km)的地形隆起等一種或多種地質(zhì)現(xiàn)象(陸建軍等,2006),因此探討北山地區(qū)是否為地幔柱巖漿活動(dòng)的產(chǎn)物,仍需開(kāi)展更深入的研究。
綜上所述,我們認(rèn)為磁海鎂鐵質(zhì)巖體可能形成于后碰撞時(shí)期軟流圈上隆的巖石圈伸展構(gòu)造背景,是二疊紀(jì)時(shí)期巖石圈伸展拉張背景下,虧損的軟流圈地幔與古老俯沖物質(zhì)相互作用的產(chǎn)物。
(1)磁海鎂鐵質(zhì)巖形成于295~276Ma之間;
(2)輝長(zhǎng)巖屬鈣堿性系列,輝綠巖屬拉斑系列;角閃輝長(zhǎng)巖與輝綠巖屬同源巖漿演化的產(chǎn)物,與粗晶輝長(zhǎng)巖特征一致,均顯示富集大離子親石元素和輕稀土元素,相對(duì)虧損高場(chǎng)強(qiáng)元素(Nb、Ta、Ti)特征;
(3)輝長(zhǎng)巖和輝綠巖均是在巖石圈伸展拉張背景下,由虧損的軟流圈地幔物質(zhì)與古老的俯沖物質(zhì)熔體混合物,經(jīng)分離結(jié)晶作用形成。不同的巖石類(lèi)型是部分熔融程度不同和俯沖物質(zhì)混入程度不同導(dǎo)致的原始巖漿的成分差異,加之上升過(guò)程中的演化過(guò)程不同導(dǎo)致的。
致謝野外工作得到了寶鋼集團(tuán)八鋼公司新疆鋼鐵雅滿蘇礦業(yè)有限責(zé)任公司磁海礦山相關(guān)工作人員的大力支持;室內(nèi)測(cè)試分析受到了國(guó)家地質(zhì)測(cè)試中心實(shí)驗(yàn)室、天津地質(zhì)礦產(chǎn)研究所實(shí)驗(yàn)室的相關(guān)工作人員的幫助;在此一并表示感謝。
Arthur W, Rose DC, Herrick and Peter D. 1985. An oxygen and sulfur isotope study of skarn-type magnetite deposits of the Cornwall type, southeastern Pennsylvania. Economic Geology, 80(2): 418-443
Blichert T, Arndt NT and Gruau G. 2004. Hf isotopic measurements on Barberton komatiites: Effects of incomplete sample dissolution and importance for primary and secondary magmatic signatures. Chemical Geology, 207(3-4): 261-275
Bogaard PJF and Wǒrner G. 2003. Petrogenesis of basanitic to tholeiitic volcanic rocks from the Miocene Vogelsberg, central Germany. Journal of Petrology, 44(3): 569-602
Bureau of Geology and Mineral Resources of Xinjiang Uygur Autonomous Region. 1993. Regional Geology of Xinjiang Uygur Autonomous Region. Beijing: Geological Publishing House (in Chinese)
Chen SP, Wang DH, Qu WJ, Chen ZH and Gao XL. 2005. Geological features and ore formation of the Hulu Cu-Ni sulfide deposit, eastern Tianshan, Xinjiang. Xinjiang Geology, 23(3): 230-233 (in Chinese with English abstract)
Cheng SL, Wang XK, Wu H, Mao QG, Ao SJ and Han CM. 2008. Late Paleozoic endogenic metallogenic series in the North Mountains, Xinjiang, NW China. Xinjiang Geology, 26(1):43-48 (in Chinese with English abstract)
Cullers RL and Graf J. 1983. Rare earth elements in igneous rocks of the continental crust: Intermediate and silicic rocks, ore petrogenesis. In: Henderson P (ed.). Rare-Earth Geochemistry. Amsterdam: Elsevier, 275-312
Dai BZ, Jiang SY, Jiang YH, Zhao KD and Liu DY. 2008. Geochronology, geochemistry and Hf-Sr-Nd isotopic compositions of Huziyan mafic xenoliths, southern Hunan Province, South China: Petrogenesis and implications for lower crust evolution. Lithos, 102(1-2): 65-87
Elthon D and Casey JF. 1985. The very depleted nature of certain primary mid-ocean ridge basalts. Geochimica et Cosmochimica Acta, 49(1): 289-298
Fan YX, Ma JL and Bai YL. 2007. Trace element geochemistry and plutonic process of peridotite and pyroxenite in the Beishan, Tarium area. Journal of Lanzhou University (Natural Sciences), 43(1):1-5 (in Chinese with English abstract)
Han BF, Ji JQ, Song B, Chen LH and Li ZH. 2004. SHRIMP U-Pb zircon age of the mafic-ultramafic rocks and geological significance in Karatungk and Huangshan, Xinjiang. Chinese Science Bulletin, 49: 2324-2328 (in Chinese)
Hans P, Eugster and Chou IM. 1979. A model for the deposition of Cornwall-type magnetite deposits. Economic Geology, 74(4): 763-774
Haskin LA. 1984. Petrogenetic modelling-use of rare earth elements. Developments in Geochemistry, 2: 115-152
Hou KJ, Li YH and Tian YR. 2009. In situ U-Pb zircon dating using laser ablation-multi ion couting LA-ICP-MS. Mineral Deposits, 28(4): 481-492 (in Chinese with English abstract)
Hou T, Zhang ZC, Santosh M, Encarnacion J and Wang M. 2013. The Cihai diabase in the Beishan region, NW China: Isotope geochronology, geochemistry and implications for Cornwall-style iron mineralization. Journal of Asian Earth Sciences, 70-71: 231-249
Huang XW, Zhou MF, Qi L, Gao JF and Wang YW. 2013. Re-Os isotopic ages of pyrite and chemical composition of magnetite from the Cihai magmatic-hydrothermal Fe deposit, NW China. Miner. Deposita, 48(8): 925-946
Jiang CY, Cheng SL, Ye SF, Xia MZ, Jiang HB and Dai YC. 2006. Lithogeochemistry and petrogenesis of Zhongposhanbei mafic rock body, at Beishan region, Xinjiang. Acta Petrologica Sinica, 22(1): 115-126 (in Chinese with English abstract)
Jiao PX, Huang YH, Wang YX, Wang XA and Li YJ. 2006. Geological characteristic and tectonic environment of basic dike swarms in the Beishan area, southern Hami, Xinjiang, China. Geological Bulletin of China, 25(1-2): 189-193 (in Chinese with English abstract)
Li HQ, Chen FW, Mei YP, Wu H, Cheng SL, Yang JQ and Dai YC. 2006. Isotopic ages of No. I intrusive body in Pobei mafic-ultramafic belt of Xinjiang and their geological significance. Mineral Deposits, 25(4): 463-469 (in Chinese with English abstract)
Li HQ, Mei YP, Qu WJ, Cai H and Du GM. 2009. SHRIMP zircon U-Pb and Re-Os dating of No.10 intrusive body and associated ores in Pobei mafic-ultramafic belt of Xinjiang and its significance. Mineral Deposits, 28(5): 633-642 (in Chinese with English abstract)
Li JY, Xiao XC, Chen W, Zhang SH and Li WD. 2000. Late Carbonifereous to Late Triassic thermal evolution of the crust of northern Xinjiang, NW China:40Ar-39Ar dating to huangcaopo group in the Kaokesai’ergai mountain of East Junggar. Acta Geologica Sinica, 74(4): 303-312 (in Chinese with English abstract)
Li JY, He GQ, Xu X, Li HQ, Sun GH, Yang TN, Gao LM and Zhu ZX. 2006. Crustal tectonic framework of northern Xinjiang and adjacent regions and its formation. Acta Geologica Sinica, 80(1): 148-168 (in Chinese with English abstract)
Li YC, Zhao GC, Qu WJ, Pan CZ, Mao QG and Du AD. 2006. Re-Os isotopic dating of the Xiangshan deposit, East Tianshan, NW China. Acta Petrologica Sinica, 22(1): 245-251 (in Chinese with English abstract)
Liu YS, Hu ZC, Gao S, Gunther D, Xu J, Gao C and Chen H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34-43
Lu JJ, Wu LQ, Ling HF, Shen WZ, Gao JJ, Huang GL, Deng P and Tan ZZ. 2006. The origin of the Huangpi-Zhangguangying diabase dykes in the Xiazhuang uranium ore district of northern Guangdong Province: Evidence from trace elements and Nd-Sr-Pb-O isotopes. Acta Petrologica Sinica, 22(2): 397-406 (in Chinese with English abstract)
Ludwig KR. 2001. Users manual for Isoplot/Ex rev. 2.49. Berkeley Geochronology Centre Special Publication, 1-56
Mao JW, Yang JM, Qu WJ, Du AD, Wang ZL and Han CM. 2002. Re-Os dating of Cu-Ni sulfide ores from Huangshandong deposit in Xinjiang and its geodynamic significance. Mineral Deposits, 21(4): 323-330 (in Chinese with English abstract)
Mao JW, Pirajno F, Zhang ZH, Chai FM, Yang JM, Wu H, Chen SP, Cheng SL and Zhang CQ. 2006. Late Variscan post-collisional Cu-Ni sulfide deposits in East Tianshan and Altay in China: Principal characteristics and possible relationship with mantle plume. Acta Geologica Sinica, 80(7): 925-942 (in Chinese with English abstract)
Mao JW, Pirajno F, Zhang ZH, Chai FM, Wu H, Chen SP, Cheng LS, Yang JM and Zhang CQ. 2008. A review of the Cu-Ni sulphide deposits in the Chinese Tianshan and Altay orogens (Xinjiang Autonomous Region, NW China): Principal characteristics and ore-forming processes. Journal of Asian Earth Sciences, 32:184-203
Mao QG, Xiao WJ, Han CM, Sun M, Yuan C, Yan Z, Li JL, Yong Y and Zhang JE. 2006. Zircon U-Pb age and the geochemistry of the Baishiquan mafic-ultrafic comples in the eastern Tianshan, Xinjiang Province: Constraints on the closure of the Paleo-Asian Ocean. Acta Petrologica Sinica, 22: 153-162 (in Chinese with English abstract)
McDonough WF and Sun SS. 1995. The composition of the earth. Chemical Geology, 120(3-4): 223-253
Meschede MA. 1986. A method of discriminating between different types of mid-ocean basalts and continental tholeiites with the Nb-Zr-Y diagram. Chemical Geology, 56(3-4): 207-218
Miyashiro A. 1974. Volcanic rock series in island arcs and active continental margins. American Journal of Science, 274(4): 321-355
Patrick FB. 2001. The geology and mineralogy of the Triassic magnetite deposits at Cornwall, Eastern Pennsylvania. The Ohio State University, Senior Thesis
Pirajno F, Mao JW, Zhang ZC, Zhang ZH and Chai FM. 2008. The association of mafic-ultramafic intrusions and A-type magmatism in the Tian Shan and Altay orogens, NW China: Implications for geodynamic evolution and potential for the discovery of new ore deposits. Journal of Asian Earth Sciences, 32(2-4): 165-183
Qi TJ, Xue CJ, Zhang ZC, Wang YH and Shao FZ. 2012. Basic igneous rock in Cihai giant iron district, Hami, Xinjiang, and its indication to the metallogenic setting. Earth Science, 37(6): 1315-1326 (in Chinese with English abstract)
Qin SY. 1983. One the study of clinopyroxenes from Cihai iron ore deposits and a triangular diagram for a system with three new end-members of monoclinic pyroxenes. Acta Petrologica Mineralogica et Analytica, 2(4): 272-281 (in Chinese with English abstract)
Sheng JF. 1985. Mineralization and alteration of the Cihai iron deposit. Bulletin of the Institute of Mineral Deposits Chinese Academy of Geological Sciences, (3): 89-109 (in Chinese with English abstract)
Su BX, Qin KZ, Sun Hetal. 2009. Petrological and mineralogical characteristics of Hongshishan mafic-ultramafic complex in Beishan area, Xinjiang: Implications for assimilation and fractional crystallization. Acta Petrologica Sinica, 25(4): 873-887 (in Chinese with English abstract)
Su BX, Qin KZ, Sun H and Wang H. 2010. Geochronological, petrological, mineralogical and geochemical studies of the Xuanwoling mafic-ultramafic intrusion in Beishan area, Xinjiang. Acta Petrologica Sinica, 26(11): 3283-3294 (in Chinese with English abstract)
Sun H, Qin KZ, Tang DM, Xiao QH, Su BH and Lu HF. 2010. Olivine characteristics’ implication for magmatic evolution and sulfide segregation of Luodong complex in Beishan area, Xinjiang. Science and Technology Review, 28(18): 21-26 (in Chinese with English abstract)
Sun SS and McDonough WF. 1989. Chemical and isotopic systematic of oceanic basalts: Implication for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in Oceanic Basins. Spec. Publ. Geol. Soc. Lond., 42(1): 313-345
Sun Y, Xiao YF, Wang DY, Deng JH and Wu DC. 2009. The characteristics and the metallogenic future of the Pobei mafic-ultramafic complex in the Beishan area, Xinjiang, China. Journal of Chengdu University of Technology (Science & Technology Edition), 36(4): 402-407 (in Chinese with English abstract)
Tang DM, Qin KZ, Sun H, Su BX, Xiao QH, Cheng SL and Li J. 2009. Lithological, chronological and geochemical characteristics of Tianyu Cu-Ni deposit: Constraints on source and genesis of mafic-ultramafic intrusions in Eastern Xinjiang. Acta Petrologica Sinica, 25(4): 817-831 (in Chinese with English abstract)
Tang PZ, Wang JB, Wang YW and Long LL. 2010. Geochemical characteristics of mafic-ultramafic rocks in the Cihai ore district, Xinjiang, and their geological significance. Geochimica, 39(6): 542-552 (in Chinese with English abstract)
Tang PZ, Wang YW, Wang JB, Long LL, Zhang HQ and Liao Z. 2011. Finding and significance of ilvaite in the Cihai iron deposit, Xinjiang Autonomous Region, China. Acta Mineralogica Sinica, 31(1): 9-16 (in Chinese with English abstract)
Tang PZ, Wang YW, Wang JB, Long LL and Liao Z. 2012. Geochemical characteristics of cobalt from the Cihai ore district, Xinjiang, and their significance. Acta Mineralogica Sinica, 32(3): 379-385 (in Chinese with English abstract)
Taylor SR and Mclenann SM. 1985. The Continental Crust: Its Composition and Evolution. Blackwell: Oxford Press, 1-312
Wang YW, Sha JM and Cheng C. 2006. Composition of magnetite from Cihai Fe(Co) deposit, Xinjiang and its genetic significance. Mineral Deposits, 25(Suppl.): 321-324 (in Chinese with English abstract)
Winchester JA and Floyd PA. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20: 325-343
Wu FY, Li XH, Zheng YF and Gao S. 2007. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English abstract)
Wu H, Li HQ, Mo XH, Chen FW, Lu YF, Mei YP and Deng G. 2005. Age of the Baishiquan mafic-ultramafic complex, Hami, Xinjiang and its geological significance. Acta Geologica Sinica, 79(4): 498-502 (in Chinese with English abstract)
Xiao YF, Wang DY, Wu DC, Deng JH and He ZW. 2000. Geological Evolution of the Western Beishan Tectonic Belt of Xinjiang. Chengdu, Urumqi: Sichuan Science Press, Xinjiang Publishing House of Science, Technology and Hygiene, 1-202 (in Chinese with English abstract)
Xie W, Song XY, Nie XY and Cheng SL. 2011.Features of the mantle source and tectonic setting of the Poshi Ni-Cu sulfide-bearing intrusion. Xinjiang, China. Earth Science Frontiers, 18(3): 189-200 (in Chinese with English abstract)
Xu XY, He SP, Wang HL and Chen JL. 2009. Geological Background of Ore Deposit in the Eastern Tianshan-Beishan Area. Beijing: Geological Publishing House (in Chinese with English abstract)
Xue CJ, Ji JS and Yang QJ. 2000. Subvolcanic hydrothermal matallogeny of the Cihai iron (cobalt) deposit, Xinjiang. Mineral Deposits, 19(2): 156-164 (in Chinese with English abstract)
Yang JH, Wu FY, Shao JA, Xie LW and Liu XM. 2006. In-situ U-Pb dating and Hf isotopic analyses of zircons from volcanic rocks of the Houcheng and Zhangjiakou formations in the Zhang-Xuan area, Northeast China. Earth Science, 31(1): 71-80 (in Chinese with English abstract)
Zhang MS, Zhang JZ, Wu JR, Chen SZ, Jin HJ and Li SQ. 1980. The study on the Cihai iron deposit. Geology of Exploration, 8: 25-32 (in Chinese with English abstract)
Zhao ZH, Guo ZJ, Zhang ZC, Shi HY and Tian J. 2004. The geochemical characteristics and tectonic setting of the Lower Permian basalts in Hongliuhe area at the Border between Xinjiang and Gansu Provinces. Geological Journal of China Universities, 10(4): 545-553 (in Chinese with English abstract)
Zheng Y, Chen J, Pang JC and Wang JL. 2009. Basic rock SHRIMP dating and its geologic value in Heishanling region of Beishan area, Xinjiang. Xinjiang Geology, 27(4): 320-324 (in Chinese with English abstract)
Zhou DW, Liu YQ, Xing XJ, Hao JR, Dong YP and Ouyang ZJ. 2006. Formation of the Permian basalts and implications of geochemical tracing for paleo-tectonic setting and regional tectonic background in the Turpan-Hami and Santanghu basins, Xinjiang. Science in China (Series D), 36(2): 143-153 (in Chinese)
Zhou MF, Leshen CM, Yang ZXetal. 2004. Geochemistry and petrogenesis of 270Ma Ni-Cu-(PGE) sulfide-bearing mafic-ultramafic intrusions in Huangshan district, eastern Xinjiang, Northwest China: Implications for the tectonic evolution of the Central Asian orogenic belt. Chemical Geology, 209(3-4): 233-257
Zuo GC, Li SX, Yu SNetal. 2004. The occurrence characteristics and metallo tectonic evolution of Cihai iron ore deposit in Xinjiang. Northwestern Geology, 37(1): 53-61 (in Chinese with English abstract)
附中文參考文獻(xiàn)
陳世平, 王登紅, 屈文俊, 陳鄭輝, 高曉理. 2005. 新疆葫蘆銅鎳硫化物礦床的地質(zhì)特征與成礦時(shí)代. 新疆地質(zhì), 23(3): 230-233
程松林, 王新昆, 吳華, 毛啟貴, 敖松堅(jiān), 韓春明. 2008. 新疆北山晚古生代內(nèi)生金屬礦床成礦系列研究. 新疆地質(zhì), 26(1): 43-48
范育新, 馬錦龍, 白云來(lái). 2007. 塔里木北山地區(qū)橄欖巖-輝石巖的微量元素地球化學(xué)特征及其深部過(guò)程. 蘭州大學(xué)學(xué)報(bào)(自然科學(xué)版), 43(1): 1-5
韓寶福, 季建清, 宋彪, 陳立輝, 李宗懷. 2004. 新疆喀拉通克和黃山東含銅鎳礦鎂鐵-超鎂鐵雜巖體的SHRIMP鋯石U-Pb年齡及其地質(zhì)意義. 科學(xué)通報(bào), 49(22): 2324-2328
侯可軍, 李延河, 田有榮. 2009. LA-MC-ICP-MS鋯石微區(qū)原位U-Pb定年技術(shù). 礦床地質(zhì), 28(4): 481-492
姜常義, 程松林, 葉書(shū)鋒, 夏明哲, 姜寒冰, 代玉財(cái). 2006. 新疆北山地區(qū)中坡山北鎂鐵質(zhì)巖體巖石地球化學(xué)與巖石成因. 巖石學(xué)報(bào), 22(1): 115-126
校培喜, 黃玉華, 王育習(xí), 王興安, 李育敬. 2006. 新疆哈密南部北山地區(qū)基性巖墻群的地質(zhì)特征及形成構(gòu)造環(huán)境. 地質(zhì)通報(bào), 25 (1-2): 189-193
李華芹, 陳富文, 梅玉萍, 吳華, 程松林, 楊甲全, 代玉財(cái). 2006. 新疆坡北基性-超基性巖帶I號(hào)巖體Sm-Nd和SHRIMP U-Pb同位素年齡及其地質(zhì)意義. 礦床地質(zhì), 25(4): 463-469
李華芹, 梅玉萍, 屈文俊, 蔡紅, 杜國(guó)民. 2009. 新疆坡北基性-超基性巖帶10號(hào)巖體SHRIMP U-Pb 和礦石Re-Os同位素定年及其意義. 礦床地質(zhì), 28(5): 633-642
李錦軼, 肖序常, 陳文, 張思紅, 李衛(wèi)東. 2000. 新疆北部晚石炭世至晚三疊世地殼熱演化——東準(zhǔn)噶爾考克塞爾蓋山荒草坡群的40Ar-39Ar定年. 地質(zhì)學(xué)報(bào), 74(4): 303-312
李錦軼, 何國(guó)琦, 徐新, 李華芹, 孫桂華, 楊天南, 高立明, 朱志新. 2006. 新疆北部及鄰區(qū)地殼構(gòu)造格架及其形成過(guò)程的初步探討. 地質(zhì)學(xué)報(bào), 80(1): 148-168
李月臣, 趙國(guó)春, 屈文俊, 潘成澤, 毛啟貴, 杜安道. 2006. 新疆香山銅鎳硫化物礦床Re-Os 同位素測(cè)定. 巖石學(xué)報(bào), 22(1): 245-251
陸建軍, 吳烈勤, 凌洪飛, 沈渭洲, 高劍峰, 黃國(guó)龍, 鄧平, 譚正中. 2006. 粵北下莊鈾礦田黃陂-張光營(yíng)輝綠巖脈的成因元素地球化學(xué)和Sr-Nd-Pb-O同位素證據(jù). 巖石學(xué)報(bào), 22(2): 397-406
毛景文, 楊建民, 屈文俊, 杜安道, 王志良, 韓春明. 2002. 新疆黃山東銅鎳硫化物礦床Re-Os同位素測(cè)定及其地球動(dòng)力學(xué)意義. 礦床地質(zhì), 21(4): 323-330
毛景文, Pirajno F, 張作衡, 柴鳳梅, 楊建民, 吳華, 陳世平, 程松林, 張長(zhǎng)青. 2006. 天山-阿爾泰東部地區(qū)海西晚期后碰撞銅鎳硫化物礦床:主要特點(diǎn)及可能與地幔柱的關(guān)系. 地質(zhì)學(xué)報(bào), 80(7): 925-942
毛啟貴, 肖文交, 韓春明, 孫敏, 袁超, 閆臻, 李紀(jì)亮, 雍擁, 張繼恩. 2006. 新疆東天山白石泉銅鎳礦床基性-超基性巖體鋯石U-Pb同位素年齡、地球化學(xué)特征及其對(duì)古亞洲洋閉合時(shí)限的制約. 巖石學(xué)報(bào), 22(1): 153-162
齊天驕, 薛春紀(jì), 張招崇, 王銀宏, 邵發(fā)志. 2012. 新疆磁海超大型鐵礦區(qū)基性巖及其成礦背景指示. 地球科學(xué), 37(6): 1315-1326
秦淑英. 1983. 新疆磁海鐵礦床中輝石的研究與單斜輝石分類(lèi)定名的多元三角圖解法. 巖石礦物及測(cè)試, 2(4): 272-281
盛繼福. 1985. 新疆磁海鐵礦蝕變特征. 中國(guó)地質(zhì)科學(xué)院礦產(chǎn)地質(zhì)研究所所刊, (3): 89-109
蘇本勛, 秦克章, 孫赫等. 2009. 新疆北山地區(qū)紅石山鎂鐵-超鎂鐵巖體的巖石礦物學(xué)特征: 對(duì)同化混染和結(jié)晶分異過(guò)程的啟示. 巖石學(xué)報(bào), 25(4): 873-887
蘇本勛, 秦克章, 孫赫, 王恒. 2010. 新疆北山地區(qū)旋窩嶺鎂鐵-超鎂鐵巖體的年代學(xué)、巖石礦物學(xué)和地球化學(xué)研究. 巖石學(xué)報(bào), 26(11): 3283-3294
孫赫, 秦克章, 唐冬梅, 肖慶華, 蘇本勛, 盧鴻飛. 2010. 新疆北山羅東巖體橄欖石特征對(duì)巖漿演化和硫化物熔離的指示. 科技導(dǎo)報(bào), 28(18): 21-26
孫燕, 肖淵甫, 王道永, 鄧江紅, 吳德超. 2009. 新疆北山坡北基性-超基性雜巖特征及成礦遠(yuǎn)景. 成都理工大學(xué)學(xué)報(bào)(自然科學(xué)版), 36(4): 402-407
唐冬梅, 秦克章, 孫赫, 蘇本勛, 肖慶華, 程松林, 李軍. 2009. 天宇銅鎳礦床的巖相學(xué)、鋯石U-Pb年代學(xué)、地球化學(xué)特征:對(duì)東疆鎂鐵-超鎂鐵質(zhì)巖體源區(qū)和成因的制約. 巖石學(xué)報(bào), 25(4): 817-831
唐萍芝, 王玉往, 王京彬, 龍靈利. 2010. 新疆磁海鐵礦區(qū)鎂鐵超鎂鐵巖地球化學(xué)特征及其地質(zhì)意義. 地球化學(xué), 39(6): 542-552
唐萍芝, 王京彬, 王玉往, 龍靈利, 張會(huì)瓊, 廖震. 2011. 新疆磁海鐵礦床中黑柱石的發(fā)現(xiàn)及其地質(zhì)意義. 礦物學(xué)報(bào), 31(1): 9-16
唐萍芝, 王玉往, 王京彬, 龍靈利, 廖震. 2012. 新疆哈密磁海鐵礦床中鈷的地球化學(xué)及地質(zhì)意義. 礦物學(xué)報(bào), 32(3): 379-385
王玉往, 沙建明, 程春. 2006. 新疆磁海鐵(鈷)礦床磁鐵礦成分及其成因意義. 礦床地質(zhì), 25(增刊): 321-324
吳福元, 李獻(xiàn)華, 鄭永飛, 高山. 2007. Lu-Hf 同位素體系及其巖石學(xué)應(yīng)用. 巖石學(xué)報(bào), 23(2): 185-220
吳華, 李華芹, 莫新華, 陳富文, 陸遠(yuǎn)發(fā), 梅玉萍, 鄧剛. 2005. 新疆哈密白石泉銅鎳礦區(qū)基性-超基性巖的形成時(shí)代及其地質(zhì)意義. 地質(zhì)學(xué)報(bào), 79(4): 498-502
肖淵甫, 王道永, 吳德超, 鄧江紅,何政偉. 2000. 新疆北山構(gòu)造帶西段地質(zhì)演化. 成都, 烏魯木齊: 四川科學(xué)出版社,新疆科技衛(wèi)生出版社, 1-202
頡偉, 宋謝炎, 聶曉勇, 程松林. 2011. 新疆坡十銅鎳硫化物含礦巖體巖漿源區(qū)特征及構(gòu)造背景探討. 地學(xué)前緣, 18(3): 189-200
新疆維吾爾自治區(qū)地質(zhì)礦產(chǎn)局. 1993. 新疆維吾爾自治區(qū)區(qū)域地質(zhì)志. 北京: 地質(zhì)出版社
徐學(xué)義, 何世平, 王洪亮, 陳雋璐. 2009. 東天山-北山地區(qū)成礦地質(zhì)背景圖. 北京: 地質(zhì)出版社
薛春紀(jì), 姬金生, 楊前進(jìn). 2000. 新疆磁海鐵(鈷)礦床次火山熱液成礦學(xué). 礦床地質(zhì), 19(2): 156-164
楊進(jìn)輝, 吳福元, 邵濟(jì)安, 謝烈文, 柳小明. 2006. 冀北張宣地區(qū)后城組、張家口組火山巖鋯石U-Pb年齡和Hf同位素. 地球科學(xué), 31(1): 71-80
張明書(shū), 張建中, 鄔介人, 陳書(shū)章, 金浩甲, 李世強(qiáng). 1980. 磁海式鐵礦地質(zhì)特征初步研究. 地質(zhì)與勘探, 8: 25-32
趙澤輝, 郭召杰, 張志誠(chéng), 史宏宇, 田杰. 2004. 新甘交界紅柳河地區(qū)下二疊統(tǒng)玄武巖地球化學(xué)特征及其形成的構(gòu)造背景. 高校地質(zhì)學(xué)報(bào), 10(4): 545-553
鄭勇, 陳俊, 龐建材, 王君良. 2009. 新疆哈密北山黑山嶺一帶基性巖SHRIMP測(cè)年及地質(zhì)意義. 新疆地質(zhì), 27(4): 320-324
周鼎武, 柳益群, 邢秀娟, 郝建榮, 董云鵬, 歐陽(yáng)征健. 2006. 新疆吐-哈、三塘湖盆地二疊紀(jì)玄武巖形成古構(gòu)造環(huán)境恢復(fù)及區(qū)域構(gòu)造背景示蹤. 中國(guó)科學(xué)(D輯), 36(2): 143-153
左國(guó)朝, 李紹雄, 于守南等. 2004. 新疆磁海鐵礦床產(chǎn)出特征及成礦構(gòu)造演化. 西北地質(zhì), 37(1): 53-61