周振華 歐陽(yáng)荷根 武新麗 劉軍 車(chē)合偉ZHOU ZhenHua, OUYANG HeGen, WU XinLi, LIU Jun and CHE HeWei
1. 中國(guó)地質(zhì)科學(xué)院礦產(chǎn)資源研究所,國(guó)土資源部成礦作用與資源評(píng)價(jià)重點(diǎn)實(shí)驗(yàn)室,北京 1000372. 華北冶金地質(zhì)勘查局第四地質(zhì)隊(duì),秦皇島 0660133. 中國(guó)地質(zhì)大學(xué)地球科學(xué)與資源學(xué)院,北京 1000831. MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China2. The Fourth Geological Team, Metallurgical and Geological Exploration Bureau of North China, Qinhuangdao 066013, China3. School of Earth Science and Mineral Resources, China University of Geosciences, Beijing 100083, China2013-08-01 收稿, 2013-11-24 改回.
大興安嶺地區(qū)位于興蒙造山帶東段,是中亞巨型內(nèi)生金屬成礦帶的重要組成部分,其構(gòu)造演化經(jīng)歷了古生代古亞洲洋構(gòu)造體系演化和中生代環(huán)太平洋構(gòu)造體系以及蒙古-鄂霍茨克構(gòu)造體系的疊加與改造,以廣泛發(fā)育內(nèi)生銅等有色金屬、貴金屬礦床、礦化點(diǎn)倍受?chē)?guó)內(nèi)外學(xué)者的關(guān)注(毛景文等,2003,2005,2013;Wuetal., 2011; 白令安等,2012;周振華等,2010a, b;Zhouetal., 2012; Liuetal., 2012; Ouyangetal., 2013)。近年來(lái),隨著地質(zhì)找礦和科研工作的不斷投入,大興安嶺地區(qū)的找礦工作取得重要進(jìn)展,在大興安嶺中南段西坡新發(fā)現(xiàn)了拜仁達(dá)壩超大型銀鉛鋅礦、維拉斯托大型銅鋅礦、道倫達(dá)壩大型銅鎢錫多金屬礦、花敖包特大型銀鉛鋅礦等。在這些新發(fā)現(xiàn)礦床中,道倫達(dá)壩銅鎢錫多金屬礦在構(gòu)造位置、礦化類(lèi)型、成礦作用等方面具有鮮明的特色,成礦與中粗粒黑云母花崗巖體密切相關(guān)。道倫達(dá)壩銅鎢多金屬礦主要成礦元素為銅、鎢、錫,目前已探明銅、鎢、錫的金屬量分別為9.34萬(wàn)噸、2.98萬(wàn)噸和4.68萬(wàn)噸,此外還伴生銀352.34噸,礦床綜合規(guī)模已達(dá)到大型(據(jù)內(nèi)蒙古地礦局,2011*內(nèi)蒙古地礦局.2011.內(nèi)蒙地礦局2005-2009年找礦成果統(tǒng)計(jì)表)。
前人對(duì)道倫達(dá)壩礦床的礦床地質(zhì)特征、控礦構(gòu)造、成礦流體、成礦物質(zhì)來(lái)源等方面進(jìn)行了一定的研究(潘小菲等,2009;徐佳佳等,2009;李振祥等,2009;王萬(wàn)軍等,2005),但對(duì)于本區(qū)與成礦密切相關(guān)的中粗粒黑云母花崗巖的精確同位素年代學(xué)和巖漿來(lái)源研究較少。關(guān)于巖體的形成時(shí)代存在較大爭(zhēng)議,王萬(wàn)軍等(2005)測(cè)得黑云母花崗巖全巖Rb-Sr等時(shí)線年齡196±5.0Ma,程若坤(2009)報(bào)道的K-Ar年齡為160±5.0Ma~170±5.0Ma。礦床的精確測(cè)年是建立礦床模型和反演成礦地球動(dòng)力學(xué)背景的重要基礎(chǔ)資料(謝桂青等,2009;Yuanetal., 2007, 2008, 2011),因此,本文對(duì)道倫達(dá)壩中粗粒黑云母花崗巖進(jìn)行了巖石地球化學(xué)、LA-ICP-MS鋯石U-Pb定年和Hf-Pb同位素研究,試圖精確厘定巖體的形成時(shí)代和巖漿來(lái)源,為揭示礦床成因機(jī)制和總結(jié)區(qū)域成礦規(guī)律提供依據(jù)。
研究區(qū)大地構(gòu)造位置處于北部的西伯利亞板塊和南部的華北板塊及東部的松遼板塊的接合部,錫林浩特微板塊北部邊緣地帶(圖1a)。區(qū)域地層出露有下元古界寶音圖群黑云斜長(zhǎng)片麻巖夾少量片巖及變粒巖、石炭統(tǒng)碎屑巖、碳酸鹽沉積、下二疊統(tǒng)灰黑色粉砂質(zhì)板巖、粉砂質(zhì)泥巖、泥質(zhì)粉砂巖及長(zhǎng)石石英砂巖、侏羅系火山噴發(fā)巖及火山碎屑沉積和第四系砂土、河流沖積、殘坡積及礫石層。
區(qū)內(nèi)最重要的構(gòu)造為米生廟復(fù)式背斜及與其有密切關(guān)聯(lián)的三個(gè)擠壓斷裂帶,它們均是由相互平行或近于平行的擠壓破碎帶和斷裂群組成,各帶之間具較好的等距性,其間距為10km左右。米生廟復(fù)式背斜沿烏套海-米生廟-達(dá)青牧場(chǎng)-阿拉騰郭勒一線呈北東向橫貫全區(qū),其展布寬度達(dá)60km,核部為華力西期中酸性、中基性侵入巖和下元古界寶音圖群雜巖。區(qū)內(nèi)斷裂構(gòu)造可劃分為北北東向,北東向、東西向及南北向四組,其中以北北東向和北東向占主導(dǎo)地位,北東向和北北東向絕大多數(shù)分布在米生廟復(fù)式背斜的展布區(qū)。
區(qū)內(nèi)巖漿巖活動(dòng)頻繁,分布廣泛,自華力西期到燕山晚期均有侵入活動(dòng)。巖性種類(lèi)繁多,從超基性-基性-酸性均有產(chǎn)出,包括華力西中期石英閃長(zhǎng)巖(δo42)、華力西晚期角閃輝長(zhǎng)巖(υ43(2));印支期中細(xì)粒黑云母花崗巖(γ51)及燕山晚期石英斑巖(λπ53)。
圖1 道倫達(dá)壩銅鎢多金屬礦大地構(gòu)造位置圖(a, 據(jù)Xiao et al., 2003修改)和礦區(qū)地質(zhì)簡(jiǎn)圖(b,據(jù)王萬(wàn)軍等,2005修改)Fig.1 Tectonic position (a, after Xiao et al., 2003) and schematic geological map (b, after Wang et al., 2005) of the Daolundaba Cu-W polymetallic deposit
圖2 道倫達(dá)壩銅鎢多金屬礦床構(gòu)造示意圖(a)和A-A′礦體剖面圖(b)Fig.2 Tectonicon schematic diagram (a) and sectional drawing of A-A′ orebody (b) of Daolundaba Cu-W polymetallic deposit
道倫達(dá)壩銅鎢多金屬礦床位于內(nèi)蒙古西烏旗道倫達(dá)壩蘇木北約3km,大地構(gòu)造位置位于錫林浩特微板塊北部邊緣地帶(圖1a),為華北板塊北緣與西伯利亞板塊南緣的接觸過(guò)渡帶,從元古宙到中生代經(jīng)歷了多期次的構(gòu)造-巖漿活動(dòng)(邵濟(jì)安等,1998)。該礦床的鎢錫金屬總儲(chǔ)量達(dá)到大型,銅為中型規(guī)模,銅、鎢品位較富,Cu平均品位1%~5%左右,WO3平均0.1%~1%左右,局部達(dá)到5%(王萬(wàn)軍等,2005)。礦區(qū)出露的地層主要有下元古界寶音圖群(Pt1by)黑云母斜長(zhǎng)片麻巖及變粒巖和上二疊統(tǒng)林西組(P2l)粉砂質(zhì)板巖、粉砂質(zhì)泥巖及粉砂巖,以及少量上侏羅統(tǒng)白音高老組(J3b)酸性火山碎屑巖(圖1b)。
圖3 道倫達(dá)壩銅鎢礦床手標(biāo)本(a-d)及顯微(e-f, 正交偏光; g-h, 單偏光)照片(a)-含星點(diǎn)狀黃鐵礦黑云母花崗巖;(b)-黑云母花崗巖穿切黑色粉砂巖;(c)-產(chǎn)于黑色粉砂巖中的黃銅礦礦石;(d)-產(chǎn)于石英脈中的黃銅礦-黃鐵礦礦石;(e、f)-黑云母花崗巖顯微照片,斜長(zhǎng)石發(fā)生絹云母化;(g)-星點(diǎn)狀黃鐵礦;(h)-黃銅礦和黃鐵礦共生.Qz-石英;Bt-黑云母;Ser-絹云母;Kfs-鉀長(zhǎng)石;Pl-斜長(zhǎng)石;Py-黃鐵礦;Ccp-黃銅礦;Bn-斑銅礦Fig.3 Photos of specimens (a-d) and microphotographs (e-f, orthogonal polarization; g-h, polarized light) of samples in the Daolundaba Cu-W polymetallic deposit(a)-star-shaped pyrite-bearing biotite granite; (b)-biotite granite cut across black siltstone; (c)-chalcopyrite ores produced in black siltstone; (d)-chalcopyrite-pyrite ores produced in quartz veins; (e, f)-photomicrograph of biotite granite, sericitization can be seen in plagioclase; (g)-star-shaped pyrite; (h)-intergrowth of chalcopyrite and pyrite. Qz-quartz; Bt-biotite; Ser-sericite; Kfs-K-feldspar; Pl-plagioclase; Py-pyrite; Ccp-chalcopyrite; Bn-bornite
區(qū)內(nèi)褶皺構(gòu)造發(fā)育,不同級(jí)別的褶皺互相平行,呈北東向展布(圖2a),斷裂構(gòu)造以北東向和北北東向?yàn)橹?李振祥等,2009),且控制了銅、鎢、錫礦產(chǎn)的分布,次為北西向和近南北向斷裂,近東西向斷裂相對(duì)較少。區(qū)內(nèi)巖漿活動(dòng)發(fā)育,與成礦密切相關(guān)的巖漿巖為前進(jìn)場(chǎng)花崗巖體,巖性主要為中粗粒黑云母花崗巖(圖3a, b, e, f)。礦區(qū)內(nèi)各類(lèi)酸性脈巖非常發(fā)育,主要類(lèi)型有花崗細(xì)晶巖脈、細(xì)粒花崗巖脈、石英脈及石英斑巖脈等。
礦體多賦存于花崗巖體與地層的接觸部位或花崗巖體內(nèi)部,受斷裂構(gòu)造控制作用明顯,礦體膨脹收縮、分枝復(fù)合及尖滅再現(xiàn)等現(xiàn)象常見(jiàn)。礦體走向總體上為北東向,中等傾斜或陡傾斜,少數(shù)呈北北東向、北北西向和近東西向延展(圖2b)。根據(jù)有益元素組合與含量,可劃分為銅礦體、鎢礦體、錫礦體等異體共生礦,銅鎢礦體、銅錫礦體、鎢錫礦體等同體共生礦(潘小菲等,2009)。礦體與圍巖接觸界線不明顯,呈交代漸變過(guò)渡的特征,鎢錫礦體表現(xiàn)更為明顯。主要金屬礦物有磁黃鐵礦、錫石、黑鎢礦、黃銅礦、毒砂等,次要金屬礦物有黝銅礦、砷黝銅礦、黝錫礦、閃鋅礦、方鉛礦、自然銀、自然鉍、赤鐵礦、白鐵礦、膠狀黃鐵礦、褐鐵礦、孔雀石、藍(lán)銅礦等。脈石礦物有石英、螢石、鉀長(zhǎng)石、絹云母、綠泥石、方解石等。礦石結(jié)構(gòu)復(fù)雜,以交代熔蝕結(jié)構(gòu)和半自形晶粒狀結(jié)構(gòu)為主,此外還有乳滴狀結(jié)構(gòu)、他形粒狀結(jié)構(gòu)、填隙結(jié)構(gòu)、鑲邊結(jié)構(gòu)等。礦石構(gòu)造主要為脈狀、網(wǎng)脈狀、交錯(cuò)脈狀、浸染狀、團(tuán)塊狀等。圍巖蝕變普遍發(fā)育,蝕變寬度一般可達(dá)幾米,可見(jiàn)硅化、黃鐵絹云巖化、碳酸鹽化、綠泥石化、高嶺土化、鉀長(zhǎng)石化、云英巖化、螢石化、電氣石化,其中硅化、云英巖化、螢石化與礦體關(guān)系最為密切。硅化是礦區(qū)最廣泛的蝕變,從高溫到中溫?zé)嵋弘A段都存在,表現(xiàn)形式多樣,既有細(xì)粒到粗粒石英,也可見(jiàn)有石英脈。云英巖化主要發(fā)育在接觸帶附近的圍巖和巖體中,從礦體向外依次分布有3種類(lèi)型的云英巖:鎢礦體中富含石英的云英巖、富白云母云英巖、塊狀云英巖。螢石化主要發(fā)育在礦體、礦化蝕變帶中,多具溶蝕現(xiàn)象。
道倫達(dá)壩礦床的鎢、錫礦化與云英巖化和螢石化關(guān)系密切,而銅礦化主要產(chǎn)于離巖體接觸帶稍遠(yuǎn)的硅化粉砂質(zhì)板巖中。礦區(qū)內(nèi)脈體廣泛發(fā)育,根據(jù)野外觀察脈體之間的穿插關(guān)系,結(jié)合手標(biāo)本及鏡下鑒定,從早到晚可將成礦過(guò)程劃分為4個(gè)階段,即,(1)氣成-高溫?zé)嵋弘A段(Ⅰ階段):該階段廣泛發(fā)育硅化、云英巖化、螢石化、電氣石化,云英巖型鎢礦脈除多數(shù)分布于硅化粉砂質(zhì)板巖內(nèi)外,局部還見(jiàn)賦存于巖體中。主要礦石礦物有黑鎢礦、白鎢礦、錫石,少量毒砂、磁黃鐵礦等;(2)高溫?zé)嵋弘A段(Ⅱ階段):黃鐵絹英巖化、綠泥石化和螢石化發(fā)育,礦石礦物組合為黑鎢礦、白鎢礦、錫石、毒砂、輝鉍礦、磁黃鐵礦等,脈石礦物主要為石英和螢石;(3)中溫?zé)嵋弘A段(Ⅲ階段):主要蝕變類(lèi)型為硅化、螢石化、綠泥石化、絹云母化、碳酸鹽化,礦石礦物有黃銅礦、黃鐵礦、磁黃鐵礦、菱鐵礦、自然銀、自然鉍、銀黝銅礦等,是主要的銅礦化階段(圖3c, d, g, h);(4)低溫?zé)嵋弘A段(Ⅳ階段):屬成礦后熱液活動(dòng),表現(xiàn)為晚期的方解石、螢石脈穿切早期礦物,發(fā)育碳酸鹽化、螢石化。表生作用較弱,可見(jiàn)少量沿破碎帶或裂隙面分布的藍(lán)銅礦化、斑銅礦化及褐鐵礦化。
本次研究所用樣品采自道倫達(dá)壩礦床11號(hào)豎井1072標(biāo)高10號(hào)礦脈上盤(pán)遠(yuǎn)離礦體的中粗粒黑云母花崗巖體,樣品新鮮,手標(biāo)本及鏡下觀察顯示蝕變較弱。樣品為灰白色,中粗粒花崗結(jié)構(gòu),塊狀構(gòu)造。主要組成礦物有石英(30%~35%)、斜長(zhǎng)石(25%~30%)、鉀長(zhǎng)石(20%~25%)、黑云母(5%~8%),副礦物主要有鋯石、磷灰石等。石英具強(qiáng)波狀消光,集合體大致定向分布。斜長(zhǎng)石呈自形-半自形,聚片雙晶發(fā)育,局部發(fā)生絹云母化和粘土化(圖3e, f)。鉀長(zhǎng)石具有典型的卡氏雙晶,表面有泥化現(xiàn)象,部分含鈉長(zhǎng)石條紋,形成條紋長(zhǎng)石,條紋比較細(xì)密。黑云母呈自形片狀集合體產(chǎn)出,呈黃色-紅褐色多色性(圖3e, f),偶見(jiàn)綠泥石化。
LA-ICP-MS鋯石U-Pb定年和Hf同位素測(cè)試分析在中國(guó)地質(zhì)科學(xué)院礦產(chǎn)資源研究所的Neptune多接收電感耦合等離子體質(zhì)譜和Nd-YAG 213nm激光剝蝕系統(tǒng)下完成。
鋯石U-Pb定年所采用的激光剝蝕坑徑為25μm,頻率10Hz,能量密度約2.5J/cm2,信號(hào)較小的207Pb,206Pb,204Pb(+204Hg),202Hg用離子計(jì)數(shù)器(multi-ion-counters)接收,208Pb,232Th,238U信號(hào)用法拉第杯接收,實(shí)現(xiàn)了所有目標(biāo)同位素信號(hào)的同時(shí)接收并且不同質(zhì)量數(shù)的峰基本上都是平坦的,進(jìn)而可以獲得高精度的數(shù)據(jù),均勻鋯石顆粒207Pb/206Pb,206Pb/238U,207Pb/235U的測(cè)試精度(2σ)均為2%左右,對(duì)鋯石標(biāo)準(zhǔn)的定年精度和準(zhǔn)確度在1%(2σ)左右。LA-MC-ICP-MS激光剝蝕采樣采用單點(diǎn)剝蝕的方式,數(shù)據(jù)分析前用鋯石GJ-1進(jìn)行調(diào)試儀器,使之達(dá)到最優(yōu)狀態(tài),鋯石U-Pb定年以鋯石GJ-1為外標(biāo),U、Th含量以鋯石M127(U: 923×10-6; Th: 439×10-6; Th/U: 0.475. Nasdalaetal., 2008)為外標(biāo)進(jìn)行校正。測(cè)試過(guò)程中在每測(cè)定5~7個(gè)樣品前后重復(fù)測(cè)定2個(gè)鋯石GJ1對(duì)樣品進(jìn)行校正,并測(cè)量一個(gè)鋯石Plesovice,觀察儀器的狀態(tài)以保證測(cè)試的精確度。數(shù)據(jù)處理采用ICPMSDataCal程序(Liuetal., 2009),測(cè)量過(guò)程中絕大多數(shù)分析點(diǎn)206Pb/204Pb大于1000,未進(jìn)行普通鉛校正,204Pb由離子計(jì)數(shù)器檢測(cè),204Pb含量異常高的分析點(diǎn)可能受包體等普通Pb的影響,對(duì)204Pb含量異常高的分析點(diǎn)在計(jì)算時(shí)剔除,鋯石年齡諧和圖用Isoplot 3.0程序獲得(Ludwig, 2001a, b)。詳細(xì)實(shí)驗(yàn)過(guò)程見(jiàn)侯可軍等(2009)。樣品分析過(guò)程中,Plesovice標(biāo)樣作為未知樣品的分析結(jié)果為337.3±2.5Ma(n=4,2σ),對(duì)應(yīng)的年齡推薦值為337.1±0.37(2σ)(Slámaetal., 2008),兩者在誤差范圍內(nèi)完全一致。
鋯石Hf同位素測(cè)試的激光坑徑為55μm,頻率20Hz,能量密度約15J/cm2,采用鋯石國(guó)際標(biāo)樣GJ1作為參考物質(zhì),在U-Pb定年的原分析點(diǎn)上測(cè)定Hf同位素組成。相關(guān)儀器運(yùn)行條件及詳細(xì)分析流程見(jiàn)侯可軍等(2007)。分析過(guò)程中鋯石標(biāo)準(zhǔn)GJ1的176Hf/177Hf測(cè)試加權(quán)平均值為0.282015±28(2SD,n=10),與文獻(xiàn)報(bào)道值(侯可軍等,2007;Elhlouetal., 2006)在誤差范圍內(nèi)一致。
巖體主量、微量和稀土元素分析測(cè)試在核工業(yè)北京地質(zhì)研究院分析測(cè)試研究中心完成,儀器型號(hào)為Finnigan MAT制造,HR-ICP-MS(ElementⅠ),測(cè)試方法和依據(jù)參照DZ/T0223-2001(電感耦合等離子體質(zhì)譜(ICP-MS)方法通則,實(shí)驗(yàn)過(guò)程中溫度20℃,相對(duì)濕度30%。
全巖鉛同位素測(cè)試分析在核工業(yè)北京地質(zhì)研究院完成,儀器型號(hào)為ISOPROBE-T熱電離質(zhì)譜儀,M+,可調(diào)多法拉第接收器接收,測(cè)試方法和依據(jù)參照GB/T 17672—1999(巖石中鉛鍶釹同位素測(cè)定方法,實(shí)驗(yàn)過(guò)程中溫度22℃,相對(duì)濕度40%)。Pb采用陰離子交換樹(shù)脂分離,用熱表面電離質(zhì)譜法進(jìn)行鉛同位素測(cè)定,對(duì)1μg的鉛208Pb/206Pb測(cè)試精度≤0.005%。
4.1.1 主量元素
道倫達(dá)壩黑云母花崗巖的全巖主量、微量和稀土元素分析結(jié)果見(jiàn)表1。從表1中可以看出,研究區(qū)樣品的SiO2含量為65.42%~67.41%,富鉀(K2O=3.82%~4.38%),富鋁(Al2O3=15.24%~16.47%),全堿(Na2O+K2O)質(zhì)量分?jǐn)?shù)值較高(7.41%~8.21%),屬高鉀鈣堿性系列(圖4a)。CaO
圖4 道倫達(dá)壩黑云母花崗巖的SiO2-K2O圖解(a)和A/NCK-A/NK圖解(b)Fig.4 The SiO2 vs. K2O diagram (a) and A/NCK vs. A/NK diagram (b) of biotite granite in the Daolundaba deposit
表1道倫達(dá)壩銅鎢礦黑云母花崗巖巖石地球化學(xué)成分表(主量元素:wt%;稀土和微量元素:×10-6)
Table 1 Chemical composition of biotite granitite in the Daolundaba Cu-W deposit (major elements: wt%; trace elements: ×10-6)
樣品號(hào)DL-01DL-02DL-03DL-04DL-05DL-06DL-07DL-08DL-09DL-10DL-11DL-12DL-13DL-14SiO266.7967.2366.1766.0866.2067.0566.4566.4965.4266.3066.4666.4467.0467.41Al2O315.6715.5815.8816.6315.7616.4715.3116.4216.3716.2515.4315.2416.0715.95FeO1.001.301.050.751.100.651.400.900.800.351.051.100.500.30Fe2O34.604.204.444.594.394.224.214.594.854.564.434.654.284.42MgO1.050.991.071.031.010.901.081.111.151.031.121.091.070.96CaO2.221.611.972.201.811.271.621.872.192.121.762.031.951.35Na2O3.763.703.703.824.243.593.643.563.783.723.473.523.473.58K2O3.933.973.823.983.974.384.373.873.953.953.943.963.954.22MnO0.040.030.040.040.030.020.020.040.040.040.050.040.040.03TiO20.660.560.610.650.590.590.610.650.700.660.600.650.600.55P2O50.260.170.180.220.200.220.220.150.230.260.170.210.180.18LOI0.500.420.570.230.270.750.940.740.790.571.040.650.810.81TOTAL100.4899.7699.50100.2299.57100.1199.87100.39100.2799.8199.5299.5899.9699.76Na2O+K2O7.697.677.527.808.217.978.017.437.737.677.417.487.427.80A/NCK1.081.171.151.141.081.271.121.221.131.141.171.111.191.23Mg#3836394037393740414440384443Cor1.822.702.542.571.694.082.203.352.462.652.712.003.003.51Pb24.5019.7021.0021.5021.7018.2021.3021.8022.9023.0022.8021.1022.6017.70Rb164175149174160244197167197175147163169243Ba9418359219199078591263949966102996410221078853Th16.9016.2016.3016.7015.9015.6015.4017.4018.8017.3016.8016.5017.1016.70U3.252.953.073.883.443.433.153.114.103.823.013.484.072.71Nb16.2013.3013.7014.7014.8014.0015.1016.5017.8016.8012.5016.5015.1014.30Ta1.331.161.061.321.351.201.241.321.621.440.871.211.301.04Sr190199208187224180220206199205199198216138Zr95.369.567.996.210590.466.591.698.757.693.381.395.2102Hf2.611.692.052.332.602.681.922.522.481.722.612.272.572.53La44.8042.2045.3045.6042.5041.5045.3045.6051.6048.1045.8046.6047.5046.60Ce94.2091.4094.4097.0089.0087.1093.1095.70103.00101.0096.8095.3095.1096.40Pr11.9011.4011.5012.0011.0011.2011.4012.2013.2012.6011.7012.2012.2011.90Nd46.2045.3047.3048.4044.7044.7046.1047.6053.5049.5048.2048.9049.0046.10Sm10.109.1510.109.579.569.199.418.8111.1010.009.879.279.6310.00Eu1.631.561.781.991.601.631.981.601.871.551.841.761.841.20Gd9.618.468.539.048.738.458.889.3710.809.609.249.299.539.00Tb1.581.401.401.411.641.481.391.551.851.651.401.571.631.47Dy7.936.927.907.248.347.157.017.478.928.147.207.607.966.98Ho1.401.111.371.251.621.211.121.441.561.381.281.301.451.22Er3.553.483.923.214.233.363.003.654.503.793.723.624.133.18Tm0.510.500.550.450.660.460.460.520.650.560.540.510.570.44Yb3.272.693.142.753.842.732.453.473.573.292.913.093.382.77Lu0.500.390.460.370.570.370.370.460.540.460.440.420.490.37Y39.8036.0041.4036.0048.3035.9033.2042.2050.1041.1039.8040.7045.7035.10∑REE237.2226.0237.7240.3228.0220.53232.0239.4266.7251.6240.9241.4244.4237.6LREE/HREE7.378.067.718.346.697.758.407.577.237.728.017.817.398.34(La/Yb)N9.8311.2510.3511.897.9410.9013.269.4310.3710.4911.2910.8210.0812.07δEu0.510.540.590.650.540.570.660.540.520.480.590.580.590.39δCe1.001.021.011.021.010.991.000.990.971.011.030.980.971.00
注:主量元素由XRF測(cè)定,微量元素由ICP-MS測(cè)定; LOI-燒失量; A/NCK=molar ratio of Al2O3/(CaO+K2O+Na2O); Mg#=(molar100×Mg/(Mg+Fe)); Cor-CIPW標(biāo)準(zhǔn)礦物剛玉含量;δEu=EuN/(SmN×GdN)1/2
圖5 道倫達(dá)壩黑云母花崗巖REE配分圖(a)和微量元素蛛網(wǎng)圖(b)(球粒隕石和原始地幔標(biāo)準(zhǔn)化值據(jù)Sun and McDonough, 1989)Fig.5 Chondrite-normalized REE pattern (a) and primitive mantle-normalized spider diagram (b) of biotite grantite in the Daolundaba (normalized values after Sun and McDonough, 1989)
和TiO2的含量均較高,變化范圍分別在1.35%~2.22%和0.55%~0.70%。A/NCK值為1.08~1.27,CIPW標(biāo)準(zhǔn)礦物計(jì)算中,剛玉(Cor)含量較高,變化范圍在1.82%~4.08%之間,屬于典型的過(guò)鋁質(zhì)巖石(圖4b),顯示S型花崗巖的特征。Mg#相對(duì)較低,變化范圍在36~44。
4.1.2 稀土、微量元素
樣品的稀土元素球粒隕石標(biāo)準(zhǔn)化配分圖見(jiàn)圖5a。巖石的稀土元素特征表現(xiàn)為,ΣREE含量較低(220.5×10-6~266.7×10-6),LREE/HREE和(La/Yb)N變化范圍較小,分別為6.69~8.40和7.94~13.26,屬于右傾輕稀土富集型。Eu中等負(fù)異常(δEu=0.48~0.66),Ce異常不明顯(δCe=0.97~1.03)。
微量元素特征中,大離子親石元素Rb、Sr的含量分別為147×10-6~244×10-6和138×10-6~224×10-6,Ba含量變化范圍較大,介于835×10-6~1263×10-6之間;Yb含量較高,變化范圍在2.45×10-6~3.84×10-6,屬于低Sr高Yb型(Sr<400×10-6,Yb>2×10-6),說(shuō)明其形成的壓力較低(<0.8或1.0GPa),殘留相有斜長(zhǎng)石無(wú)石榴石(角閃巖相)(Martinetal., 2005);放射性熱元素U(2.71×10-6~4.10×10-6)、Th(15.40×10-6~17.40×10-6)含量較低;高場(chǎng)強(qiáng)元素Nb(12.50×10-6~17.80×10-6)、Ta(0.87×10-6~1.62×10-6)、Zr(57.6×10-6~105×10-6)、Hf(1.69×10-6~2.68×10-6)等含量較低,Nb/Ta比值在10.96~14.37之間,低于幔源巖漿Nb/Ta=17±1的比值(Hofmann, 1988)。微量元素蛛網(wǎng)圖(圖5b)顯示,道倫達(dá)壩巖體富集Rb、Pb、Nd、Sm等,具有明顯的Nb、Ta、Sr、P、Ti等虧損特征,強(qiáng)不相容元素Rb的強(qiáng)烈富集暗示花崗巖漿可能發(fā)生了充分分異,P、Ti的虧損表明磷灰石和鈦鐵礦可能已發(fā)生明顯的分離結(jié)晶或源區(qū)存在寄主礦物的殘留(周振華等,2010a)。
道倫達(dá)壩中粗粒黑云母花崗巖中鋯石結(jié)晶較好,呈典型的長(zhǎng)柱狀晶形,具有典型的巖漿震蕩環(huán)帶,指示其主體為巖漿結(jié)晶的產(chǎn)物。由鋯石的陰極發(fā)光圖像(圖6)可以看出,幾乎所有鋯石均具有清晰的單期生長(zhǎng)的同心環(huán)帶特征。
對(duì)2件樣品(DL-01、DL-14)分別進(jìn)行了20個(gè)點(diǎn)的測(cè)試,鋯石U-Pb有效分析結(jié)果列于表2,諧和圖見(jiàn)圖7,諧和性95%以上。樣品DL-01的12個(gè)測(cè)點(diǎn)206Pb/238U年齡變化范圍為289.6~294.3Ma,Th/U=0.05~1.09,平均值0.53。樣品DL-01的U和Th含量較低,分別為34×10-6~283×10-6和13×10-6~38×10-6。樣品DL-14的9個(gè)測(cè)點(diǎn)206Pb/238U年齡變化范圍為291.7~294.2Ma,Th/U=0.12~1.16,平均值0.48。2件樣品除1個(gè)測(cè)點(diǎn)外其余測(cè)試點(diǎn)的Th/U均大于0.1,符合巖漿成因鋯石的特征(Hoskin and Black, 2000),這與鋯石在CL圖像上呈現(xiàn)的典型的巖漿震蕩環(huán)帶的特征是一致的。這些點(diǎn)均投影在諧和線上或附近,2件樣品(DL-01、DL-14)的206Pb/238U加權(quán)平均年齡分別為292.1±0.84Ma(2σ,N=12,MSWD=1.18)和292.5±0.88Ma(2σ,N=9,MSWD=0.46),代表黑云母花崗巖的結(jié)晶年齡,為早二疊世產(chǎn)物。本次研究的結(jié)果與潘小菲等(未發(fā)表數(shù)據(jù))的SHRIMP鋯石U-Pb年齡286±5.0Ma在誤差范圍內(nèi)一致。由于地層一般為碰撞后蓋層沉積,因此,對(duì)林西組地層單元的時(shí)代可能需要進(jìn)行重新厘定。
Hf同位素分析結(jié)果(表3)顯示,大多數(shù)測(cè)試點(diǎn)的176Lu/177Hf比值都小于0.002,表明鋯石在形成以后基本沒(méi)有明顯的放射性成因Hf的積累,所測(cè)樣品的176Lu/177Hf基本代表了其形成時(shí)體系的Hf同位素組成(Amelinetal., 1999; Patchettetal., 1981; Knudsenetal., 2001)。樣品DL-01分析點(diǎn)的176Hf/177Hf比值分布于0.282666~0.282786,εHf(t)值為-0.8~+13.3,平均+6.8,兩階段Hf模式年齡(tDM2)變化范圍為773~998Ma;樣品DL-14分析點(diǎn)的176Hf/177Hf比值分布于0.282643~0.282804,εHf(t)值為+1.0~+13.1,平均+6.4,兩階段Hf模式年齡(tDM2)變化范圍為740~1024Ma。
圖6 道倫達(dá)壩銅鎢多金屬礦床黑云母花崗巖鋯石陰極發(fā)光(CL)圖像及測(cè)試位置Fig.6 Cathodoluminescence (CL) images of representative zircons and measuring positions of the biotite granite from the Daolundaba Cu-W polymetallic deposit
表2道倫達(dá)壩黑云母花崗巖LA-ICP-MS鋯石U-Pb分析數(shù)據(jù)
Table 2 LA-ICP-MS zircon U-Pb age of the biotite granite in the Daolundaba
測(cè)點(diǎn)號(hào)U(×10-6)Th(×10-6)Th/U206Pb/238U年齡(Ma)1σ207Pb/206Pb年齡(Ma)1σ207Pb206Pb1σ207Pb235U1σ206Pb238U1σDL-01DL-01-0565240.37290.21.80398.236.110.05470.00100.34670.00620.04600.0003DL-01-06283140.05293.30.86420.414.810.05520.00040.35420.00250.04660.0001DL-01-0775380.50291.11.98301.937.030.05240.00080.33340.00530.04620.0003DL-01-0860130.23294.42.31390.877.770.05450.00190.35120.01280.04670.0004DL-01-1058260.45289.61.39376.0112.950.05410.00270.34360.01810.04600.0002DL-01-1149270.56291.51.66353.833.330.05360.00080.34220.00570.04620.0003DL-01-1335381.09291.01.73390.833.330.05450.00080.34710.00570.04620.0003DL-01-1435381.08290.51.63413.033.330.05500.00080.34980.00570.04610.0003DL-01-1659360.61293.31.23390.886.100.05450.00200.35100.01440.04660.0002DL-01-1753160.30292.81.25376.037.030.05410.00090.34650.00550.04650.0002DL-01-1834230.67290.41.67364.945.370.05380.00120.34150.00730.04610.0003DL-01-2064270.42294.31.77272.343.520.05170.00090.33340.00620.04670.0003DL-14DL-14-0161701.16291.91.05189.061.100.04970.00130.31780.00870.04630.0002DL-14-02141160.12293.61.01409.320.370.05490.00050.35300.00330.04660.0002DL-14-0459150.26291.91.78383.442.590.05430.00100.34710.00710.04630.0003DL-14-0548491.02293.11.33420.437.030.05520.00090.35330.00570.04650.0002DL-14-0759130.22292.61.40353.830.550.05360.00060.34330.00420.04640.0002DL-14-0890570.63291.71.16176.024.070.04960.00050.31600.00320.04630.0002DL-14-1476210.28294.21.65409.325.000.05490.00070.35340.00470.04670.0003DL-14-1590480.53292.31.54420.432.410.05520.00070.35260.00460.04640.0003DL-14-17274330.12291.71.58189.018.520.04970.00040.31700.00300.04630.0003
圖7 道倫達(dá)壩銅鎢多金屬礦床黑云母花崗巖鋯石U-Pb年齡及諧和圖Fig.7 Zircon U-Pb age and its concordia diagram of the biotite granite from the Daolundaba Cu-W polymetallic deposit
表3道倫達(dá)壩黑云母花崗巖LA-ICP-MS鋯石Hf同位素分析結(jié)果
Table 3 LA-ICP-MS zircon Hf isotopic compositions of the biotite granite in the Daolundaba
Spott(Ma)176Yb/177Hf176Lu/177Hf176Hf/177Hf2SEεHf(0)εHf(t)(176Hf/177Hf)itDM1(Ma)tDM2(Ma)fLu/HfDL-01DL-01-01281.30.0728840.0023080.2826660.000026-3.78.70.282666860998-0.93DL-01-02281.40.1188270.0027800.2827800.0000210.312.60.282780702796-0.92DL-01-03280.60.0528550.0012050.2827710.0000160.012.90.282771685797-0.96DL-01-04280.40.0675600.0015170.2827860.0000190.513.30.282786670773-0.95DL-01-05290.20.0494770.0011760.2827050.000016-2.410.60.282705779914-0.96DL-01-06293.30.0295000.0008600.2826710.000017-3.69.50.282671820972-0.97DL-01-07291.10.0735200.0021560.2827440.000019-1.011.60.282744743853-0.94DL-01-08294.40.0378760.0008550.2826990.000018-2.6-0.80.282699780921-0.97DL-01-09295.50.0564680.0012530.2827560.000020-0.61.20.282756708821-0.96DL-01-10289.60.0454350.0015140.2827230.000026-1.74.30.282723760885-0.95DL-01-11291.50.0705170.0024290.2827540.000024-0.65.30.282754734837-0.93DL-01-12296.90.1218080.0033240.2827580.000021-0.55.40.282758746838-0.90DL-01-13291.00.1097350.0038310.2827610.000024-0.45.30.282761752839-0.88DL-01-14290.50.0689920.0025280.2827050.000029-2.43.50.282705808927-0.92DL-01-15297.80.0720010.0015900.2827330.000021-1.44.90.282733747866-0.95DL-01-16293.30.0894350.0031380.2827830.0000260.46.20.282783705791-0.91DL-01-17292.80.0279610.0008520.2827560.000022-0.65.70.282756700818-0.97DL-01-18290.40.0646600.0018110.2827770.0000160.26.20.282777688790-0.95DL-01-19287.20.0370260.0011300.2826900.000019-2.93.20.282690799942-0.97DL-01-20294.30.0652460.0017100.2827810.0000210.36.50.282781680781-0.95DL-14DL-14-01291.90.0613040.0019590.2827850.0000220.513.10.282785679776-0.94DL-14-02293.60.0360410.0011240.2826470.000023-4.48.50.2826478601018-0.97DL-14-03296.00.0442900.0016240.2827430.000017-1.011.70.282743733848-0.95DL-14-04291.90.0321320.0008340.2827140.000016-2.111.00.282714759894-0.97DL-14-05293.10.0576140.0017500.2827260.000018-1.611.10.282726760881-0.95DL-14-06296.10.0987480.0030470.2827730.0000210.012.20.282773718808-0.91
續(xù)表3
Continued Table 3
Spott(Ma)176Yb/177Hf176Lu/177Hf176Hf/177Hf2SEεHf(0)εHf(t)(176Hf/177Hf)itDM1(Ma)tDM2(Ma)fLu/HfDL-14-07292.60.0598710.0018720.2827070.000019-2.310.40.282707790917-0.94DL-14-08291.70.0820620.0022990.2827790.0000210.22.00.282779694791-0.93DL-14-09288.10.0782060.0025980.2827510.000022-0.71.00.282751741845-0.92DL-14-10307.70.0176870.0005620.2826720.000016-3.53.10.282672812963-0.98DL-14-11295.90.0400340.0009990.2827150.000015-2.04.30.282715761893-0.97DL-14-12290.00.0827720.0026980.2827480.000019-0.85.00.282748748851-0.92DL-14-13303.50.0347100.0010050.2827130.000017-2.14.40.282713764894-0.97DL-14-14294.20.0236610.0007330.2826630.000016-3.92.50.282663828985-0.98DL-14-15292.30.0566820.0017780.2827820.0000190.46.40.282782680780-0.95DL-14-16287.20.0680150.0021590.2827190.000020-1.94.00.282719779899-0.93DL-14-17291.70.0333060.0009500.2826430.000016-4.61.70.2826438611024-0.97DL-14-18279.20.0445080.0011030.2827610.000019-0.45.50.282761698815-0.97DL-14-19281.90.0655610.0018500.2826990.000018-2.63.30.282699801934-0.94DL-14-20283.00.0583400.0015300.2828040.0000181.17.10.282804644740-0.95
注:εHf(0)=((176Hf/177Hf)S/(176Hf/177Hf)CHUR,0-1)×10000, fLu/Hf=(176Lu/177Hf)S/(176Lu/177Hf)CHUR-1,εHf(t)=((176Hf/177Hf)S-(176Lu/177Hf)S×(eλt-1))/((176Hf/177Hf)CHUR,0-(176Lu/177Hf)CHUR×(eλt-1)-1) ×10000, (176Hf/177Hf)i=(176Hf/177Hf)S-(176Lu/177Hf)S×(eλt-1).其中,(176Lu/177Hf)S為樣品測(cè)定值,(176Lu/177Hf)CHUR=0.0332, (176Hf/177Hf)CHUR,0=0.282772 (Blichert-Toft and Albarède, 1997);t為樣品形成時(shí)間,λ=1.867×10-11year-1(Soderlundetal., 2004)
圖8 道倫達(dá)壩Cu-W礦黑云母花崗巖Pb同位素組成圖解DMM-虧損地幔場(chǎng);EMⅠ-富集地幔Ⅰ;EMⅡ-富集地幔Ⅱ;MORB-洋脊玄武巖;NHRL-北半球參考線;HIUM-高U/Pb端員;GEOCHRON-零等時(shí)線;Mantle-地幔;Lower crust-下地殼;Upper crust-上地殼Fig.8 Pb isotopic diagrams of biotite grantite in the Daolundaba Cu-W deposit
道倫達(dá)壩礦床中黑云母花崗巖的全巖Pb同位素組成見(jiàn)表4,Pb同位素值較均一,變化范圍較小,206Pb/204Pb介于18.416~18.766,207Pb/204Pb介于15.519~15.542,208Pb/204Pb主要在38.238~39.460;μ值變化范圍在9.29~9.34,ω值變化范圍在33.71~35.46。在鉛構(gòu)造模式圖(圖8)上,樣品投點(diǎn)在上地殼演化線附近(圖8a),樣品點(diǎn)集中,沿NHRL線呈一定的線性分布趨勢(shì)(圖8b),顯示鉛可能主要來(lái)自于地殼物質(zhì)。
表4道倫達(dá)壩黑云母花崗巖的鉛同位素組成
Table 4 Pb isotopic compositions of Daolundaba biotite granite
樣品號(hào)206Pb/204Pb2σ207Pb/204Pb2σ208Pb/204Pb2σμωDL-0118.4820.00215.5260.00238.3860.0049.3135.25DL-0218.6070.00215.5340.00238.3430.0049.3234.51DL-0318.4920.00315.5260.00238.3920.0059.3135.22DL-0418.5650.00315.5330.00238.3130.0069.3234.60DL-0518.4780.00215.5240.00138.2790.0039.3134.83DL-0618.7660.00215.5390.00138.3270.0039.3133.71DL-0718.4160.00215.5200.00138.2380.0039.3134.95DL-0818.5850.00315.5290.00238.4290.0059.3134.92DL-0918.4920.00215.5290.00238.3860.0049.3235.22DL-1018.5670.00215.5380.00238.4230.0059.3335.06DL-1118.5240.00215.5320.00138.4810.0049.3235.46DL-1218.5440.00215.5300.00138.4520.0039.3135.22DL-1318.5680.00215.5420.00238.4600.0049.3435.24DL-1418.5310.00215.5190.00138.3860.0039.2934.93
注:μ為現(xiàn)代測(cè)定的238U/204Pb;ω為現(xiàn)代測(cè)定的232Th/204Pb
圖9 道倫達(dá)壩黑云母花崗巖微量元素構(gòu)造環(huán)境判別圖解(底圖據(jù)Pearce et al., 1984)ORG-大洋中脊花崗巖;WPG-板內(nèi)花崗巖;VAG-火山弧花崗巖;Syn-COLG-同碰撞花崗巖Fig.9 Diagrams of the tectonic setting of trace elements for biotite granite in Daolundaba deposit (after Pearce et al., 1984)
圖10 道倫達(dá)壩黑云母花崗巖的鋯石Hf同位素特征(底圖據(jù)Vervoort et al., 1996)Fig.10 Hf isotopic compositions of zircons from Daolundaba biotite granite (after Vervoort et al., 1996)
道倫達(dá)壩巖體的SiO2含量為65.42%~67.41%,與澳大利亞Lachlan造山帶中的S型花崗巖的SiO2平均值(69.05%)相近(Chappell and White, 1992),富Al2O3、K2O等。巖石副礦物中多見(jiàn)白云母,A/NCK值(1.08~1.27)基本上都大于1.1,CIPW標(biāo)準(zhǔn)礦物剛玉(Cor)含量(1.82%~4.08%)均大于1%,鍶同位素初始比值較高((87Sr/86Sr)i=0.7083)(王萬(wàn)軍等,2005),顯示殼源性特點(diǎn),符合典型的S型花崗巖組成特征(Chappell and White, 2001)。微量和稀土元素特征表現(xiàn)出的輕稀土富集、重稀土虧損型式和Eu負(fù)異常以及明顯的Nb、Ta、Sr、Ti虧損的特點(diǎn)顯示為殼源成因的火山弧花崗巖,在構(gòu)造環(huán)境判別圖解中,樣品點(diǎn)也基本都在火山弧花崗巖和同碰撞花崗巖范圍內(nèi)(圖9a, b)。東北地區(qū)顯生宙花崗巖廣泛發(fā)育,花崗巖類(lèi)型以A型為主,其次為長(zhǎng)英質(zhì)I型花崗巖(Wuetal., 2011),S型花崗巖較少見(jiàn),典型的例子如黑龍江饒河雜巖體(程瑞玉等,2006)。通常認(rèn)為鎢錫礦床多數(shù)與殼源重熔S型花崗巖有關(guān)(毛景文等,2008;Maoetal., 2013; Yuanetal., 2008),本次研究發(fā)現(xiàn)的道倫達(dá)壩Cu-W礦床S型花崗巖為大興安嶺成礦帶較少見(jiàn)的類(lèi)型,為該區(qū)鎢錫礦的找礦勘察提供了借鑒。
由于鋯石的Lu-Hf同位素體系具有很高的封閉溫度,鋯石Hf同位素比值不會(huì)隨后期部分熔融或分離結(jié)晶而變化,因此鋯石εHf(t)值代表了巖漿源區(qū)的成分特征,不均一的鋯石Hf同位素特征很可能指示了一個(gè)開(kāi)放體系,與具有不同放射性成因Hf同位素含量的幾種巖漿混合有關(guān)(周振華等,2012;Griffinetal., 2002; Kempetal., 2007; Ravikantetal., 2011)。通常認(rèn)為具有正εHf(t)值的花崗質(zhì)巖石來(lái)自虧損地幔或從虧損地幔中新增生的年輕地殼物質(zhì)的部分熔融(隋振民等,2009),負(fù)εHf(t)通常代表古老地殼成因(吳福元等,2007)。周振華等(2012)通過(guò)對(duì)興蒙造山帶1097個(gè)巖漿巖鋯石Hf同位素測(cè)試數(shù)據(jù)的系統(tǒng)分析研究后,發(fā)現(xiàn)興安地塊巖漿巖中鋯石的176Hf/177Hf值較高,集中在0.282850~0.283050,εHf(t)均為正值,Hf同位素模式年齡介于0.80~0.50Ga,在εHf(t)-t圖解和176Hf/177Hf-t圖解中,興安地塊數(shù)據(jù)點(diǎn)落在球粒隕石演化線和虧損地幔演化線之間,個(gè)別點(diǎn)落在虧損地幔演化線之上,顯示其巖漿源區(qū)主要來(lái)源于虧損地幔物質(zhì)的部分熔融(周振華等,2012)。
道倫達(dá)壩樣品除一個(gè)測(cè)點(diǎn)的εHf(t)值為負(fù)值外,其余全為正值且變化范圍較大(+1.0~+13.3),二階段Hf同位素模式年齡為1024~740Ma,在εHf(t)-t圖解(圖10a)和176Hf/177Hf-t圖解(圖10b)中,數(shù)據(jù)點(diǎn)均落在興蒙造山帶東段范圍內(nèi),位于球粒隕石演化線和虧損地幔演化線之間,反映其源區(qū)物質(zhì)為顯生宙期間從虧損地幔新增生的年輕地殼物質(zhì)。同時(shí),Pb同位素的特征也顯示其主要源自于上地殼物質(zhì)。此外,與興安地塊Hf同位素特征相比較,道倫達(dá)壩樣品的176Hf/177Hf比值(0.282643~0.282804)偏低,二階段Hf同位素模式年齡偏大,這可能與侵位過(guò)程中受到殘存的古老地殼基底或巖石圈地幔的混染作用有關(guān)(Zhuetal., 2011)。因此,可以推測(cè)道倫達(dá)壩黑云母花崗巖主要來(lái)源從虧損地幔新增生的年輕地殼的部分重熔,在侵位過(guò)程中可能受到了殘留的古地殼或巖石圈地幔的混染。
古亞洲成礦域由西伯利亞地臺(tái)南緣活動(dòng)帶和塔里木-華北地臺(tái)北緣活動(dòng)帶組成,其從天山-阿爾泰向東延伸至我國(guó)東北地區(qū),以大規(guī)模的島弧體系發(fā)育和陸緣增生為主要特征(任紀(jì)舜等,1999)。興蒙造山帶是古亞洲洋演化、閉合的產(chǎn)物,隸屬古亞洲成礦域,由于燕山期大規(guī)模成巖成礦作用的疊加和改造,古生代形成的巖體或礦床大多數(shù)已經(jīng)解體或被改造(陳衍景等,2009)。近年來(lái),隨著同位素年代的精確測(cè)定,開(kāi)始陸續(xù)識(shí)別出興蒙造山帶古生代成礦可能是一次重要的成礦事件。從晚元古代開(kāi)始,興蒙造山帶內(nèi)的一系列地塊開(kāi)始拼合,以賀根山-嫩江帶為界,分為東部區(qū)和西部區(qū)。東部區(qū)表現(xiàn)為佳木斯地塊與松嫩地塊、松嫩地塊與錫林浩特地塊之間的拼合,三個(gè)地塊在早古生代末期拼合為一體,從而形成了東部區(qū)的錫林浩特-松嫩-佳木斯微板塊(李雙林和歐陽(yáng)自遠(yuǎn),1998);西部區(qū)表現(xiàn)為中亞蒙古地塊與興安地塊之間的拼合,與該構(gòu)造帶拼合作用有關(guān)的鈣堿系列中酸性巖漿巖的同位素年齡為443~567Ma(李春昱等,1982),這次拼合作用的結(jié)果使得中亞蒙古地塊與興安地塊成為一體,構(gòu)成了西部區(qū)的中亞蒙古-興安微板塊。伴隨著興蒙造山帶內(nèi)微板塊的拼合,形成了一套島弧背景的斑巖-矽卡巖型銅鉬金(鐵)礦床,如白乃廟斑巖型銅金(鉬)礦床(花崗閃長(zhǎng)斑巖SHRIMP鋯石U-Pb年齡445±6.0Ma;輝鉬礦的Re-Os年齡445.0±3.4Ma,據(jù)Lietal., 2012)、多寶山斑巖型銅(鉬)礦床(花崗閃長(zhǎng)巖LA-ICP-MS鋯石U-Pb年齡479±2.0Ma,輝鉬礦Re-Os等時(shí)線年齡479.0±3.9Ma,據(jù)武廣等未發(fā)表數(shù)據(jù))。前人(武廣等,2005;Liuetal., 2012; 佘宏全等,2012)研究認(rèn)為大興安嶺早古生代斑巖型礦床形成于洋殼俯沖有關(guān)的島弧環(huán)境,隨著俯沖加劇,大量花崗質(zhì)巖石發(fā)生同熔和重熔作用,并沿著若干伸展部位上升侵位,在近地表附近形成斑巖型流體成礦系統(tǒng),伴隨著溫壓下降,巖漿流體萃取島弧火山巖及其自身的金屬元素沉淀下來(lái),最終形成斑巖型銅(鉬-金)礦床(葛文春等,2007;白令安等,2012;Zengetal., 2013a)。最近,我們還獲得大興安嶺北段罕達(dá)蓋矽卡巖型鐵銅礦床石英二長(zhǎng)閃長(zhǎng)巖的LA-ICP-MS鋯石U-Pb年齡為319.00±0.90Ma(周振華等,未發(fā)表數(shù)據(jù)),其形成與晚泥盆世-早石炭世古亞洲洋向蒙古板塊和華北板塊發(fā)生雙向俯沖、消減作用有關(guān)。
研究表明,晚古生代之前東北地區(qū)各地塊已經(jīng)完成拼合,從晚古生代開(kāi)始就進(jìn)入了統(tǒng)一的蓋層演化階段(劉永江等,2010)。晚古生代古亞洲洋俯沖增生階段,在興蒙造山帶形成了一系列的俯沖增生-變質(zhì)雜巖和零星分布其中的蛇綠混雜巖套(范蔚茗等,2008;Wildeetal., 2000; 王穎等,2006),西伯利亞板塊南緣由北向南逐漸俯沖增生過(guò)程中發(fā)育有大量高鉀鈣堿性巖漿巖,形成大量斑巖-矽卡巖-熱液脈型銅鉬金多金屬礦床,如準(zhǔn)蘇吉花斑巖型鉬礦(似斑狀花崗巖SHRIMP鋯石U-Pb年齡為298.2±3.1Ma,輝鉬礦Re-Os等時(shí)線年齡298.1±3.6Ma,劉翼飛等,2012)、畢力赫斑巖型金礦(含礦花崗閃長(zhǎng)斑巖LA-ICP-MS鋯石U-Pb年齡260~258Ma,Yangetal., 2013)、奧尤特矽卡巖型銅鋅礦(絹云母Ar-Ar坪年齡286.5±1.8Ma,張萬(wàn)益等,2008)、代銅山熱液脈型銅礦(細(xì)?;◢弾rSHRIMP鋯石U-Pb年齡265±5Ma,Zhouetal., 2013)、好力寶斑巖型銅鉬礦(花崗斑巖LA-ICP-MS鋯石U-Pb年齡267±1.0Ma,輝鉬礦Re-Os年齡264.7±2.8Ma,Zengetal., 2013b)等。晚古生代銅鉬金礦化除形成于島弧環(huán)境外(Zengetal., 2013b),還可形成于活動(dòng)大陸邊緣環(huán)境,如畢力赫金礦,其賦礦圍巖具有安底斯型活動(dòng)大陸邊緣巖石的特征(卿敏等,2012)。由內(nèi)蒙古向西延伸至蒙古國(guó)境內(nèi),晚古生代時(shí)期發(fā)育有歐玉陶勒蓋、查干蘇布爾加等特大型斑巖銅(鉬-金)礦床(Wainwrightetal., 2011; Khashgereletal., 2006; Watanabe and Stein, 2000; Lamb and Cox, 1998)。本次研究發(fā)現(xiàn)道倫達(dá)壩熱液脈型銅鎢錫礦床黑云母花崗巖LA-ICP-MS鋯石U-Pb年齡292.1±0.84Ma~292.5±0.88Ma,為早二疊世西伯利亞板塊南緣俯沖增生背景下的產(chǎn)物。結(jié)合以上論述,筆者認(rèn)為古生代是興蒙造山帶的一個(gè)重要的成礦階段,在此期間形成一套島弧或活動(dòng)大陸邊緣環(huán)境下的斑巖-矽卡巖-熱液脈型銅鉬金多金屬礦床,具有良好的找礦前景。
(1)道倫達(dá)壩黑云母花崗巖的SiO2含量為65.42%~67.41%,富鉀(K2O=3.82%~4.38%),富鋁(Al2O3=15.24%~16.47%),屬高鉀鈣堿性系列。A/NCK值為1.08~1.27,CIPW標(biāo)準(zhǔn)礦物剛玉(Cor)含量較高,變化范圍在1.82%~4.08%之間,屬于過(guò)鋁質(zhì)S型花崗巖;
(2)LA-ICP-MS鋯石U-Pb測(cè)年結(jié)果顯示,2件黑云母花崗巖樣品的年齡分別為292.1±0.84Ma~292.5±0.88Ma,為早二疊世西伯利亞板塊南緣俯沖增生背景下的產(chǎn)物;
(3)Hf同位素特征表明,道倫達(dá)壩黑云母花崗巖εHf(t)值介于-0.8~+13.3之間,二階段Hf同位素模式年齡為1024~740Ma,176Hf/177Hf比值變化范圍為0.282643~0.282804;Pb同位素組成較均一,206Pb/204Pb介于18.416~18.766,207Pb/204Pb介于15.519~15.542,208Pb/204Pb主要在38.238~39.460。黑云母花崗巖主要源自從虧損地幔新增生的年輕地殼的部分重熔,在侵位過(guò)程中可能受到了殘留的古地殼或巖石圈地幔的混染。
(4)古生代(480~260Ma左右)是興蒙造山帶的一個(gè)重要的成礦階段,成礦以島弧或活動(dòng)大陸邊緣環(huán)境下的斑巖-矽卡巖-熱液脈型銅鉬金多金屬礦床為主。
致謝野外地質(zhì)工作期間得到了內(nèi)蒙古第十地質(zhì)礦產(chǎn)勘查開(kāi)發(fā)院魯斌工程師的大力協(xié)助;論文成文過(guò)程中得到了中國(guó)地質(zhì)科學(xué)院礦產(chǎn)資源研究所毛景文研究員的悉心指導(dǎo)和袁順達(dá)副研究員的熱情幫助;室內(nèi)測(cè)試工作得到了郭春麗副研究員的熱情指導(dǎo);在此一并表示誠(chéng)摯的謝意!
Amelin Y, Lee DC, Halliday AN and Pidgeon RT. 1999. Nature of the earth’s earliest crust from hafnium isotopes in single detrial zircons. Nature, 399(6733): 252-255
Bai LA, Sun JG, Zhang Y, Han SJ, Yang FC, Men LJ, Gu AL and Zhao KQ. 2012. Genetic type, mineralization epoch and geodynamical setting of endogenous copper deposits in the Great Xing’an Range. Acta Petrologica Sinica, 28(2): 468-482 (in Chinese with English abstract)
Blichert-Toft J and Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters, 148(1-2): 243-258
Chappell BW and White AJR. 1992. I- and S-type granites in the Lachlan fold belt. Transactions of the Royal Society of Edinburgh (Earth Sciences), 83(1-2): 1-26
Chappell BW and White AJR. 2001. Two contrasting granite types: 25 years later. Australian Journal of Earth Sciences, 48(4): 489-499
Chen RK. 2009. The research on the geological features and metallogenic prediction of Daolundaba copper-polymetallic. Master Degree Thesis. Changsha: Central South University, 1-67 (in Chinese with English summary)
Chen YJ, Zhai MG and Jiang SY. 2009. Significant achievements and open issues in study of orogenesis and metallogenesis surrounding the North China continent. Acta Petrologica Sinica, 25(11): 2695-2726 (in Chinese with English abstract)
Cheng RY, Wu FY, Ge WC, Sun DY, Liu XM and Yang JH. 2006. Emplacement age of the Raohe complex in eastern Heilongjiang Province and the tectonic evolution of the eastern part of northeastern China. Acta Petrologica Sinica, 22 (2): 353-376 (in Chinese with English abstract)
Compston W, Williams IS and Meyer CE. 1984. U-Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass-resolution ion microprobe. Journal of Geophysical Research, 89(S02): 525-534
Elhlou S, Belousova E, Griffin WL and Pearson NJ. 2006. Trace element and isotopic composition of GJ-red zircon standard by laser ablation. Geochim. Cosmochim. Acta, 70(18): A158
Fan WM, Guo F, Gao XF and Li CW. 2008. Sr-Nd isotope mapping of Mesozoic igneous rocks in NE China: Constraints on tectonic framework and crustal growth. Geochimica, 37(4): 361-372 (in Chinese with English abstract)
Ge WC, Wu FY, Zhou CY and Zhang JH. 2007. Ages and its geodynamic implication of the porphyry Cu-Mo deposits in the eastern Xingmeng orogenic belt. Chinese Science Bulletin, 50(20): 2407-2417 (in Chinese)
Griffin WL, Wang X, Jackson SE, Pearson NJ, O’Reilly SY, Xu XS and Zhou XM. 2002. Zircon chemistry and magma genesis, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61(3-4): 237-269
Hofmann AW. 1988. Chemical differentiation of the earth: The relationship between mantle, continental crust, and oceanic crust. Earth Planetary Science Letters, 90(3): 297-314
Hoskin PWO and Black LP. 2000. Metamorphic zircon formation by solidstate recrystallization of protolith igneous zircon. Journal of Metamorphic Geology, 18(4): 423-439
Hou KJ, Li YH, Zhou TR, Qu XM, Shi YR and Xie GQ. 2007. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications. Acta Petrologica Sinica, 23(10): 2595-2604 (in Chinese with English abstract)
Hou KJ, Li YH and Tian YR. 2009. In situ U-Pb zircon dating using laser ablation-multi ion couting-ICP-MS. Mineral Deposits, 28(4): 481-492 (in Chinese with English abstract)
Kemp AIS, Hawkesworth CJ, Foster GL, Paterson BA, Woodhead JD, Hergt JM, Gray CM and Whitehouse MJ. 2007. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science, 315(5814): 980-983
Khashgerel B, Rye Robert OJ, Hedenquist W and Kavalieris I. 2006. Geology and reconnaissance stable isotope study of the Oyu Tolgoi porphyry Cu-Au system, South Gobi, Mongolia. Economic Geology, 101(3): 503-522
Knudsen TL, Griffin WL, Hartz EH, Andresen A and Jackson SE. 2001. In-situ hafnium and lead isotope analyses of detrital zircon from the Devonian sedimentary basin of NE Greenland: A record of repeated crustal reworking. Contributions to Mineralogy and Petrology, 141(1): 83-94
Lamb MA and Cox D. 1998. New40Ar/39Ar age data and implications for porphyry copper deposits of Mongolia. Economic Geology, 93(4): 524-529
Li CY, Wang K and Liu XY. 1982. Manual of Asian Tectonic Map (1/8000000). Beijing: China Map Publishing, 1-49 (in Chinese)
Li SL and Ouyang ZY. 1998. Tectonic framework and evolution of Xing’anling-Mongolian orogenic belt (XMOB) and its adjacent region. Marine Geology & Quaternary Geology, 18(3): 45-54 (in Chinese with English abstract)
Li WB, Zhong RC, Xu C, Song B and Qu WJ. 2012. U-Pb and Re-Os geochronology of the Bainaimiao Cu-Mo-Au deposit, on the northern margin of the North China Craton, central Asia orogenic belt: Implications for ore genesis and geodynamic setting. Ore Geology Reviews, 48: 139-150
Li ZX, Zhuo FH, Cui D and Li YX. 2009. Geology and genesis of the Daolundaba copper-polymetal deposit in Inner Mongolia. Geology and Resources, 18(1): 27-30 (in Chinese with English abstract)
Liu J, Wu G, Li Y, Zhu MT and Zhong W. 2012. Re-Os sulfide (chalcopyrite, pyrite and molybdenite) systematics and fluid inclusion study of the Duobaoshan porphyry Cu (Mo) deposit, Heilongjiang Province, China. Journal of Asian Earth Sciences, 49: 300-312
Liu YF, Nie FJ, Jiang SH, Hou WR, Liang QL, Zhang K and Liu Y. 2012. Geochronology of Zhunsujihua molybdenum deposit in Sonid Left Banner, Inner Mongolia, and its geological significance. Mineral Deposits, 31(1): 119-128 (in Chinese with English abstract)
Liu YJ, Zhang XZ, Jin W, Chi XG, Wang CW, Ma ZH, Han GQ, Wen QB, Zhao YL, Wang WD and Zhao XF. 2010. Late Paleozoic tectonic evolution in Northeast China. Geology in China, 37(4): 943-951 (in Chinese with English abstract)
Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ and Wang DB. 2009. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537-571
Ludwig KR. 2001a. ISOPLOT/EX Version 2.49: A geochronological Toolkit for Microsoft Excel. Berkley Geochronological Centre Special Publication, No. 1a
Ludwig KR. 2001b. SQUID Version 1.02: A geochronological Toolkit for Microsoft Excel. Berkley Geochronological Centre Special Publication, No. 2
Mao JW, Zhang ZH, Yu JJ and Niu BG. 2003. Geodynamic settings of Mesozoic large-scale mineralisation in North China and adjacent areas-implication from the highly precise dating of ore deposits. Sciences in China (Series D), 46(8): 838-851
Mao JW, Xie GQ, Zhang ZH, Li XF, Wang YT, Zhang CQ and Li YF. 2005. Mesozoic large-scale metallogenic pulses in North China and corresponding geodynamic settings. Acta Petrologica Sinica, 21(1): 169-188 (in Chinese with English abstract)
Mao JW, Xie GQ, Guo CL, Yuan SD, Cheng YB and Chen YC. 2008. Spatial-temporal distribution of Mesozoic ore deposits in south China and their metallogenic settings. Geological Journal of China Universities, 14(4): 510-526 (in Chinese with English abstract)
Mao JW, Cheng YB, Chen MH and Pirajno F. 2013. Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings. Mineralium Deposita, 48(3): 267-294
Mao JW, Zhou ZH, Wu G, Jiang SH, Liu CL, Li HM, Ouyang HG and Liu J. 2013. Metallogenic regularity and minerogenetic series of ore deposits in Inner Mongolia and adjacent areas. Mineral Deposits, 32(4): 715-729 (in Chinese with English abstract)
Martin H, Smithies RH, Rapp R, Moyen JF and Champion D. 2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution. Lithos, 79(1-2): 1-24
Nasdala L, Hofmeister W, Norber Netal. 2008. Zircon M257: A homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon. Geostandards and Geoanalytical Research, 32(3): 247-265
Ouyang HG, Mao JW and Santosh M. 2013. Anatomy of a large Ag-Pb-Zn deposit in the Great Xing’an Range, Northeast China: Metallogeny associated with Early Cretaceous magmatism. International Geology Review, 55(4): 411-429
Pan XF, Wang S, Hou ZQ, Tong Y, Xue HM, Zhou XW and Xie YL. 2009. Geology and metallogenesis of Daolundaba copper polymetallic deposits, Inner Mongolia. Geotectonica et Metallogenia, 33(3): 402-410 (in Chinese with English abstract)
Patchett PJ, Kouvo O, Hedge CE and Tatsumoto M. 1981. Evolution of continental crust and mantle heterogeneity: Evidence from Hf isotopes. Contributions to Mineralogy and Petrology, 78(3): 279-297
Qing M, Tang MG, Ge LS, Han XJ, Feng JB, Yuan SS and Zhao YS. 2012. LA-ICP-MS zircon U-Pb age, geochemistry of andesite in Bilihe goldfield, Suniteyouqi, Inner Mongolia and its tectonic significance. Acta Petrologica Sinica, 28(2): 514-524 (in Chinese with English abstract)
Ravikant V, Wu HY and Ji WQ. 2011. U-Pb age and Hf isotopic constraints of detrital zircons from the Himalayan foreland Subathu sub-basin on the Tertiary palaeogeography of the Himalaya. Earth and Planetary Science Letters, 304(3-4): 356-368
Ren JS, Niu BG and Liu ZG. 1999. Soft collision, superposition orogeny and polycyclic suturing. Earth Science Frontiers, 6(3): 85-93 (in Chinese with English abstract)
Shao JA, Zhang FQ and Mu BL. 1998. Mesozoic tectonic thermal evolution of the middle-southern Great Xing’an Range. Sciences in China (Series D), 28(3): 193-200 (in Chinese)
She HQ, Li JW, Guan JD, Zhang DQ, Yang YC, Tan G and Zhang B. 2012. U-Pb ages of the zircons from primary rocks in middle-northern Daxinganling and its implications to geotectonic evolution. Acta Petrologica Sinica, 28(2): 571-594 (in Chinese with English abstract)
Sláma J, Kosler J, Condon DJ, Crowley JL, Gerdes A, Hanchar J M, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN and Whitehouse MJ. 2008. Ple?ovice zircon: A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249(1-2): 1-35
Soderlund U, Patchett PJ, Vervoort JD and Isachsen CE. 2004. The176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters, 219(3-4): 311-324
Sui ZM, Ge WC, Wu FY, Xu XC and Zhang JH. 2009. Hf isotopic characteristics and geological significance of the Chahayan pluton in northern Daxing’anling Mountains. Journal of Jilin University (Earth Science Edition), 39(5): 849-867 (in Chinese with English abstract)
Sun SS and McDonough F. 1989. Chemical and isotopic systematics of oceanic basalt: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Special Publications Geological Society London, 42: 313-345
Vervoort JD, Pachelt PJ, Gehrels GE and Nutman AP. 1996. Constraints on early Earth differentiation from hafnium and neodymium isotopes. Nature, 379(6566): 624-627
Wainwright AJ, Tosdal RM, Wooden JL, Mazdab FK and Friedman RM. 2011. U-Pb (zircon) and geochemical constraints on the age, origin, and evolution of Paleozoic arc magmas in the Oyu Tolgoi porphyry Cu-Au district, southern Mongolia. Gondwana Research, 19(3): 764-787
Wang WJ, Sun ZJ and Hu XZ. 2005. Geological characters and tectonic setting of Qianjingchang granite in Inner Mongolia. Geology and Prospecting, 41(2): 35-40 (in Chinese with English abstract)
Wang Y, Zhang FQ, Zhang DW, Miao LC, Li TS, Ruan JQ, Meng QR and Liu DY. 2006. SHRIMP zircon U-Pb age of the epidiorite in Songliao basin and its geological significance. Chinese Science Bulletin, 51(15): 1811-1816 (in Chinese)
Watanabe Y and Stein H. 2000. Re-Os ages for the Erdenet and Tsagaanporphyry Cu-Mo deposits, Mongolia, and tectonic implication. Economic Geology, 95: 1537-1542
Wilde SA, Zhang XZ and Wu FY. 2000. Extension of a newly identified 500Ma metamorphic terrane in North East China: Further U-Pb SHRIMP dating of the Mashan complex, Heilongjiang Province, China. Tectonophysics, 328(1-2): 115-130
Wu FY, Li XH, Zheng YF and Gao S. 2007. Lu-Hf isotope systematics and their applications in petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English abstract)
Wu FY, Sun DY, Ge WC, Zhang YB, Grant ML, Wilde SA and Jahn BM. 2011. Geochronology of the Phanerozoic granitoids in northeastern China. Journal of Asian Earth Sciences, 41(1): 1-30
Wu G, Sun FY, Zhao CS, Li ZT, Zhao AL, Pang QB and Li GY. 2005. Discovery and geological significance of the early Paleozoic post-collision granite in the north of Eergu’na block. Chinese Science Bulletin, 50(20): 2278-2288 (in Chinese)
Xiao WJ, Windley BF, Hao J and Zhai MG. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt. Tectonics, 22(6): 1-20
Xie GQ, Zhao HJ, Zhao CS Li XQ, Hou KJ and Pan HJ. 2009. Re-Os dating of molybdenite from Tonglüshan ore district in southeastern Hubei Province, Middle-Lower Yangtze River belt and its geological significance. Mineral Deposits, 28(3): 227-239 (in Chinese with English abstract)
Xu JJ, Lai Y, Cui D, Chang Y, Jiang L, Shu QH and Li WB. 2009. Characteristics and evolution of ore-forming fluids of the Daolundaba copper-polymetal deposit, Inner Mongolia. Acta Petrologica Sinica, 25(11): 2957-2972 (in Chinese with English abstract)
Yang ZM, Chang ZS and Hou ZQ. 2013. Tectonic setting and source of the magmatic Au deposit at Bilihe, China: Evidence from geochronology and geochemistry of main intrusions in the deposit. Economic Geology, accepted
Yuan SD, Peng JT, Shen NP, Hu RZ and Dai TM. 2007.40Ar-39Ar isotopic dating of the Xianghualing Sn-polymetallic orefield in southern Hunnan, China and its geological implications. Acta Geologica Sinica, 81(2): 278-286
Yuan SD, Peng JT, Hu RZ, Li HM, Shen NP and Zhang DL. 2008. A precise U-Pb age on cassiterite from the Xianghualing tin-polymetallic deposit (Hunan, South China). Mineralium Deposita, 43(4): 375-382
Yuan SD, Peng JT, Hao S, Li HM, Geng JZ and Zhang DL. 2011. In situ LA-MC-ICP-MS and ID-TIMS U-Pb geochronology of cassiterite in the giant Furong tin deposit, Hunan Province, South China: New constraints on the timing of tin-polymetallic mineralization. Ore Geology Reviews, 43(1): 235-242
Zeng QD, Liu JM, Chu SX, Wang YB, Sun Y, Duan XX, Zhou LL and Qu WJ. 2013a. Re-Os and U-Pb geochronology of the Duobaoshan porphyry Cu-Mo-(Au) deposit, Northeast China, and its geological significance. Journal of Asian Earth Sciences, 79(Part B): 895-909
Zeng QD, Sun Y, Duan XX and Liu JM. 2013b. U-Pb and Re-Os geochronology of the Haolibao porphyry Mo-Cu deposit, NE China: Implications for a Late Permian tectonic setting. Geological Magazine, 150(6): 975-985
Zhang WY, Nie FJ, Liu Y, Jiang SH, Xu DQ and Guo LJ. 2008.40Ar-39Ar geochronology of the Aououte Cu-Zn deposit in Inner Mongolia and its significance. Acta Geoscientica Sinica, 29(5): 592-598 (in Chinese with English abstract)
Zhou ZH, Lv LS, Yang YJ and Li T. 2010a. Petrogenesis of the Early Cretaceous A-type granite in the Huanggang Sn-Fe deposit, Inner Mongolia: Constraints from zircon U-Pb dating and geochemistry. Acta Petrologica Sinica, 26(12): 3521-3537 (in Chinese with English abstract)
Zhou ZH, Lü LS, Feng JR, Li C and Li T. 2010b. Molybdenite Re-Os ages of Huanggang skarn Sn-Fe deposit and their geological significance, Inner Mongolia. Acta Petrologica Sinica, 26(3): 667-679 (in Chinese with English abstract)
Zhou ZH, Mao JW and Lyckberg P. 2012. Geochronology and isotopic geochemistry of the A-type granites from the Huanggang Sn-Fe deposit, southern Great Hinggan Range, NE China: Implication for their origin and tectonic setting. Journal of Asian Earth Sciences, 49: 272-286
Zhou ZH, Wu XL and Ouyang HG. 2012. LA-ICP-MS zircon U-Pb dating and Hf isotope study of the plagioclase granite porphyry in the Lianhuashan Cu-Ag deposit of Inner Mongolia and its geological significance. Geology in China, 39(6): 1472-1485 (in Chinese with English abstract)
Zhou ZH, Li BY, Wang AS, Wu XL, Ouyang HG and Feng JR. 2013. Zircon SHRIMP U-Pb dating and geochemical characteristics of Late Variscan granites of the Daitongshan copper deposit and Lamahanshan polymetallic-silver deposit, southern Daxing’anling, China. Journal of Earth Science, 24(5): 772-795
Zhu DC, Zhao ZD, Niu YL, Dilek Y and Mo XX. 2011. Lhasa terrane in southern Tibet came from Australia. Geology, 39(8): 727-730
附中文參考文獻(xiàn)
白令安, 孫景貴, 張勇, 韓世炯, 楊鳳超, 門(mén)蘭靜, 古阿雷, 趙克強(qiáng). 2012. 大興安嶺地區(qū)內(nèi)生銅礦床的成因類(lèi)型、成礦時(shí)代與成礦動(dòng)力學(xué)背景. 巖石學(xué)報(bào), 28(2): 468-482
程若坤. 2009. 內(nèi)蒙古西烏珠穆沁旗道倫達(dá)壩銅多金屬礦床地質(zhì)特征與成礦預(yù)測(cè)研究. 碩士學(xué)位論文. 長(zhǎng)沙: 中南大學(xué), 1-67
陳衍景, 翟明國(guó), 蔣少涌. 2009. 華北大陸邊緣造山過(guò)程與成礦研究的重要進(jìn)展和問(wèn)題. 巖石學(xué)報(bào), 25(11): 2695-2726
程瑞玉, 吳福元, 葛文春, 孫德有, 柳小明, 楊進(jìn)輝. 2006. 黑龍江省東部饒河雜巖的就位時(shí)代與東北東部中生代構(gòu)造演化. 巖石學(xué)報(bào), 22(2): 353-376
范蔚茗, 郭鋒, 高曉峰, 李超文. 2008. 東北地區(qū)中生代火成巖Sr-Nd同位素區(qū)劃及其大地構(gòu)造意義. 地球化學(xué), 37(4): 361-372
葛文春, 吳福元, 周長(zhǎng)勇, 張吉衡. 2007. 興蒙造山帶東段斑巖型Cu-Mo礦床成礦時(shí)代及其地球動(dòng)力學(xué)意義. 科學(xué)通報(bào), 52(20): 2407-2417
侯可軍, 李延河, 鄒天人, 曲曉明, 石玉若, 謝桂青. 2007. LA-MC-ICP-MS 鋯石Hf同位素的分析方法及地質(zhì)應(yīng)用. 巖石學(xué)報(bào), 23(10): 2595-2604
侯可軍, 李延河, 田有榮. 2009. LA-MC-ICP-MS鋯石微區(qū)原位U-Pb定年技術(shù). 礦床地質(zhì), 28(4): 481-492
李春昱, 王荃, 劉雪亞. 1982. 亞洲大地構(gòu)造圖(1/800萬(wàn))說(shuō)明書(shū). 北京: 中國(guó)地圖出版社, 1-49
李雙林, 歐陽(yáng)自遠(yuǎn). 1998. 興蒙造山帶及鄰區(qū)的構(gòu)造格局與構(gòu)造演化. 海洋地質(zhì)與第四紀(jì)地質(zhì), 18(3): 45-54
李振祥, 周福華, 崔棟, 李月新. 2009. 內(nèi)蒙古道倫達(dá)壩銅多金屬礦礦床地質(zhì)特征及成因初探. 地質(zhì)與資源, 18(1): 27-30
劉翼飛, 聶鳳軍, 江思宏, 侯萬(wàn)榮, 梁清玲, 張可, 劉勇. 2012. 內(nèi)蒙古蘇尼特左旗準(zhǔn)蘇吉花鉬礦床成巖成礦年代學(xué)及其地質(zhì)意義. 礦床地質(zhì), 31(1): 119-128
劉永江, 張興洲, 金巍, 遲效國(guó), 王成文, 馬志紅, 韓國(guó)卿, 溫泉波, 趙英利, 王文弟, 趙喜峰. 2010. 東北地區(qū)晚古生代區(qū)域構(gòu)造演化. 中國(guó)地質(zhì), 37(4): 943-951
毛景文, 張作衡, 余金杰, 王義天, 牛寶貴. 2003. 華北及鄰區(qū)中生代大規(guī)模成礦的地球動(dòng)力學(xué)背景: 從金屬礦床年齡精測(cè)得到啟示. 中國(guó)科學(xué)(D輯), 33(4): 289-299
毛景文, 謝桂青, 張作衡, 李曉峰, 王義天, 張長(zhǎng)青, 李永峰. 2005. 中國(guó)北方中生代大規(guī)模成礦作用的期次及其地球動(dòng)力學(xué)背景. 巖石學(xué)報(bào), 21(1): 169-188
毛景文, 謝桂青, 郭春麗, 袁順達(dá), 程彥博, 陳毓川. 2008. 華南地區(qū)中生代主要金屬礦床時(shí)空分布規(guī)律和成礦環(huán)境. 高校地質(zhì)學(xué)報(bào), 14(4): 510-526
毛景文, 周振華, 武廣, 江思宏, 劉成林, 李厚民, 歐陽(yáng)荷根, 劉軍. 2013. 內(nèi)蒙古及鄰區(qū)礦床成礦規(guī)律與成礦系列. 礦床地質(zhì), 32(4): 715-729
潘小菲, 王碩, 侯增謙, 童英, 薛懷民, 周喜文, 謝玉玲. 2009. 內(nèi)蒙古道倫達(dá)壩銅多金屬礦床特征研究. 大地構(gòu)造與成礦學(xué), 33(3): 402-410
卿敏, 唐明國(guó), 葛良勝, 韓先菊, 馮建兵, 袁士松, 趙玉鎖. 2012. 內(nèi)蒙古蘇右旗畢力赫金礦區(qū)安山巖LA-ICP-MS鋯石U-Pb年齡、元素地球化學(xué)特征及其形成的構(gòu)造環(huán)境. 巖石學(xué)報(bào), 28(2): 514-524
任紀(jì)舜, 牛寶貴, 劉志剛. 1999. 軟碰撞、疊覆造山和多旋回縫合作用. 地學(xué)前緣, 6(3): 85-93
邵濟(jì)安, 張履橋, 牟保磊. 1998. 大興安嶺中南段中生代的構(gòu)造熱演化. 中國(guó)科學(xué)(D輯), 28(3): 193-200
佘宏全, 李進(jìn)文, 向安平, 關(guān)繼東, 楊鄖城, 張德全, 譚剛, 張斌. 2012. 大興安嶺中北段原巖鋯石U-Pb測(cè)年及其與區(qū)域構(gòu)造演化關(guān)系. 巖石學(xué)報(bào), 28(2): 571-594
隋振民, 葛文春, 吳福元, 徐學(xué)純, 張吉衡. 2009. 大興安嶺北部察哈彥巖體的Hf同位素特征及其地質(zhì)意義. 吉林大學(xué)學(xué)報(bào)(地球科學(xué)版), 39(5): 849-867
王萬(wàn)軍, 孫振家, 胡祥昭. 2005. 內(nèi)蒙古前進(jìn)場(chǎng)花崗巖體的地質(zhì)特征及其構(gòu)造環(huán)境. 地質(zhì)與勘探, 41(2): 35-40
王穎, 張福勤, 張大偉, 苗來(lái)成, 李鐵勝, 頡頏強(qiáng), 孟慶任, 劉敦一. 2006. 松遼盆地南部變閃長(zhǎng)巖SHRIMP鋯石U-Pb年齡及其地質(zhì)意義. 科學(xué)通報(bào), 51(15): 1811-1816
吳福元, 李獻(xiàn)華, 鄭永飛, 高山. 2007. Lu-Hf 同位素體系及其巖石學(xué)應(yīng)用. 巖石學(xué)報(bào), 23(2): 185-220
武廣, 孫豐月, 趙財(cái)勝, 李之彤, 趙愛(ài)琳, 龐慶幫, 李廣遠(yuǎn). 2005. 額爾古納地塊北緣早古生代后碰撞花崗巖的發(fā)現(xiàn)及其地質(zhì)意義. 科學(xué)通報(bào), 50(20): 2278-2288
謝桂青, 趙海杰, 趙財(cái)勝, 李向前, 侯可軍, 潘懷軍. 2009. 鄂東南銅綠山礦田矽卡巖型銅鐵金礦床的輝鉬礦Re-Os同位素年齡及其地質(zhì)意義. 礦床地質(zhì), 28(3): 227-239
徐佳佳, 賴(lài)勇, 崔棟, 常勇, 蔣林, 舒啟海, 李文博. 2009. 內(nèi)蒙古道倫達(dá)壩銅多金屬礦床成礦流體特征及其演化. 巖石學(xué)報(bào), 25(11): 2957-2972
張萬(wàn)益, 聶鳳軍, 劉妍, 江思宏, 許東青, 郭靈俊. 2008. 內(nèi)蒙古奧尤特銅-鋅礦床絹云母40Ar-39Ar同位素年齡及地質(zhì)意義. 地球?qū)W報(bào), 29(5): 592-598
周振華, 呂林素, 楊永軍, 李濤. 2010a. 內(nèi)蒙古黃崗錫鐵礦區(qū)早白堊世A型花崗巖成因: 鋯石U-Pb年代學(xué)和巖石地球化學(xué)制約. 巖石學(xué)報(bào), 26(12): 3521-3537
周振華, 呂林素, 馮佳睿, 李超, 李濤. 2010b. 內(nèi)蒙古黃崗夕卡巖型錫鐵礦床輝鉬礦Re-Os年齡及其地質(zhì)意義. 巖石學(xué)報(bào), 26(3): 667-679
周振華, 武新麗, 歐陽(yáng)荷根. 2012. 內(nèi)蒙古蓮花山銅銀礦斜長(zhǎng)花崗斑巖LA-MC-ICP-MS鋯石U-Pb測(cè)年、Hf同位素研究及其地質(zhì)意義. 中國(guó)地質(zhì), 39(6): 1472-1485