劉鋒 曹峰 張志欣 李強LIU Feng, CAO Feng, ZHANG ZhiXin and LI Qiang
1. 國土資源部成礦作用與資源評價重點實驗室,中國地質科學院礦產(chǎn)資源研究所,北京 1000372. 新疆地礦局地球物理化學探礦大隊,昌吉 8311003. 中國科學院新疆生態(tài)與地理研究所,新疆礦產(chǎn)資源研究中心,烏魯木齊 830011 1. MRL Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China2. Geophysical and Geochemical Party, Xinjiang Bureau of Geology and Mineral Resource Exploration and Development, Changji 831100, China3. Xinjiang Research Center for Mineral Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China2013-08-25 收稿, 2013-12-08 改回.
阿爾泰造山帶是中亞造山帶(CAOB)的一部分。在中國新疆境內阿爾泰,大面積出露侵入巖尤其是花崗巖類是其顯著特征之一。這些花崗巖類巖石類型眾多,具有多時代、多類型、多成因、形成于多種構造環(huán)境的特征(王廣耀和許培春,1983;芮行健和吳玉金,1984;鄒天人等, 1988;劉偉,1990;岳永君等,1990;趙振華等,1993;王中剛等,1998;袁峰等,2001;王登紅等,2002;Wangetal., 2006; Zhuetal., 2006;張招崇等,2006;Yuanetal., 2007;周剛等,2007;楊富全等,2008;劉鋒等,2009,2010,2012a;柴鳳梅等,2010;張超等,2013)。從目前較可靠的同位素資料來看,新疆阿爾泰花崗巖類形成的主要時期在中奧陶世-早中泥盆世,為同造山花崗巖。最老的花崗巖侵入于460Ma左右(Wangetal., 2006; 劉鋒等,2008;柴鳳梅等,2010)。巖石成因類型為“I”型和“S”型,并伴隨有基性巖漿侵入活動(Wangetal., 2006;陳漢林等,2006;童英等,2007),反映了阿爾泰同造山作用早期陸弧環(huán)境下的巖漿活動特征(Wangetal., 2006)。二疊紀花崗巖一般巖體規(guī)模較小,多為小巖株、巖脈,巖石成因類型有“I”型、“S”型及“I-A”型(王濤等,2005;童英等,2006;周剛等,2007)。三疊紀以來的巖漿侵入活動相對報道較少。
可可托海礦區(qū)內侵入巖非常發(fā)育,尤其是花崗巖類,出露面積超過50%。前人針對區(qū)內巖漿活動的研究主要集中在偉晶巖脈及其稀有金屬礦化,如對3號偉晶巖脈形成時限的研究已有大量結果發(fā)表,同時也產(chǎn)生不同認識。鄒天人等(1986)利用K-Ar、Rb-S法獲得16件3號偉晶巖脈不同礦物組合結構帶的時代由120~332Ma變化,認為3號偉晶巖脈的結晶始于早石炭世,一直持續(xù)到了燕山期。陳富文等(1999)、王登紅等(2002)根據(jù)3個結構帶的40Ar-39Ar年齡(178Ma、169Ma、148Ma)認為3號偉晶巖脈形成于燕山期。朱永峰和曾貽善(2002)獲得Ⅰ帶全巖和白云母238Ma的Rb-Sr等時線年齡。Zhuetal.(2006)獲得3號脈邊緣帶中全巖、白云母和磷灰石樣品218Ma的Rb-Sr等時線年齡,認為3號脈于218Ma開始結晶,一直持續(xù)到148Ma左右。Wangetal. (2007) 則利用SHRIMP鋯石U-Pb法獲得Ⅰ帶、Ⅴ帶、Ⅶ帶(220±9Ma、198±7Ma、213±6Ma)的年齡。由于早期測年方法的局限性、本區(qū)巖石變形變質特點以及偉晶巖中鋯石蝕變特征,造成了利用上述方法獲得的有關年齡結果變化太大、無規(guī)律、精度也較差,因此很難準確界定3號偉晶巖脈的形成時限(劉鋒等,2012b)。最近獲得的3號脈邊緣帶中輝鉬礦精確的Re-Os年齡基本解決了3號偉晶巖的形成下限問題(劉鋒等,2012b)。
相對而言,區(qū)內其它多數(shù)侵入巖的成巖時代、巖漿形成構造環(huán)境和演化等方面的研究較為欠缺,僅少量輝長巖體、花崗巖(鄒天人等, 1988; Liuetal., 1997; Wangetal., 2006; Zhuetal., 2006)等的相關研究見諸報端,如SHRIMP U-Pb年齡為409Ma 的3號脈圍巖變質輝長巖體(Wangetal., 2006);還如阿拉爾黑云母花崗巖等的年齡多為K-Ar、Rb-Sr等方法獲得(劉偉,1993;Liuetal., 1997; Zhuetal., 2006),精度相對較差。我們對區(qū)內出露的主要花崗巖體開展工作,目的是確定區(qū)內巖漿演化時限、構造環(huán)境以及尋找3號偉晶巖脈的花崗質母巖體。野外調查過程中,在3號偉晶巖脈礦坑東側附近發(fā)現(xiàn)有中粗粒似斑狀花崗巖小露頭,與東部泥盆紀大花崗巖基并不相連,巖性和巖相特征卻與礦區(qū)東北部的阿拉爾黑云母花崗巖非常相似。它是否和阿拉爾花崗巖為同期巖體?是否為3號偉晶巖脈的花崗質母巖?本期巖漿侵入和阿爾泰造山帶區(qū)域巖漿活動關系如何?諸如此類問題需要我們利用精確的定年方法、巖石地球化學分析和同位素示蹤以及區(qū)域對比進行研究、解決,探討巖漿物源、構造環(huán)境以及形成過程,為區(qū)內偉晶巖的花崗母巖的尋找、巖漿活動演化特征乃至阿爾泰造山帶演化規(guī)律的總結提供約束資料。
圖1 阿爾泰造山帶區(qū)域構造圖(a)、阿爾泰造山帶構造劃分(b,據(jù)何國琦等,2004)和可可托海區(qū)域地質簡圖(c,據(jù)鄒天人和李慶昌,2006)Fig.1 Geographic position of Altay orogen in China (a), tectonic subdivisions of the Altay orogen (b, after He et al., 2004) and simplified geological map of Keketuohai area (c, after Zou and Li, 2006)
中亞造山帶(CAOB)是一個經(jīng)過長期連續(xù)的俯沖-增生過程而形成的造山帶(Rotarashetal., 1982; Coleman 1989; Mossakovskyetal., 1993;Zhuetal., 2006;Wangetal., 2006; Windleyetal., 2007; Maoetal., 2008, 2013; Xiaoetal., 2010)。阿爾泰造山帶是其重要組成部分(Seng?retal., 1993; Yakubchuketal., 2003)(圖1a),經(jīng)歷了新元古代晚期到早古生代早期的穩(wěn)定大陸邊緣階段(何國琦等, 1990),以及古生代時期的地殼雙向增生:早古生代為洋殼俯沖階段,奧陶世(460Ma)開始轉變?yōu)榛顒雨懢?Wangetal., 2006; 袁超等, 2007),逐漸發(fā)育成典型的溝-弧-盆體系,晚泥盆世以后發(fā)生弧-陸碰撞作用,在早石炭世基本形成阿爾泰造山帶的構造格架(何國琦等, 1994; Windleyetal., 2002; Lietal., 2003; Xiaoetal., 2004; 王濤等, 2005)。
圖2 黑云母二長花崗巖野外特征(a)和鏡下特征(b)Q-石英;Pl-斜長石;Mc-微斜長石;Bt-黑云母;Ms-白云母Fig.2 Field photograph (a) and photomicrograph in polarized light (b) of the biotite monzongranite
阿爾泰造山帶位于西伯利亞板塊和哈薩克斯坦-準噶爾板塊之間(圖1b)。其南以額爾齊斯大斷裂為界與哈薩克-準噶爾板塊相接,以北為西伯利亞板塊。由北向南,中國境內阿爾泰造山帶劃分為北阿爾泰晚古生代陸緣活動帶的諾爾特泥盆紀-石炭紀上疊火山-沉積盆地、喀納斯-可可托海古生代巖漿弧,南阿爾泰晚古生代活動陸緣的克蘭泥盆紀-石炭紀弧后盆地、卡爾巴-納雷姆石炭紀-二疊紀巖漿弧、西卡爾巴石炭紀弧前盆地以及額爾齊斯-布爾根碰撞混雜帶(何國琦等,2004)。
北阿爾泰北部的諾爾特一帶主要由中晚泥盆世-早石炭世火山-沉積巖組成,以“S”型為主的花崗巖侵入時代主要為志留紀、泥盆紀(袁峰等,2001)。中部喀納斯-可可托海一帶出露地層主要為早古生代深變質巖系;花崗巖類廣泛分布,時代以早泥盆世為主,主要為片麻狀黑云母二長花崗巖、片麻狀黑云母花崗巖、黑云母花崗巖、二云母花崗巖等(鄒天人和李慶昌,2006)。南阿爾泰主要由泥盆紀火山-沉積巖系組成。花崗巖類以早泥盆世為主;其次是晚石炭世、二疊紀;少數(shù)巖體形成于奧陶紀(如切木切克巖體,462Ma,Wangetal., 2006;阿巴宮巖體,462.5Ma,劉鋒等,2008)。
可可托海礦區(qū)處于西伯利亞板塊阿爾泰陸緣活動帶北阿爾泰中部的喀納斯-可可托海古生代巖漿弧內。區(qū)內地層變質較深,主要為震旦紀-早古生代的片麻巖、片巖等。花崗巖、偉晶巖脈分布廣泛,還分布有少量早泥盆世的變質基性巖體。偉晶巖脈主要產(chǎn)在變質輝長巖、震旦系-下古生界的片麻巖及片巖和泥盆紀花崗巖中 (圖1c)。
本次研究的花崗巖靠近可可托海3號偉晶巖脈礦坑,位于偏東側約100m左右。野外露頭及標本上可見少量斜長石斑晶粒度達幾厘米,似斑狀結構,斑晶為長石,含量5%左右;巖石具弱片麻狀構造,巖相特征與礦區(qū)北部的阿拉爾似斑狀黑云母花崗巖相似。(圖2a)。巖性為變質中粒斑狀黑云母二長花崗巖,變余似斑狀結構。基質礦物粒度一般2~5mm,主要由斜長石(35%)、微斜長石(25%)、石英(30%)和黑云母(10%)組成,少量白云母(1%)(圖2b)。斜長石呈半自形板狀,雜亂分布,發(fā)育聚片雙晶,局部高嶺土化、白云母化,與微斜長石接觸部位見凈邊、蠕蟲等交代結構。微斜長石呈他形粒狀,部分近半自形板狀,雜亂分布,輕微高嶺土化,格子雙晶發(fā)育,交代斜長石,內含斜長石包體。石英呈它形粒狀,填隙狀分布,粒內波狀消光。黑云母呈片狀,斷續(xù)條紋狀定向分布,構成似片麻狀構造,少量被白云母、綠泥石、綠簾石交代。
花崗巖測年以及地球化學樣品采自3號脈礦坑東側的巖體邊部一帶(圖1c),地理坐標為N47°12′35″、E89°49′18″。巖性為似斑狀黑云母二長花崗巖。采集測年樣品1件,選擇5件無風化蝕變的新鮮樣品用于巖石地球化學和Rb、Sr、Sm、Nd同位素的測試研究。
從測年樣品中挑選出的鋯石顆粒在透反射光下大多為淺黃褐色,透明度較好。多數(shù)晶形完好,部分顆粒破碎;大小在150~200μm,長寬比一般從2:1到3:1;自形程度好,呈板狀和柱狀。多數(shù)鋯石表面光滑,少數(shù)表面粗糙、有裂紋。陰極發(fā)光圖像顯示(圖3),部分鋯石晶體具后期作用形成的變質增生和蛻晶化現(xiàn)象。樣品中的鋯石晶體內部均發(fā)育較好的振蕩環(huán)帶結構,是典型的巖漿成因鋯石。
圖3 鋯石陰極發(fā)光圖像及測年分析點Fig.3 CL images of zircon from granite and analytical spots
鋯石U-Pb測年由中國地質科學院礦產(chǎn)資源研究所LA-MC-ICP-MS實驗室完成。5件花崗巖樣品的主量、微量和稀土元素分析由國家地質實驗測試中心完成,Rb-Sr、Sm-Nd同位素分析由中國地質科學院地質研究所同位素實驗室完成。
鋯石U-Pb測年所用儀器為Finnigan Neptune型MC-ICP-MS及與之配套的Newwave UP 213激光剝蝕系統(tǒng)。鋯石定年激光剝蝕所用斑束直徑為25μm,頻率為10Hz,能量密度約為2.5J/cm2,以He為載氣。均勻鋯石顆粒207Pb/206Pb、206Pb/238Pb、207Pb/235U的測試精度(2σ)均為2%左右,對鋯石標準的定年精度和準確度在1%(2σ)左右。LA-MC-ICP-MS激光剝蝕采樣采用單點剝蝕的方式。鋯石U-Pb定年以鋯石GJ-1為外標,U、Th含量以鋯石M127(U=923×10-6、Th=439×10-6、Th/U=0.475)(Nasdalaetal., 2008)為外標進行校正。樣品的同位素比值和元素含量計算采用ICP-MS DataCal程序處理(Nasdalaetal., 2008),對204Pb含量異常高的分析點在計算時剔除,鋯石年齡諧和圖用Isoplot 3.0程序(Ludwig, 2003)獲得,表達式中單個數(shù)據(jù)點的誤差均為1σ,加權平均年齡具95%置信度,年齡值選用206Pb/238U年齡。詳細測試過程可參見侯可軍等(2009)。
主量元素測試采用X射線熒光法 (XRF) (國家標準GB/T 14506.28—1993監(jiān)控)在X熒光光譜儀(2100)上完成。其中FeO采用容量滴定法(國家標準GB/T 14506.14—1993監(jiān)控),CO2用電導法(國家標準GB 9835—1988監(jiān)控),H2O+和燒失量(LOI)用重量法(國家標準GB/T 14506.2—1993和LY/T 1253—1999標準監(jiān)控)分析。微量和稀土元素測試在等離子光譜儀(IRIS)(JY/T 015—1996標準監(jiān)控)和等離子質譜儀(X-series)上完成(DZ/T 0223—2001標準監(jiān)控)。Rb-Sr、Sm-Nd 分析采用同位素稀釋法。其中,Rb-Sr、Sm-Nd含量和Sr同位素分析利用MAT262固體同位素質譜計完成,同位素質量分餾采用88Sr/86Sr=8.37521校正;Nd同位素分析所用儀器為Nu Plasam HR MC-ICP-MS、DSN-100膜去溶,同位素質量分餾采用146Nd/144Nd=0.7219校正。
通過鋯石的透射光、反射光和陰極發(fā)光圖像研究,選擇表面光滑、無裂紋、無包體、環(huán)帶發(fā)育的鋯石顆粒用于測試。對20顆鋯石進行了20次分析(圖4),年齡分析結果列于表1。本次鋯石測年實驗過程中測得Plesovice標樣的結果為339.63±0.71Ma(n=8,2σ),其年齡推薦值為337.13±0.37Ma(2σ)(Slamaetal., 2008)。誤差小于1%,說明本次測年分析是準確、可信的。鋯石樣品中U含量變化在11.2×10-6~279.7×10-6,總體含量偏低,大多數(shù)低于100×10-6或在其附近;Th含量變化在16.3×10-6~464.8×10-6,與U含量相關性較好,集中在100×10-6~200×10-6。Th/U比值變化在0.17~1.02,均大于0.1,表明鋯石為巖漿成因(Claessonetal., 2000;Belousovaetal., 2002)。1個點(3號點)年齡數(shù)據(jù)諧和度偏低,低于95%,因此不參加年齡計算。其余19個測點集中成群分布于諧和線上及附近,206Pb/238U年齡集中于399.6~409.0Ma, 加權平均年齡為405.4±1.4Ma(MSDW=0.98)(圖4),可以代表該花崗巖的形成時代。
圖4 花崗巖體鋯石U-Pb年齡圖解Fig.4 Zircon U-Pb age of granite
從主、微量元素分析結果看(表2),本次研究的花崗巖體具有富硅(SiO2=70.69%~73.81%)、富鋁(Al2O3=14.00%~15.74%)、全堿含量中等(K2O+Na2O=5.98%~8.00%)特征,鉀相對鈉總體略偏富集(K2O/Na2O=0.78~1.61);巖石中鈣含量(CaO=2.05%~2.43%)中等,低鐵(Fe2O3+FeO=1.68%~2.16%)、低鎂(MgO=0.35%~0.52%)、低鈦(TiO2=0.18%~0.23%)以及低磷(P2O5≤0.07%)。在硅堿圖解上(圖5a),SiO2和K2O顯示較好的負相關性,總體表現(xiàn)為鈣堿性向高鉀鈣堿性過渡的特征。鋁飽和指數(shù)較高(A/CNK=1.09~1.12),屬于強過鋁質花崗巖(A/CNK≥1.1),在A/CNK-A/NK圖解(圖5b)中位于過鋁質區(qū)域。
巖石中高場強元素(HFSE)總體含量較高,Th變化于11.9×10-6~17.1×10-6,U在0.98×10-6~1.64×10-6之間,Zr在85×10-6~128×10-6之間,Hf在2.63×10-6~4.06×10-6之間變化;Y(34.7×10-6~48.9×10-6)含量也較高。Nb(7.05×10-6~9.24×10-6)、Ta(0.53×10-6~2.65×10-6)含量相對偏低,Nb/Ta比值變化較大(3.49~13.30,僅一個比值為3.49,其余在10~13之間)。大離子親石元素(LILE)Rb(139×10-6~197×10-6)、Sr(112×10-6~153×10-6)等與地殼豐度相當。原始地幔標準化蛛網(wǎng)圖(圖6a)顯示,各樣品微量元素分布模式一致,呈現(xiàn)Th、K、Pb、Nd、Zr、Hf的相對正異常,Ti、P、Sr、Nb、Ta和Ba相對負異常,尤其Ti和P較低,接近原始地幔值。
巖石稀土總量較高,變化不大,ΣREE介于122×10-6~180×10-6,輕稀土相對富集(LREE/HREE=5.31~6.18,(La/Yb)N=4.0~5.48),而且分餾較明顯((La/Sm)N=2.55~2.87), 重稀土僅具輕微分餾((Gd/Yb)N=1.06~1.33)。
表2花崗巖主量(wt%)、微量稀土(×10-6)元素組成
Table 2 Major (wt%) and trace (×10-6) elements data for granite
樣品號KKTH10-117KKTH10-118KKTH10-119KKTH10-120KKTH10-121樣品號KKTH10-117KKTH10-118KKTH10-119KKTH10-120KKTH10-121SiO273.4572.9670.6972.3073.81Al2O314.2214.2415.7414.9614.00CaO2.052.332.132.212.43Fe2O30.861.350.911.031.23FeO0.880.810.770.830.92K2O3.263.134.943.912.62Na2O3.293.113.063.063.36MgO0.370.520.350.420.49MnO0.060.050.040.050.05P2O50.040.050.050.070.06TiO20.180.230.180.190.21CO20.160.100.140.190.10H2O+0.480.620.340.440.36LOI0.630.640.530.800.60Total99.93100.1499.87100.46100.24A/NK1.591.671.511.611.67A/CNK1.121.121.101.121.09Na2O+K2O6.556.248.006.975.98Mg#0.280.310.280.300.30Rb147139181197149Ba4435201078536372Th12.614.911.91417.1U1.371.330.981.641.41Ta0.880.690.532.650.79Nb8.978.067.059.248.09Sr112143153140141Zr96.710385110128Hf3.183.432.633.614.06Li728280.867.683.1B13.476.735.724.3Be2.362.067.882.833.72Sc9.910.27.9210.510.5V20.8262227.227.2Cr10.5010.4010.2012.1013.60Co3.283.823.193.813.93Ni5.736.095.996.827.73Pb23.6022.8029.4027.1022.80Cs25.5014.6029.7012.8036.40Ga16.8017.0017.3019.1017.90Tl0.930.841.091.271.03Mo0.140.09<0.050.160.15La25.4031.6022.4024.5031.90Ce71.4068.9046.2063.0074.50Pr6.958.225.916.898.40Nd26.3032.1023.1027.1032.20Sm6.427.295.246.137.18Eu1.061.150.901.061.12Gd5.836.524.725.485.81Tb1.121.200.850.981.05Dy7.087.255.146.296.76Ho1.441.521.041.321.46Er4.584.583.134.194.57Tm0.660.640.420.550.61Yb4.564.172.933.854.26Lu0.650.60.430.540.62Y46.748.934.742.648ΣREE163.5175.7122.4151.9180.4LREE137.5149.3103.8128.7155.3HREE25.9226.4818.6623.225.14LREE/HREE5.315.645.565.556.18(La/Yb)N4.005.445.484.565.37δEu0.520.500.540.550.51
在球粒隕石標準化配分圖解中(圖6b),所有樣品的曲線均表現(xiàn)出輕稀土弱富集、分餾較明顯,重稀土平緩、分餾不明顯的右傾型REE配分模式,且由于較明顯的負銪異常(δEu=0.50~0.55)而呈現(xiàn)“V”型谷狀。
樣品Sr、Nd同位素組成列于表3。同位素計算采用的花崗巖年齡為本次測定的LA-MC-ICP-MS鋯石U-Pb年齡405.4Ma。樣品中87Rb/86Sr=3.323~4.867,87Sr/86Sr=0.72259~0.72810,變化不大;Sr初始值較低,4件樣品變化于0.70155~0.70341,有1件樣品低于石質隕石的初始值(0.69897),為不合理的低值,暗示其Rb-Sr同位素體系可能受到某些擾動,因此予以剔除。Rb/Sr=1.15~1.68;147Sm/144Nd=0.1343~0.1455,143Nd/144Nd=0.51235~0.51237,變化均不大。fSm/Nd介于-0.32~-0.26,落在-0.6~-0.2之間,在地殼Sm/Nd范圍內;Sm/Nd比值變化于0.222~0.240,顯示分異小、較均一的Sm/Nd同位素體系。兩階段模式年齡t2DM集中在1.35Ga左右,屬于中元古代;εNd(t)均為負值,變化于-3.07~-2.16。
本文研究的花崗巖出露地的野外巖相特征與礦區(qū)北部的三疊紀阿拉爾花崗巖體(LA-MC-ICP-MS鋯石U-Pb年齡為211Ma,Liuetal., 2014)邊部特征頗為相似,因此筆者曾一度認為它可能不屬于位于3號脈東部的泥盆紀英云閃長巖-花崗閃長巖-黑云母二長花崗巖復式巖體(圖1c),可能是和阿拉爾黑云母花崗巖同期的小巖株。但本次精確的鋯石U-Pb測年結果表明,花崗巖形成時代為405.4±1.4Ma(MSDW=0.98),屬于早泥盆世巖體。顯然,它比阿拉爾花崗巖的侵入時期早得多,與3號偉晶巖脈也沒有成因上的聯(lián)系(3號偉晶巖脈形成起始于210Ma左右;劉鋒等,2012b),應屬于東部復式花崗巖基的一部分,只是巖相有差異。
表3近3號脈花崗巖Sr-Nd同位素組成
Table 3 Representative Sr-Nd isotopic compositions of granite
樣品號KKTH10-117KKTH10-118KKTH10-119KKTH10-120KKTH10-121Rb(×10-6)140.8121.9174.6183.8139.5Sr(×10-6)91.85106.3129.3109.5110.287Rb/86Sr4.4453.3233.9134.8673.66687Sr/86Sr0.72810.7225920.724330.7258070.722715±2σ0.0000140.0000150.0000140.0000130.000014(87Sr/86Sr)i0.702440.703410.701740.697710.70155Sm(×10-6)5.2365.7784.7594.9825.835Nd(×10-6)21.77425.46721.2421.77726.289147Sm/144Nd0.14550.13730.13550.13840.1343143Nd/144Nd0.512350.512360.512370.512350.51235±2σ0.0000050.0000080.0000060.0000080.000005εNd(t)-3.07-2.41-2.16-2.56-2.43t2DM(Ga)1.401.351.331.361.35fSm/Nd-0.26-0.30-0.31-0.30-0.32
圖6 花崗巖微量元素原始地幔標準化蛛網(wǎng)圖(a)和稀土元素球粒隕石標準化圖解(b)(標準化值據(jù)Sun and McDonough, 1989)Fig.6 Primitive mantle-normalized trace element spider diagrams (a) and chondrite-normalized REE patterns (b) of granite (normalization values after Sun and McDonough, 1989)
以往大量的年代學研究表明,阿爾泰造山帶古生代巖漿侵入活動存在四個峰值:460Ma、408Ma、375Ma和265Ma(Wangetal., 2006;曾喬松等,2007),花崗巖類分布廣泛,多數(shù)形成于400Ma左右。尤其是北阿爾泰中部的喀納斯-可可托海古生代巖漿弧內以早泥盆世侵入活動為主要特征,如鐵列克巖體(403Ma)(童英等,2005)、喀納斯巖體(398Ma)、瓊庫爾巖體(399Ma)(童英等,2007)、可可托海變質輝長巖(409Ma)(Wangetal., 2006)等。本文研究的花崗巖體侵入時代以及空間產(chǎn)出與上述一致,說明該巖體同樣形成于區(qū)內巖漿活動最為強烈時期。這為阿爾泰造山帶晚古生代早期強烈的巖漿活動規(guī)律提供了又一年代學證據(jù)。
花崗巖主要有幾種地質作用形成:地幔源巖漿的結晶分異,深變質的混合巖化作用以及地殼巖石的深熔作用等(路鳳香和桑隆康,2002)。一般認為,與碰撞有關的強過鋁質(SP)花崗巖的源區(qū)主要是變質沉積巖(如泥質巖、砂屑巖或雜砂巖),巖石圈加厚及幔源巖漿底侵是導致下地殼熔融及長英質花崗巖產(chǎn)生的重要原因(Sylvester, 1998; 李鵬春等,2005;Yangetal., 2007;楊富全等,2007)。本次研究的黑云母二長花崗巖的礦物成分及組合、富硅、略富鉀(總體上K2O>Na2O),貧Fe、Mg、Ti、P以及強過鋁質特征表明該花崗巖屬于髙鉀鈣堿性強過鋁質(SP)花崗巖(Chappel and White, 1992),和Lachlan及歐洲海西帶中變質沉積巖熔融成因的SP花崗巖類相類似(Chappel and White, 1992;Sylvester,1998)。
圖7 巖體CaO/(MgO+FeOT)-Al2O3/(MgO+FeOT)關系圖(據(jù)Altherr et al., 2000)Fig.7 CaO/(MgO+FeOT) vs. Al2O3/(MgO+FeOT) diagram of the pluton (after Altherr et al., 2000)
研究表明,強過鋁質花崗巖主要由富鋁質的地殼巖石經(jīng)過部分熔融作用形成(Green, 1995),它的Al2O3/TiO2比值大于100時指示部分熔融溫度小于875℃,屬于高壓型,小于100時指示熔融溫度大于875℃,屬于高溫型(Sylvester, 1998)。本次研究的花崗巖Al2O3/TiO2(62~87)比值均小于100,應屬于高溫型強過鋁質花崗巖。另有研究表明,對于SiO2含量在67%~77%的強過鋁質花崗巖,CaO/Na2O比值可以很好地指示源區(qū)物質成分,當比值>0.3時指示源區(qū)為砂巖、正變質巖,當比值<0.3時指示源區(qū)為泥巖(Sylvester, 1998)。由此推測本區(qū)黑云母二長花崗巖(CaO/Na2O比值均大于0.3)源區(qū)物質可能主要為砂巖或正變質巖。CaO/(MgO+FeOT)-Al2O3/(MgO+FeOT)圖解也顯示該花崗巖為變質雜砂巖源區(qū)的部分熔融產(chǎn)物(圖7)。偏低的FeO+Fe2O3+MgO+TiO2含量(均小于3%)及低Mg#(0.28~0.31)表明巖漿可能經(jīng)歷了較高程度的分異演化。
源區(qū)物質成分不同,部分熔融產(chǎn)生的強過鋁質花崗質熔體成分特征也不同(Altherr and Siebel, 2002)。如果由云母類脫水熔融形成,其熔體會富含Rb、Cs,且K2O/Na2O比值較高;如果由角閃石脫水熔融形成,就富含Na、Ca,且K2O/Na2O比值較低(趙永久等,2007)。本區(qū)的黑云母二長花崗巖Rb、Cs含量較高,具有髙鉀低鈉特征,暗示該花崗巖可能與富含云母的源區(qū)脫水熔融有關。同時,巖體中Ba相對于Th、Rb虧損明顯,Nd兩階段模式年齡在1.33~1.40Ga,體現(xiàn)了成熟度較高的陸殼巖石特征(馬昌前等,2004),源區(qū)可能屬于一套中元古代物質。樣品中87Sr/86Sr(0.72259~0.72810)、143Nd/144Nd(0.51235~0.512367)接近于陸源沉積物,εNd(t)的負值與中亞造山帶中花崗巖具有高正εNd(t)值的特征不同,可能反映了阿爾泰前寒武紀基底或微陸塊的物源特征(童英等,2007),而較低Sr初始值則可能指示有幔源組分加入。
本區(qū)黑云母二長花崗巖Nb/Ta比值與地殼平均值11(Taylor and McLennan, 1985)基本相當、明顯小于地幔平均值17.8(McDonough and Sun, 1995);Zr/Hf比值變化小(30.0~32.3),非常接近于地殼相應值33(Taylor and McLennan, 1985),明顯不同于地幔平均值37(McDonough and Sun, 1995),說明巖石主要以地殼組分的貢獻為主。但Th/U(8.5~12.1,平均10.6)明顯高于地殼平均值2.8(Taylor and McLennan, 1985),Rb/Th比值(8.7~15.2,平均11.8)略高于球粒隕石比值(約8),Zr (85×10-6~128×10-6,多數(shù)>100×10-6)高于普通S型花崗巖(Zr<100×10-6,溫度800℃)(Watson and Harrison, 1983),與高Zr的Lachlan和歐洲海西褶皺帶的SP花崗巖(高溫>875℃)較為類似。Rb/Zr(1.2~2.1)>1,也類似于海西S型淺色花崗巖(Harris and Inger, 1992),說明可能有部分幔源組分的加入。另外,微量元素原始地幔標準化圖解中Ba、Sr、Nb、Ta、Ti的虧損也暗示花崗巖漿主要不是由軟流圈部分熔融直接產(chǎn)生(Foleyetal., 1992),而可能與地殼或地殼混染有關、或源區(qū)有富含Nb、Ta、Ti的殘留礦物、或有板塊俯沖作用引起的巖石圈富集地幔的參與(Dunganetal., 1986)。
綜上所述,本次研究的黑云母二長花崗巖具有“S”型花崗巖特征,與來源于變質沉積巖部分熔融的“S”型長英質巖石類似;可能為中元古代富含云母的變質雜砂巖在高溫條件下經(jīng)過部分熔融形成,但受到較多幔源組分等因素的影響。
相對而言,針對阿爾泰造山帶泥盆紀巖漿活動以及構造環(huán)境的研究最為廣泛、深入,但認識上也是爭議最多的,有陸緣裂谷(陳毓川等,1996;王京彬等,1998)、島弧或弧后盆地(Windleyetal., 2002; Xuetal., 2003;Xiaoetal., 2004;陳漢林等,2006;單強等,2007)、陸緣弧(Wangetal.,2006;童英等,2007;叢峰等,2007;楊富全等,2008)、陸緣伸展(Yuanetal., 2007)等的不同認識。即使如此,他們大多數(shù)的共同之處在于都認同阿爾泰晚志留世-泥盆紀處于活動大陸邊緣,巖漿活動與板塊俯沖有關。研究也已證明,阿爾泰造山帶大致從晚寒武紀開始發(fā)生俯沖、碰撞、增生,至早石炭世才基本奠定了阿爾泰造山帶的構造格架(Windleyetal., 2002; Xiaoetal., 2004; Wangetal., 2006)。本次研究的黑云母二長花崗巖與巖石圈伸展體制下強烈殼幔相互作用導致的巖漿活動不同(Xieetal., 2008; 袁順達等,2012),其時間上、空間上的特點均說明它形成于與板塊俯沖有關的活動大陸邊緣環(huán)境。
圖8 花崗巖的Nb-Y圖解(據(jù)Pearce et al., 1984)Fig.8 Nb-Y diagram of the granite pluton(after Pearce et al., 1984)
花崗巖的形成受構造環(huán)境的影響和控制,尤其稀土及微量元素特征明顯受成巖的構造環(huán)境制約。不同構造環(huán)境中形成的花崗巖/酸性火山巖的微量元素地球化學特征存在明顯的不同 (Forsteretal., 1997)。本區(qū)黑云母二長花崗巖的Yb<5×10-6,絕大多數(shù)樣品中Ta<1×10-6,Ta/Yb比值總體在0.5之下,表現(xiàn)出了與俯沖作用有關的弧巖漿作用的特點(Condie, 1986)。Sr、Ti、Ba、P、Nb、Ta等明顯的負異常和Th、U、La、Zr、Hf等的正異常則與造山帶弧巖漿作用形成的鈣堿性系列巖石特征相符(Wilson, 1989; Rollinson,1993; Sajonaetal., 1996)。巖石稀土配分型式表現(xiàn)出的LREE的相對弱富集,HREE比較平坦以及Eu的中等負異常,也與弧環(huán)境下形成的酸性巖類特征相似(王中剛等,1989)。在花崗巖微量元素Y-Nb構造判別圖解上(圖8),所有樣品均落入火山弧+同碰撞花崗巖區(qū)域。
在碰撞造山帶,雖然放射性衰變可提供部分熱量,但如果沒有外界熱能的供給,地殼熔融產(chǎn)生大型“S”型花崗巖巖基可能性不大(Kokonyangietal., 2004)。前人研究表明,“S”型花崗巖可以是同碰撞造山階段擠壓環(huán)境下地殼加厚而發(fā)生部分熔融的產(chǎn)物。在匯聚構造活動期間(碰撞或俯沖),深熔作用使地殼深部巖石尤其是富水沉積單元脫水,含水流體又潤滑其周圍巖石,從而引發(fā)大范圍的熔融作用形成巖漿,后經(jīng)巖漿的結晶分離作用產(chǎn)生S型花崗巖(肖慶輝,2002)。對于阿爾泰造山帶而言,早泥盆世時期正處于俯沖-碰撞高峰階段(古亞洲洋的北向俯沖、碰撞(Wangetal., 2006)),巖漿活動強烈,地殼急劇加厚。本區(qū)黑云母二長花崗巖可能正是由于這一時期強烈的俯沖-碰撞導致的地殼加厚產(chǎn)生大量熱能,引發(fā)了阿爾泰微古陸邊緣內部的深熔作用而最終形成。
(1)本文研究的黑云母二長花崗巖的年齡為405.4±1.4Ma(MSDW=0.98),屬于早泥盆世巖體。這一年代學結果可以證明該花崗巖體與3號偉晶巖脈沒有成因上的聯(lián)系。
(2)黑云母二長花崗巖總體趨向于髙鉀鈣堿性,屬于高溫型強過鋁質(SP)花崗巖。
(3)巖石微量、稀土元素特征以及較低的Sr初始值εNd(t)均為負值等同位素特征表明該花崗巖為中元古代基底變質沉積巖經(jīng)過部分熔融形成,但有較多幔源物質的參與。
(4)黑云母二長花崗巖體是在阿爾泰造山帶早泥盆世時期,由于板塊俯沖、碰撞引發(fā)深熔作用,促使陸緣深部巖石脫水、熔融,后上升侵位而形成,屬于陸緣弧花崗巖。
Altherr R, Holl A, Hegener E, Langer C and Kreuzer H. 2000. High potassium, calc-alkaline I-type plutonism in the European variscides: Northern Vosges (France) and northern Schwarzwald (Germany). Lithos, 50(1-3): 51-73
Altherr R and Siebel W. 2002. I-type plutonism in a continental back-arc setting: Miocene granitoids and monzonites from the central Aegean Sea, Greece. Contributions to Mineralogy and Petrology, 143(4): 397-415
Belousova EA, Griffin WL, Oreilly SY and Fisher N. 2002. Igneous zircon: Trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143(5): 602-622
Chai FM, Dong LH, Yang FQ, Liu F, Geng XX and Huang CK. 2010. Geochemistry and petrogenesis of Tiemierte granites in the Kelang basin at the southern margin of Altay, Xinjiang. Acta Petrologica Sinica, 26(2): 377-386 (in Chinese with English abstract)
Chappell BW and White AJR. 1992. I and S-type granites in the Lachlan fold belt. Trans. R. Soc. Edinburgh: Earth Sci., 83(1-2): 1-26
Chen FW, Li HQ and Wang DH. 1999. New isochronology evidence for Yanshanian diagenesis and related mineralization in Altaid orogenic belt, China. Chinese Science Bulletin, 44(11): 1142-1147 (in Chinese)
Chen HL, Yang SF, Li ZL, Yuan C, Xiao WJ, Li JL, Yu X and Lin XB. 2006. Tectonic setting of mafic rocks in southern Altay orogenic belt and its geodynamic implication. Acta Petrologica Sinica, 22(1): 127-134 (in Chinese with English abstract)
Chen YC, Ye BT and Feng J. 1996. Ore-Forming Conditions and Metallogenic Prognosis of the Ashele Copper-Zinc Metallogenic Belt, Xinjiang, China. Beijing: Geological Publishing House, 33-145 (in Chinese)
Claesson S, Vetrin V, Bayanova T and Downes H. 2000. U-Pb zircon age from a Devonian carbonatite dyke, Kola peninsula, Russia: A record of geological evolution from the Archaean to the Palaeozoic. Lithos, 51(1-2): 95-108
Coleman RG. 1989. Continental growth of northwest China. Tectonics, 8(3): 621-635
Condie KC. 1986. Geochemistry and tectonic setting of Early Proterozoic supracrustal rocks in the southwestern United States. Journal of Geology, 94(6): 845-864
Cong F, Tang HF and Su YP. 2007. Geochemistry and tectonic setting of Devonian rhyolites in southern Altay, Xinjiang, Northwest China. Geotectonica et Metallogenia, 31(3): 359-364 (in Chinese with English abstract)
Dungan MA, Lindstrom MM, McMiland NJetal. 1986. Open system magmatic evolution of the Taos Plateau volcanic field, northern New Mexico: 1. The petrology and geochemistry of the Servilleta basalt. J. Geophys. Res., 91(6): 5999-6028
Foley S, Amand N and Liu J. 1992. Potassic and ultrapotassic magmas and their origin. Lithos, 28(3): 182-185
Forster HJ, Tisehendorf C and Trumbull RB. 1997. An evolution of the Rb vs. (Y+Yb) discrimination diagram to infer tectonic setting of silica igneous rock. Lithos, 40: 261-293
Green TH. 1995. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system. Chemical Geology, 120(3-4): 347-359
Harris NBW and Inger S. 1992. Trace element modelling of pelite-derived granites. Contrib. Mineral. Petrol., 110(1): 46-56
He GQ, Han BF and Yue YJ. 1990. The tectonic partition and crustal evolution for the Altay Orogenic Belt in China. In: Xinjiang Geological Science 2. Beijing: Geological Publishing House, 9-20 (in Chinese)
He GQ, Li MS, Liu DQetal. 1994. Paleozoic Crustal Evolution and Mineralization in Xinjiang of China. Urumuqi and Hongkong: Xinjiang People’s Publishing House and Educational and Cultural Press, 1-437 (in Chinese)
He GQ, Cheng SD, Xu X, Li JY and Hao J. 2004. An Introduction to the Explanatory Text of the Map of Tectonics of Xinjiang and Its Neighbouring Areas. Beijing: Geological Publishing House, 1-65 (in Chinese)
Hou KJ, Li YH and Tian YR. 2009. In situ U-Pb zircon dating using laser ablation-multi ion counting-ICP-MS. Mineral Deposits, 28(4): 481-492 (in Chinese with English abstract)
Kokonyangi J, Armstrong R, Kampunzu AB, Yoshida M and Okudaira T. 2004. U-Pb zircon geochronology and petrology of granitoids from Mitwaba (Katanga, Congo): Implications for the evolution of the Mesoproterozoic Kibaran belt. Precambrian Research, 132(1-2): 79-106
Li JY, Xiao WJ, Wang KZ, Sun GH and Gao LM. 2003. Neoproterozoic-Paleozoic tectonostratigraphy, magmatic activities and tectonic evolution of eastern Xinjiang, NW China. In: Mao JW, Goldfarb RJ, Seltman R, Wang DH, Xiao WJ and Hart C (eds.). Tectonic Evolution and Metallogeny of the Chinese Altay and Tianshan, IAGOD Guidebook Series 10: CERCAM/NHM, London, 31-74
Li PC, Xu DR, Chen GH, Xia B, He ZL and Fu GG. 2005. Constrains of petrography, geochemistry and Sr-Nd isotopes on the Jinjing granitoids from northeastern Hunan Province, China: Implication for petrogenesis and geodynamic setting. Acta Petrologica Sinica, 21(3): 921-934 (in Chinese with English abstract)
Liu F, Li YH, Mao JW, Yang FQ, Chai FM, Geng XX and Yang ZX. 2008. The SHRIMP U-Pb ages of the Abagong granites in the Altay orogen and their geological implications. Acta Geoscientia Sinica, 29(6): 795-804 (in Chinese with English abstract)
Liu F, Yang FQ, Mao JW, Chai FM and Geng XX. 2009. Study on chronology and geochemistry for Abagong granite in Altay orogen. Acta Petrologica Sinica, 25(6): 1416-1425 (in Chinese with English abstract)
Liu F, Yang FQ, Li YH, Guo ZL, Chai FM, Geng XX and Zhang ZX. 2010. The study on chronology and geochemistry for the granite from the Serbulak iron deposit in the southern margin of Altay, in Xingjiang. Acta Geologica Sinica, 84(2): 195-205 (in Chinese with English abstract)
Liu F, Zhang C and Yang FQ. 2012a. Study on chronology of Jialbasto iron deposit and metallogeny in the southern margin in Altay. Mineral Deposits, 31(6): 1277-1288 (in Chinese with English abstract)
Liu F, Zhang ZX, Li Q, Qu WJ and Li C. 2012b. New age constraints on Koktokay Pegmatite No. 3 Vein, Altay Mountains, Xinjiang, evidence from molybdenite Re-Os dating. Mineral Deposits, 31(5): 1111-1118 (in Chinese with English abstract)
Liu F, Zhang ZX, Li Q, Zhang C and Li C. 2014. New precise timing constraint for the Keketuohai No. 3 pegmatite in Xinjiang, China, and identification of its parental pluton. Ore Geology Reviews, 56: 209-219
Liu W. 1990. Petrogenetic epochs and peculiarities of genetic types of granitoids in the Altai Mountains, Xinjiang Uygur Autonomous Region, China. Geotectonica et Metallogenia, 14(1): 44-56 (in Chinese)
Liu W. 1993. The whole rock Rb-Sr isochron ages for the plutons in Altay Mountains in Xinjiang and the evolution of crustal activity and tectonic setting. In: The Geological Science of Xinjiang, Vol. 4. Beijing: Geological Publishing House, 35-50 (in Chinese)
Liu W, Liu CQ and Masuda A. 1997. Complex trace-element effects of mixing-fractional crystallization composite processes: Applications to the Alaer granite pluton, Altay Mountains, Xingjiang, northwestern China. Chemical Geology, 135(1-2): 103-124
Lu FX and Sang LK. 2002. Petrology. Beijing: Geological Publishing House, 1-399 (in Chinese)
Ludwig KR. 2003. User’s Manual for Isoplot 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center. Special Publication, 4: 1-71
Lugmair GW and Marti K. 1978. Lunar initial143Nd/144Nd: Differential evolution of the lunar crust and mantle. Earth and Planetary Science Letters, 39(3): 349-357
Ma CQ, Ming HL and Yang KG. 2004. An Ordovician magmatic arc at the northern foot of Dabie Mountains: Evidence from geochronology and geochemistry of intrusive rocks. Acta Petrologica Sinica, 20(3): 393-402 (in Chinese with English abstract)
Mao JW, Pirajn F, Zhang ZH, Chai FM, Wu H, Chen SP, Cheng LS, Yang JM and Zhang CQ. 2008. A review of the Cu-Ni sulphide deposits in the Chinese Tianshan and Altay orogens (Xinjiang Autonomous Region, NW China): Principal characteristics and ore-forming processes. Journal of Asian Earth Sciences, 32(2-4): 184-203
Mao JW, Pirajno F, Lehmann B, Luo MC and Berzina A. 2013. Distribution of porphyry deposits in the Eurasian continent and their corresponding tectonic settings. Journal of Asian Earth Sciences, 79: 576-584
McDonough WF and Sun SS. 1995. The composition of the earth. Chemical Geology, 120(3-4): 223-253
Mossakovsky AA, Ruzhentsev SV, Samygin SG and Kheraskova TN. 1993. The Central Asian fold belt: Geodynamic evolution and formation history. Geotectonics, 26: 455-473
Nasdala L, Hofmeister W, Norberg N, Mattinson JM, Corfu F, Dor W, Kamo SL, Kennedy AK, Kronz A, Reiners PW, Frei D, Kosler J, Wan Y, Gtze J, Hager T, Kr Ner A and Valley J. 2008. Zircon M257: A homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon. Geostandards and Geoanalytical Research, 32(3): 247-265
Pearce JA, Harris NBL and Tindle AG. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956-983
Peccerillo R and Taylor SR. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib. Mineral. Petrol., 58(1): 63-81
Rickwood PC. 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 22(4): 247-263
Rollinson HR. 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. New York: Longman Publishing Group, 174-206
Rotarash AI, Samygin S, Gredyushko YA, Keyl’man GA, Mileyev VS and Perfiliyef AS. 1982. The Devonian active continental margin in the southwest Altay. Geotectonics, 16: 31-41
Rui XJ and Wu YJ. 1984. The origin of granites in Altay, China. In: Xu KQ (ed.). The International Symposium for the Granite Geology and its Relationship with Mineralization. Nanjing: Science and Technique Publishing House of Jiangsu Province, 281-291 (in Chinese)
Sajona FG, Maury RC, Bellon H, Cotten J and Defant M. 1996. High field strength element enrichment of Pliocene-Pleistocene island-arc basalts, Zamboanga Peninsula, western Mindanao (Philippines). J. Petrol., 37(3): 693-726
Seng?r AMC, Natal’in BA and Burtman VS. 1993. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Asia. Nature, 364(6435): 299-307
Shan Q, Niu HC, Yu XY and Zeng QS. 2007. Geochemical characteristics, magmtic genesis and tectonic background of the Late Paleozoic high potassium and high silicon ignimbrite on the southern margin of Altaid, North Xinjiang. Acta Petrologica Sinica, 23(7): 1721-1729 (in Chinese with English abstract)
Slama J, Kosler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN and Whitehouse MJ. 2008. Plesovice zircon: A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249(1-2): 1-35
Steiger RH and J?ger E. 1977. Subcommissions on geochronology: Convention on the use of decay constants in geochronology and cosmochronology. Earth and Planetary Science Letters, 36(3): 359-362
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42(1): 313-345
Sylvester PJ. 1998. Post-collisional strongly peraluminous granites. Lithos, 45(1-4): 29-44
Taylor SR and Mclenann SM. 1985. The Continental Crust: Its Composition and Evolution. Blackwell: Oxford Press, 1-312
Tong Y, Wang T, Hong DW, Liu XM and Han BF. 2005. Zircon U-Pb age of syn-orogenic Tielieke pluton in the western part of Altay orogenic belt and its structural implications. Acta Geoscientica Sinica, 26(Suppl.): 74-77 (in Chinese with English abstract)
Tong Y, Wang T, Koavch VP, Hong DW and Han BF. 2006. Age and origin of the Takeshiken postorogenic alkali-rich intrusive rocks in southern Altai, near the Mongolian border in China and its implications for continental growth. Acta Petrologica Sinica, 22(5): 1267-1278 (in Chinese with English abstract)
Tong Y, Wang T, Hong DW, Dai YJ, Han BF and Liu XM. 2007. Ages and origin of the Early Devonian granites from the north part of Chinese Altai Mountains and its tectonic implications. Acta Petrologica Sinica, 23(8): 1933-1944 (in Chinese with English abstract)
Wang DH, Chen YC, Xu ZG, Li TD and Fu XJ. 2002. Minerogenetic Series and Regularity of Mineralization in the Altai Metallogenetic Province, China. Beijing: Atomic Press, 1-493 (in Chinese)
Wang GY and Xu PC. 1983. Igneous rocks and related metallogeny in Altay, Xinjiang. Northwest Geology, (1): 8-21 (in Chinese)
Wang JB, Qin KZ, Wu ZL, Hu JH and Deng JN. 1998. Volcanic Exhalative Sedimentary Lead-zinc Deposits in the Southern Margin of the Altai, Xinjiang. Beijing: Geological Publishing House, 1-210 (in Chinese)
Wang T, Hong DW, Tong Y, Han BF and Shi YR. 2005. Zircon U-Pb SHRIMP age and origin of post-orogenic Lamazhao granitic pluton from Altai orogen: Its implications for vertical continental growth. Acta Petrologica Sinica, 21(3): 640-650 (in Chinese with English abstract)
Wang T, Hong DW, Jahn BM, Tong Y, Wang YB, Han BF and Wang XX. 2006. Timing, petrogenesis, and setting of Paleozoic synorogenic intrusions from the Altai Mountains, Northwest China: Implications for the tectonic evolution of an accretionary orogen. The Journal of Geology, 114(6): 735-751
Wang T, Tong Y and Jahn BM. 2007. SHRIMP U-Pb Zircon geochronology of the Altai No.3. Pegmatite, NW China, and its implications for the origin and tectonic setting of the pegmatite. Ore Geology Review, 32(1-2): 325-336
Wang ZG, Yu XY and Zhao ZH. 1989. Geochemistry of Rare Earth Elements. Beijing: Science Press, 1-535 (in Chinese)
Wang ZG, Zhao ZH, Zou TRetal. 1998. Geochemistry of the Granitoids in Altay. Beijing: Science Press, 1-152 (in Chinese)
Watson EB and Harrison TM. 1983. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth Planet. Sci. Lett., 64(2): 295-304
Wilson M. 1989. Igneous Petrogenesis. London: Unwin Hyman Press, 295-323
Windley BF, Kroener A, Guo JH, Qu GS, Li YY and Zhang C. 2002. Neoproterozoic to Paleozoic geology of the Altai Orogen, NW China: New zircon age data and tectonic evolution. Journal of Geology, 110(6): 719-737
Windley BF, Alexeiev D, Xiao WJ, Kr?ner A and Badarch G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, London, 64(1): 31-47
Xiao QH, Deng JF, Ma DQ and Hong DW. 2002. The Ways of Investigation on Granites. Beijing: Geological Publishing House, 45-50 (in Chinese)
Xiao WJ, Windley BF, Badarch G, Sun S, Li J, Qin KZ and Wang Z. 2004. Palaeozoic accretionary and convergent tectonics of the southern Altaids: Implications for the growth of Central Asia. Journal of the Geological Society, London, 161(3): 339-342
Xiao WJ, Huang BC, Han CM, Sun S and Li JL. 2010. A review of the western part of the Altaids: A key to understanding the architecture of accretionary orogens. Gondwana Research 18(2-3): 253-273
Xie GQ, Mao JW, Li RL and Bierlein FP. 2008. Geochemistry and Nd-Sr isotopic studies of Late Mesozoic granitoids in the southeastern Hubei Province, Middle-Lower Yangtze River belt, eastern China: Petrogenesis and tectonic setting. Lithos, 104(1-4): 216-230
Xu JF, Castillo PR, Chen FR, Niu HC, Yu XY and Zheng ZP. 2003. Geochemistry of Late Paleozoic mafic igneous rocks from the Kuerti area, Xinjiang, Northwest China: Implications for back-arc mantle evolution. Chem. Geol., 193(1-2): 137-154
Yakubchuk A, Seltman R and Shatovh V. 2003. Tectonics and metallogeny of the western part of the Altaid orogenic collage. Tectonic evolution and metallogeny of the Chinese Altay and Tianshan. In: Mao JW, Goldfarb RJ, Seltman R, Wang DH, Xiao WJ and Hart C (eds.). Proceedings Volume of the International Symposium of the IGCP-473 Project in Urumqi and Guidebook of the Field Excursion in Xinjiang, China: August 9-21, IAGOD Guidebook Series 10: CERCAMS/NHM London, 7-16
Yang FQ, Wu H, Franco P, Ma BY, Xia HD, Deng HJ, Liu XW, Gang X and Zhao Y. 2007. The Jiashan syenite in northern Hebei: A record of lithospheric thinning in the Yanshan intracontinental orogenic belt. Journal of Asian Earth Sciences, 29(5-6): 619-636
Yang FQ, Zhao Y, Zeng QL, Wu H and Xia HD. 2007. I- and A-type composite granites of the Panshan pluton in the Jixian, Tianjin: A record of regional tectonic transformation? Acta Petrologica Sinica, 23(3): 529-546 (in Chinese with English abstract)
Yang FQ, Mao JW, Yan SH, Liu F, Chai FM, Zhou G, Liu GR, He LX, Geng XX and Dai JZ. 2008. Geochronology, geochemistry and geological implications of the Mengku synorogenic plagiogranite pluton in Altay, Xinjiang. Acta Geologica Sinica, 82(4): 485-499 (in Chinese with English abstract)
Yuan C, Sun M, Xiao WJ, Li XH, Chen HL, Lin SF, Xi XP and Long XP. 2007. Accretionary orogenesis of the Chinese Altai: Insights from Paleozoic granitoids. Chemical Geology, 242(1-2): 22-39
Yuan C, Sun M, Long XP, Xia XP, Xiao WJ, Li XH, Lin SF and Cai KD. 2007. Constraining the deposition time and tectonic background of the Habahe Group of the Altai. Acta Petrologica Sinica, 23(7): 1635-1644 (in Chinese with English abstract)
Yuan F, Zhou TF and Yue SC. 2001. The ages and the genetic types of the granites in the Nurt area, Altay. Xinjiang Geology, 19(4): 292-296 (in Chinese with English abstract)
Yuan SD, Zhang DL, Shuan Y, Du AD and Qu WJ. 2012. Re-Os dating of molybdenite from the Xintianling giant tungsten-molybdenum deposit in southern Hunan Province, China and its geological implications. Acta Petrologica Sinica, 28(1): 27-38 (in Chinese with English abstract)
Yue YJ, Wang SG and He GQ. 1990. The genetic types of granitoids and its implications on crustal evolution in Altay orogenic belt, China. Geoscience of Xinjiang, (2): 72-85 (in Chinese with English abstract)
Zeng QS, Chen GH, Wang H and Shan Q. 2007. Geochemical characteristic, SHRIMP zircon U-Pb dating and tectonic implication for granitoids in Chonghuer basin, Altai, Xinjiang. Acta Petrologica Sinica, 23(8): 1921-1932(in Chinese with English abstract)
Zhang C, Liu F and Yang FQ. 2013. A discussion on genetic mechanism of the Kuerqis iron deposit in Fuyun County, Xinjiang. Rock and Mineral Analysis, 32(1): 157-165 (in Chinese with English abstract)
Zhang ZC, Yan SH, Chen BL, Zhou G, He YK, Chai FM, He LX and Wan YS. 2006. SHRIMP zircon U-Pb dating for subduction-related granitic rocks in the northern part of East Junggar, Xinjiang. Chinese Science Bulletin, 51(8): 952-962 (in Chinese)
Zhao YJ, Yuan C, Zhou MF, Yan DP, Long XP and Li JL. 2007. Geochemistry and petrogenesis of Laojungou and Mengtougou granites in western Sichuan, China: Constrains on the nature of Songpan-Ganzi basement. Acta Petrologica Sinica, 23(5): 995-1006 (in Chinese with English abstract)
Zhao ZH, Wang ZG, Zou TR. 1993. The REE, isotopic composition of O, Pb, Sr and Nd and petrogenesis of granitoids in the Altai region. In: Tu GC (ed.). Progress of Solid-Earth Sciences in Northern Xinjiang, China. Beijing: Science Press, 239-266 (in Chinese)
Zhou G, Zhang ZC, Luo SB, He B, Wang X, Yin LJ, Zhao H, Li AH and He YK. 2007. Confirmation of high temperature strongly peraluminous Mayin’ebo granites in the south margin of Altay, Xinjiang: Age, geochemistry and tectonic implications. Acta Petrologica Sinica, 23(8): 1909-1920 (in Chinese with English abstract)
Zhu YF and Zeng YS. 2002. Rb-Sr isochron age of Keketuohai No.3 pegmatit. Mineral Deposit, 21(Suppl.1): 1110-1111 (in Chinese)
Zhu YF, Zeng YS and Gu LB. 2006. Geochemistry of the rare metal-bearing pegmatite No.3 vein and related granites in the Keketuohai region, Altay Mountains, Northwest China. Journal of Asian Earth Sciences, 27(1): 61-77
Zou TR, Zhang XA, Jia FY, Wang RC, Cao HZ and Wu BQ. 1986. The origin of No.3 pegmatite in Altay Mountain, Xinjiang. Mineral Deposits, 5(4): 34-48 (in Chinese)
Zou TR, Cao HZ and Wu BQ. 1988. Orogenic and anorogenic granitoids of the Altay Mountains, Xinjiang and their discrimination criteria. Acta Geologica Sinica, 62(3): 228-234 (in Chinese)
Zou TR and Li QC. 2006. The Rare Metal and the REE Deposits in Xinjiang, China. Beijing: Geological Publishing House, 34-51 (in Chinese)
附中文參考文獻
柴鳳梅, 董連慧, 楊富全, 劉鋒, 耿新霞, 黃承科. 2010. 阿爾泰南緣克朗盆地鐵木爾特花崗巖體年齡、地球化學特征及成因. 巖石學報, 26(2): 377-386
陳富文, 李華芹, 王登紅. 1999. 中國阿爾泰造山帶燕山期成巖成礦同位素年代學新證據(jù). 科學通報, 44(11): 1142-1147
陳漢林, 楊樹峰, 厲子龍, 袁超, 肖文交, 李繼亮, 余星, 林秀斌. 2006. 阿爾泰造山帶南緣基性雜巖的形成背景及其動力學含義. 巖石學報, 22(1): 127-134
陳毓川, 葉慶同, 馮京. 1996. 阿舍勒銅鋅成礦帶成礦條件和成礦預測. 北京: 地質出版社, 33-145
叢峰, 唐紅峰, 蘇玉平. 2007. 阿爾泰南緣泥盆紀流紋巖的地球化學和大地構造背景. 大地構造與成礦學, 31(3): 359-364
何國琦, 韓寶福, 岳永君. 1990. 中國阿爾泰造山帶的構造分區(qū)和地殼演化. 見: 新疆地質科學(第2輯). 北京: 地質出版社, 9-20
何國琦, 李茂松, 劉德權等. 1994. 中國新疆古生代地殼演化及成礦. 烏魯木齊: 新疆人民出版社, 香港: 香港文化教育出版社, 1-437
何國琦, 成守德, 徐新, 李錦軼, 郝杰. 2004. 中國新疆及鄰區(qū)大地構造圖(1:2500000)說明書. 北京: 地質出版社, 1-65
侯可軍, 李延河, 田有榮. 2009. LA-MC-ICP-MS鋯石微區(qū)原位U-Pb定年技術. 礦床地質, 28(4): 481-492
李鵬春, 許德如, 陳廣浩, 夏斌, 賀轉利, 符鞏固. 2005. 湘東北金井地區(qū)花崗巖成因及地球動力學暗示: 巖石學、地球化學和Sr-Nd同位素制約. 巖石學報, 21(3): 921-934
劉鋒, 李延河, 毛景文, 楊富全, 柴鳳梅, 耿新霞, 楊宗喜. 2008. 阿爾泰造山帶阿巴宮花崗巖體鋯石SHRIMP年齡及其地質意義. 地球學報, 29(6): 795-804
劉鋒, 楊富全, 毛景文, 柴鳳梅, 耿新霞. 2009. 阿爾泰造山帶阿巴宮花崗巖體年代學及地球化學研究. 巖石學報, 25(6): 1416-1425
劉鋒, 楊富全, 李延河, 郭正林, 柴鳳梅, 耿新霞, 張志欣. 2010. 新疆阿爾泰南緣薩爾布拉克鐵礦區(qū)花崗巖年代學及地球化學研究. 地質學報, 84(2): 195-205
劉鋒, 張超, 楊富全. 2012a. 新疆阿爾泰南緣加爾巴斯套鐵礦床成礦時代及成礦作用研究. 礦床地質, 31(6): 1277-1288
劉鋒, 張志欣, 李強, 屈文俊, 李超. 2012b. 新疆可可托海3號偉晶巖脈成巖時代的限定: 來自輝鉬礦Re-Os定年的證據(jù). 礦床地質, 31(5): 1111-1118
劉偉. 1990. 中國新疆阿爾泰花崗巖的時代及成因類型特征. 大地構造與成礦學, 14(1): 44-56
劉偉. 1993. 新疆阿爾泰山巖體全巖Rb-Sr等時線年齡和地殼運動與構造環(huán)境的演化.見:新疆地質科學第四卷. 北京: 地質出版社, 35-50
路鳳香, 桑隆康. 2002. 巖石學. 北京: 地質出版社, 1-399
馬昌前, 明厚利, 楊坤光. 2004. 大別山北麓的奧陶紀巖漿弧: 侵入巖年代學和地球化學證據(jù). 巖石學報, 20(3): 393-402
芮行健, 吳玉金. 1984. 中國阿爾泰花崗巖的成因. 見: 徐克勤編. 花崗巖地質和及其與成礦的關系國際學術會議論文集. 南京: 江蘇科學技術出版社, 281-291
單強, 牛賀才, 于學元, 曾喬松. 2007. 新疆北部阿爾泰南緣晚古生代高鉀高硅熔結凝灰?guī)r的地球化學、巖漿成因及構造背景. 巖石學報, 23(7): 1721-1729
童英, 王濤, 洪大衛(wèi), 柳曉明, 韓寶福. 2005. 阿爾泰造山帶西段同造山鐵列克花崗巖體鋯石U-Pb年齡及其構造意義. 地球學報, 26(增刊): 74-77
童英, 王濤, Kovach VP, 洪大衛(wèi), 韓寶福. 2006. 阿爾泰中蒙邊界塔克什肯口岸后造山富堿侵入巖體的形成時代、成因及其地殼生長意義. 巖石學報, 22(5): 1267-1278
童英, 王濤, 洪大衛(wèi), 代雅建, 韓寶福, 柳曉明. 2007. 中國阿爾泰北部山區(qū)早泥盆世花崗巖的年齡、成因及構造意義. 巖石學報, 23(8): 1933-1944
王登紅, 陳毓川, 徐志剛, 李天德, 傅旭杰. 2002. 阿爾泰成礦省的成礦系列及成礦規(guī)律. 北京: 原子能出版社, 1-493
王廣耀, 許培春. 1983. 新疆阿爾泰地區(qū)巖漿巖的特征及其與成礦關系. 西北地質, (1): 8-21
王京彬, 秦克章, 吳志亮, 胡劍輝, 鄧吉牛. 1998. 阿爾泰山南緣火山噴流沉積型鉛鋅礦床. 北京: 地質出版社, 1-210
王濤, 洪大衛(wèi), 童英, 韓寶福, 石玉若. 2005. 中國阿爾泰造山帶后造山喇嘛昭花崗巖體鋯石SHRIMP年齡、成因及陸殼垂向生長意義. 巖石學報, 21(3): 640-650
王中剛, 于學元, 趙振華. 1989. 稀土元素地球化學. 北京: 科學出版社, 1-535
王中剛, 趙振華, 鄒天人等. 1998. 阿爾泰花崗巖類地球化學. 北京: 科學出版社, 1-152
肖慶輝, 鄧晉福, 馬大銓, 洪大衛(wèi). 2002. 花崗巖研究思維與方法. 北京: 地質出版社, 45-50
楊富全, 趙越, 曾慶利, 吳海, 夏浩東. 2007. 天津薊縣盤山I-A型復合花崗巖體——區(qū)域構造環(huán)境轉變的記錄? 巖石學報, 23(3): 529-546
楊富全, 毛景文, 閆升好, 劉鋒, 柴鳳梅, 周剛, 劉國仁, 何立新, 耿新霞, 代軍治. 2008. 新疆阿爾泰蒙庫同造山斜長花崗巖年代學、地球化學及其地質意義. 地質學報, 82(4): 485-499
袁超, 孫敏, 龍曉平, 夏小平, 肖文交, 李獻華, 林壽發(fā), 蔡克大. 2007. 阿爾泰哈巴河群的沉積時代及其構造背景. 巖石學報, 23(7): 1635-1644
袁峰, 周濤發(fā), 岳書倉. 2001. 阿爾泰諾爾特地區(qū)花崗巖形成時代及成因類型. 新疆地質, 19(4): 292-296
袁順達, 張東亮, 雙燕, 杜安道, 屈文俊. 2012. 湘南新田嶺大型鎢鉬礦床輝鉬礦Re-Os同位素測年及其地質意義. 巖石學報, 28(1): 27-38
岳永君, 王式?jīng)? 何國琦. 1990. 中國阿爾泰造山帶中花崗巖類的成因類型及其在地殼演化中的意義. 新疆地質科學, (2): 72-85
曾喬松, 陳廣浩, 王核, 單強. 2007. 阿爾泰沖乎爾盆地花崗質巖體的鋯石SHRIMP U-Pb 定年及其構造意義. 巖石學報, 23(8): 1921-1932
張超, 劉鋒, 楊富全. 2013. 新疆富蘊縣庫額爾齊斯鐵礦成因機制研究. 巖礦測試, 32(1): 157-165
張招崇, 閆升好, 陳柏林, 周剛, 賀永康, 柴鳳梅, 何立新, 萬渝生. 2006. 新疆東準噶爾北部俯沖花崗巖的SHRIMP U-Pb鋯石定年. 科學通報, 51(8): 952-962
趙永久, 袁超, 周美夫, 顏丹平, 龍小平, 李繼亮. 2007. 川西老君溝和孟通溝花崗巖的地球化學特征、成因機制及對松潘-甘孜地體基底性質的制約. 巖石學報, 23(5): 995-1006
趙振華, 王中剛, 鄒天人. 1993. 阿爾泰花崗巖類REE及O、Pb、Sr、Nd同位素組成及成巖模型. 見: 涂光熾. 新疆北部固體地球科學新進展. 北京: 科學出版社, 239-266
周剛, 張招崇, 羅世賓, 何斌, 王祥, 應立娟, 趙華, 李愛紅, 賀永康. 2007. 新疆阿爾泰山南緣瑪因鄂博高溫型強過鋁花崗巖: 年齡、地球化學特征及其地質意義. 巖石學報, 23(8): 1909-1920
朱永峰, 曾貽善. 2002. 可可托海3號脈偉晶巖銣-鍶同位素等時線年齡. 礦床地質, 21(S1): 1110-1111
鄒天人, 張相哀, 賈富義, 王汝聰, 曹惠志, 吳柏青. 1986. 論阿爾泰3號偉晶巖脈的成因. 礦床地質, 5(4): 34-48
鄒天人, 曹惠志, 吳柏青. 1988. 新疆阿爾泰造山花崗巖和非造山花崗巖及其判別標志. 地質學報, 62(3): 228-234
鄒天人, 李慶昌. 2006. 中國新疆稀有及稀土金屬礦床. 北京: 地質出版社, 34-51