張修政 董永勝 李才 鄧明榮 張樂 許王
吉林大學 青藏高原地學研究中心,長春 130061
青藏高原特提斯演化及岡瓦納和歐亞大陸界線的研究一直是地學界關注的熱點(李才,1987;潘桂棠等,2004a,b;黃汲清等,1984),李才(1987)提出龍木錯-雙湖-瀾滄江板塊縫合帶(圖1a)是岡瓦納大陸和歐亞大陸界線的觀點,是爭論的焦點(李才等,2006b,2007a,b,2008,2009;李才,2008;鄧萬明等,1996;Kappetal. 2003;Pullenetal. 2008)。近年來,隨著構造帶內(nèi)典型蛇綠巖套的不斷發(fā)現(xiàn)(李才等,2008;翟慶國等,2004;Zhaietal., 2013a)和低溫高壓變質(zhì)帶研究的逐步深入(鮑佩聲等,1999;鄧希光等,2000;李才等,2006a;董永勝等,2009;張修政等,2010a,b,c;翟慶國等,2009; Zhaietal., 2011a,b),這一觀點逐漸得到了大多數(shù)學者的認可。除已經(jīng)進一步確定了縫合帶的存在外,現(xiàn)在學術界同時認識到龍木錯-雙湖-瀾滄江帶經(jīng)歷了古特提斯洋的俯沖消減、弧陸或陸陸碰撞以及碰撞后造山帶伸展垮塌等一系列完整而復雜的演化歷程。目前,已有大量研究主要針對大洋演化和俯沖碰撞階段,通過蛇綠巖(李才等,2008b;翟慶國等,2004;Zhaietal.,2013a)、放射蟲硅質(zhì)巖(李曰俊等,1997;朱同興等,2006)、與俯沖相關的埃達克巖(施建榮等,2010;胡培遠等,2013)以及高壓變質(zhì)帶(Pullenetal., 2008;Zhaietal., 2011a,b)等的一系列研究工作,認識到古特提斯洋盆可能形成于早古生代,在早石炭世洋殼初始俯沖,最終在中晚三疊世主洋盆關閉,實現(xiàn)了陸陸碰撞(李才等,2009;Zhaietal., 2011a,b)。然而,對于主洋盆關閉以后到板內(nèi)環(huán)境最終形成這一段演化歷史的研究則相對滯后,很大程度上制約了學術界對縫合帶完整構造巖漿演化歷史的全面認識。事實上,在這一時期(晚三疊世)區(qū)域內(nèi)集中爆發(fā)了大規(guī)模巖漿活動,它們很可能是理解縫合帶晚期構造演化歷史及相關機制的關鍵。
圖1 青藏高原大地構造單元劃分簡圖以及羌塘中部晚三疊世巖漿活動分布圖
(a)-青藏高原大地構造單元劃分簡圖(據(jù)李才等,2006b),JSSZ-金沙江縫合帶; LSSZ-龍木錯-雙湖-瀾滄江縫合帶; BNSZ-班公湖-怒江縫合帶; YZSZ-印度河-雅魯藏布江縫合帶;(b)-羌塘中部晚疊世巖漿活動分布圖(底圖據(jù)Zhaietal., 2013b;吉林大學地質(zhì)調(diào)查研究院,2006*吉林大學地質(zhì)調(diào)查研究院. 2006. 中華人民共和國區(qū)域地質(zhì)報告1:25萬瑪依崗日幅修改),晚三疊世巖漿活動測年結果(225~205Ma)據(jù)翟慶國等,2007;Wangetal.2008;Fuetal., 2010;Zhaietal., 2013b; 黃小鵬等,2007;胡培遠等,2010;(c)-香桃湖巖體實測剖面
Fig.1 Tectonic subdivision of the Tibetan Plateau and simplified geological map of Qiangtang terrane, showing the distributions of Late Triassic magmatic rocks
區(qū)域內(nèi)晚三疊世巖漿活動總體沿縫合帶及其兩側分布,以中酸性巖石為主并伴有少量同期基性巖石。其中,北側(北羌塘南緣)以大量火山熔巖-火山碎屑巖為主,區(qū)域上稱之為那底崗日組;南側(南羌塘北緣)為大面積花崗巖,以普遍含有暗色包體為主要特征(圖1b)。對于北側的那底崗日火山巖,雖然已開展了較多研究工作(翟慶國等,2007; Wangetal., 2008;Fuetal., 2010;Zhangetal., 2011;Zhaietal., 2013b),但認識上仍存在較大分歧(李才等,2009;Fuetal., 2010;Zhangetal., 2011;Zhaietal., 2013b);而對于南側同期花崗巖,目前僅開展少量測年工作(Kappetal., 2003;黃小鵬等,2007;胡培遠等,2010),對其巖石組合、源區(qū)性質(zhì)以及暗色包體成因并不清楚,嚴重制約了學術界從整體上對這一期巖漿活動形成背景及成因機制的認識。鑒于此,本文對紅脊山地區(qū)晚三疊世香桃湖巖體進行了系統(tǒng)的巖石學、地球化學、以及同位素年代學研究,綜合已發(fā)表資料并結合區(qū)域內(nèi)大量地質(zhì)事實,對羌塘中部晚三疊世巖漿活動的形成背景及可能的成因機制進行了探討,為研究龍木錯-雙湖縫合帶晚期構造巖漿演化提供了新的資料。
羌塘位于青藏高原北部,夾持于金沙江縫合帶和班公湖-怒江縫合帶之間,地處岡瓦納大陸與歐亞大陸的交匯部位,是研究古特提斯洋俯沖消減和兩大陸碰撞造山過程的關鍵地區(qū)(圖1a,b)。本文關注縫合帶及其南部(南羌塘北緣)地區(qū),區(qū)域內(nèi)大面積出露的地層為晚石炭世-早二疊世展金組,為岡瓦納陸緣沉積,是一套遭受低級變質(zhì)作用改造的碎屑巖-碳酸鹽巖夾基性火山巖的沉積建造。蛇綠巖主要沿果干加年山、桃形湖與岡瑪錯一線以及北部的香桃湖-紅脊山一線出露,巖石單元比較齊全,時代主要集中在二疊紀、奧陶紀以及寒武紀(李才等,2009)。高壓變質(zhì)帶常和蛇綠巖伴生產(chǎn)出,主要巖性為榴輝巖、藍片巖、石榴石白云母片巖、含硬玉云母石英片巖等。上三疊統(tǒng)望湖嶺組(T3w)以角度不整合覆蓋在上述各單元之上,被認為是龍木錯-雙湖縫合帶閉合后最早的沉積蓋層(李才等,2007b)。
目前區(qū)域上已識別出的晚三疊世花崗巖主要分布在香桃湖、戈木日西、蜈蚣山以南以及岡塘錯地區(qū)。香桃湖花崗巖體位于紅脊山以南20km處,呈巖株狀產(chǎn)出,總體形態(tài)近透鏡狀,透鏡體長軸呈北東南西向,長約15km,總出露面積約45km2。巖體侵入到晚石炭世-早二疊世展金組中,接觸關系清晰,在接觸帶可見大量紅柱石角巖??傮w巖性為黑云母二長花崗巖,但受后期熱液活動(鉀化)影響,出現(xiàn)大量二云母花崗巖,局部鉀化十分強烈處,甚至出現(xiàn)極少量正長花崗巖。巖體中分布大量的暗色淬冷包體,包體主要成橢球狀、餅狀,大小不一。
在野外實測剖面基礎上,本文系統(tǒng)地采集了香桃湖巖體中的主體巖性樣品,包括2件鋯石LA-ICP-MS定年樣品TL01(二云母二長花崗巖)和TL04(黑云母二長花崗巖),29件地球化學樣品,其中10件為未受后期鉀化或影響較小樣品(TL04H1-TL04H10)、19件為不同程度鉀化樣品(TL01H1-TL01H20)。
黑云母二長花崗巖 為香桃湖巖體的主體巖性,似斑狀結構,塊狀構造,斑晶主要為微斜長石和條紋長石(約10%~15%),粒徑大多在1.5~3cm,基質(zhì)為中粗?;◢徑Y構,主要礦物有堿性長石(15%~20%)、斜長石(20%~25%)、石英(20%~25%)、黑云母(8%~12%)等,副礦物主要為榍石、磷灰石以及鋯石。受鉀質(zhì)熱液蝕變或交代作用影響較小,部分斜長石出現(xiàn)絹云母化,但未出現(xiàn)白云母。
圖2 香桃湖花崗巖及其暗色包體的野外和巖相學特征(a)-斜長石的鉀長石化作用;(b)-黑云母二長花崗巖中閃長質(zhì)暗色包體;(c)-巖體中極少輝長質(zhì)暗色包體;(d)-暗色包體中針柱狀磷灰石;(e)-暗色包體中石英捕擄晶;(f)-暗色包體中斜長石斑晶具有黑色細窄的內(nèi)環(huán)帶結構.礦物代號:Pl-斜長石;Mc-微斜長石;Qtz-石英;Bt-黑云母;Ap-磷灰石Fig.2 Field and petrographical photos of granites and dioritic mafic microgranular enclaves (MMEs) in Xiangtaohu pluton
二云母二長花崗巖(受后期鉀質(zhì)熱液不同程度交代產(chǎn)物) 主要沿香桃湖斷裂兩側大面積分布(圖1c),似斑狀結構,塊狀構造,斑晶主要為微斜長石和條紋長石(約10%~15%),粒徑可達2~3cm,基質(zhì)為中粗?;◢徑Y構,主要礦物有堿性長石(20%~25%)、斜長石(15%~20%)、石英(20%~25%)、黑云母(8%~12)、白云母(5%~8%)等,副礦物主要為榍石、磷灰石以及鋯石。巖石普遍遭受了后期鉀質(zhì)熱液不同程度交代作用的改造,改造較弱者表現(xiàn)為斜長石的絹云母化和暗色化,鉀化較強者主要表現(xiàn)為斜長石的鉀長石化,即斜長石受鉀質(zhì)熱液交代形成大量微斜長石,這類微斜長石常含大量斜長石殘留體,殘留斜長石常為渾圓狀且已絹云母化(圖2a)。巖石中的白云母均為次生白云母,半自形-他形,常呈斷續(xù)的小片分布于黑云母中,與其構成明顯的交生狀反應關系,為后期鉀質(zhì)熱液蝕變交代的產(chǎn)物。
暗色包體 包體不均勻分布于整個巖體中,局部可見包體成群出現(xiàn)。包體形態(tài)各異,呈橢球狀、水滴狀、透鏡狀等塑變形態(tài)(圖2b,c);大小不一,其長軸主要在5~20cm,最小不足1cm,最大可達45cm。包體成分變化較大,主體為閃長質(zhì),具細粒半自形粒狀結構,塊狀構造。主要礦物有斜長石(60%~70%)、黑云母(20%~25%)、石英(5%~10%)和少量堿性長石(5%),可見十分自形的長板柱狀斜長石組成格架、其他礦物充填其間,為典型的巖漿結構,副礦物為磷灰石、榍石、鋯石及磁鐵礦。
主量、稀土和微量元素測試由河北省區(qū)域地質(zhì)礦產(chǎn)調(diào)查研究所完成。其中全巖主量元素采用XRF分析,稀土和微量元素采用ICP-MS分析。主量元素分析精度優(yōu)于3%,稀土和微量元素分析精度優(yōu)于5%。
鋯石的挑選在河北省廊坊市區(qū)域地質(zhì)調(diào)查院完成。樣品靶的制備在中國地質(zhì)科學院地質(zhì)研究所進行。鋯石的陰極熒光圖像分析在北京大學物理學院電鏡室的陰極熒光分析系統(tǒng)(FEI公司生產(chǎn)的Quatan 200F型場發(fā)射環(huán)境掃描電鏡+Gatan公司Mono CL3陰極熒光譜儀)上完成,分析方法和條件見相關文獻(陳莉等,2005)。
LA-ICP-MS鋯石 U-Pb分析在中國地質(zhì)大學地學實驗中心元素地球化學研究室完成,分析儀器為由美國New Wave Research Inc.公司生產(chǎn)的193nm激光剝蝕進樣系統(tǒng)(UP 193SS)和美國AGILENT科技有限公司生產(chǎn)的Agilent 7500a型四級桿等離子體質(zhì)譜儀聯(lián)合構成的激光等離子體質(zhì)譜儀(LA-ICP-MS)。本次分析193nm激光器工作頻率為10Hz,剝蝕物質(zhì)載氣為高純度He氣,流量為0.7L/min;Angilent等離子質(zhì)譜儀工作條件:冷卻氣(Ar)流量1.13L/min;測試點束斑直徑為36mm,剝蝕采樣時間為45s。元素含量以NIST612為外部標準進行標定,Si為內(nèi)部標準計算;鋯石U-Pb年齡用澳大利亞Glitter4.4數(shù)據(jù)處理軟件計算獲得,所用的標準鋯石為91500,單個數(shù)據(jù)點誤差均為1σ,加權平均值誤差為2σ,平均年齡值選用206Pb/238U年齡。
圖3 香桃湖花崗巖中典型鋯石的陰極熒光圖像及其206Pb/238U年齡Fig.3 CL images and 206Pb/238U ages of typical zircons of analyzed samples from Xiangtaohu pluton
樣品中鋯石的U-Pb分析測試結果見表1和表2。鋯石自形程度較好,大多呈長柱狀,棱角清晰,粒度在80~300μm之間。鋯石的內(nèi)部結構清晰,大多數(shù)鋯石具有繼承性殘余核部,巖漿成因的震蕩生長環(huán)帶邊部(圖3)。大部分繼承核具有相對較低的微量元素含量(Th=136×10-6~404×10-6,U=265×10-6~597×10-6),在CL圖像上具有較強的發(fā)光性(呈白色-灰白色),巖漿成因的邊部REE、Th、U等微量元素含量明顯高于繼承核,在CL圖像上發(fā)光性弱(呈灰黑色-黑色)。樣品TL01鋯石LA-ICP-MS 分析結果表明, 鋯石邊部微量元素含量較高且變化范圍較大,U和Th的含量分別為204×10-6~2114×10-6和88×10-6~1748×10-6,Th/U在0.13~1.16,Th/U均大于0.1,且Th和U具有良好的線性關系(圖略),為典型的巖漿鋯石;樣品TL04中鋯石巖漿成因的邊部具有更高的微量元素含量,尤其是U含量(1006×10-6~4083×10-6),屬于高U鋯石,Th的含量與樣品TL01差別不大(75×10-6~512×10-6),高的U含量導致其具有十分低的Th/U比值(0.05~0.22),16個測點中有10個測點Th/U低于0.1,但清晰的韻律環(huán)帶仍然表明它們是巖漿成因,和在特提斯喜馬拉雅東部二云母花崗巖中的高鈾鋯石特征一致(Zengetal.,2011)。兩個樣品的鋯石均具有較高的稀土元素總量,且變化范圍較大(TL01鋯石∑REE=506×10-6~1502×10-6,TL04鋯石∑REE=1091×10-6~2866×10-6),稀土元素配分模式極其相似(圖4a,b),均表現(xiàn)為輕稀土元素虧損,重稀土強烈富集,具有不同程度的Ce異常(TL01鋯石Ce/Ce*=1.38~47.21;TL01鋯石Ce/Ce*=0.92~14.56)和明顯的負Eu異常(TL01鋯石Eu/Eu*=0.35~0.73;TL04鋯石Eu/Eu*=0.19~0.32),顯示出典型花崗巖鋯石的特征(吳元保等,2004)。
樣品TL01可能由于遭受了后期鉀質(zhì)熱液蝕變作用的影響,部分鋯石測點發(fā)生明顯的Pb丟失,將這類測點予以剔除,其余14個測點均落在諧和線上,其中測點TL01.08、TL01.09、TL01.15、TL01.16以及TL01.19,給出了800~900Ma以及1600Ma的繼承鋯石核部的年齡信息,其余測點(9個點)構成一組諧和年齡(圖4c),其加權平均年齡為210.9±3.9Ma(MSWD=2.8),為二云母花崗巖(TL01)的巖漿結晶年齡;樣品TL04受后期鉀質(zhì)熱液影響較小,鋯石并未發(fā)生明顯的Pb丟失現(xiàn)象,所有測點均集中分布在諧和線上及其附近(圖4d),其加權平均年齡為212.6±1.5Ma(MSWD=0.69),為黑云母花崗巖(TL04)的巖漿結晶年齡。樣品TL01和TL04均采自香桃湖巖體中,且在誤差范圍內(nèi)具有相同的巖漿年齡,表明香桃湖巖體形成于晚三疊世。
4.2.1 主量元素
香桃湖巖體主量元素分析結果見表3。巖體以高SiO2(68.06%~74.05%)、較高K2O含量(3.06%~4.50%)和K2O/Na2O(1.05%~1.63%)以及低的P2O5含量(0.08%~0.14%)為特征,在成分上屬于二長花崗巖(圖5a)。P2O5含量隨SiO2含量的增高而降低(圖5b)。在SiO2-K2O圖解中,大部分樣品落入高鉀鈣堿性區(qū)域,極個別樣品屬于鈣堿性系列(圖5c)。樣品的鋁飽和指數(shù)(A/CNK)為1.03~1.09,均屬弱過鋁質(zhì)(圖5d)。CIPW標準礦物中出現(xiàn)剛玉分子,但含量較低(0.53~1.47)。綜合以上特征,香桃湖花崗巖總體為一套弱過鋁質(zhì)高鉀鈣堿性-鈣堿性二長花崗巖。
表1香桃湖二云母二長花崗巖鋯石(TL01)LA-ICP-MS U-Pb-Th分析結果
Table 1 LA-ICP-MS U-Pb-Th data for zircons from Xiangtaohu two-mica granite(TL01)
測點號含量(×10-6)Pbrad232Th238UTh/U同位素比值年齡(Ma)207Pb/206Pb207Pb/235U206Pb/238U207Pb/206Pb207Pb/235U206Pb/238U比值1σ比值1σ比值1σ年齡1σ年齡1σ年齡1σTL01?0113.64361.73327.951.100.05030.00170.22840.00780.03300.00052075220962093TL01?0234.90229.751018.830.230.05050.00100.23460.00480.03370.00042192521442143TL01?0623.64123.03683.830.180.05060.00110.24020.00570.03440.00052233021952183TL01?0759.26360.041763.950.200.05070.00080.23260.00420.03330.00042262021232113TL01?0884.73136.29265.370.510.10640.00154.09700.06630.27930.0036173814165413158818TL01?09164.30292.80510.910.570.11260.00164.28580.06760.27600.0036184113169113157118TL01?107.3297.95204.050.480.05050.00290.22850.01330.03280.0005217107209112083TL01?1269.54437.772114.550.210.05000.00140.22170.00540.03210.00041976620352043TL01?1599.34206.58597.820.350.06570.00261.22240.04510.13490.0019797858112181611TL01?1649.89270.62279.330.970.07020.00121.36470.02560.14110.0019933198741185111TL01?1995.85404.31522.110.770.07230.00111.54310.02640.15490.0020993169481192811TL01?2322.6787.80673.560.130.05060.00120.23740.00580.03400.00052243221652163TL01?2447.79295.281394.960.210.05060.00090.23540.00460.03380.00042222321542143TL01?2574.451747.871500.431.160.05060.00390.22400.01690.03210.0005223176205142043
表2香桃湖黑云母花崗巖鋯石(TL04)LA-ICP-MS U-Pb-Th分析結果
Table 2 LA-ICP-MS U-Pb-Th data for zircons from Xiangtaohu biotite granite(TL04)
測點號含量(×10-6)Pbrad232Th238UTh/U同位素比值年齡(Ma)207Pb/206Pb207Pb/235U206Pb/238U207Pb/206Pb207Pb/235U206Pb/238U比值1σ比值1σ比值1σ年齡1σ年齡1σ年齡1σTL04?0485.75354.062464.740.140.05160.00180.23880.00770.03360.00052688321762133TL04?0582.24215.142408.120.090.05070.00140.23840.00640.03410.00052263721752163TL04?0634.20123.861005.750.120.05040.00150.23460.00710.03380.00052144421462143TL04?0741.6888.451247.270.070.05040.00150.23340.00700.03360.00052134321362133TL04?0891.59181.442796.670.060.05010.00140.22750.00620.03290.00052013820852093TL04?09107.07637.302924.770.220.05140.00240.23520.01030.03320.000525910821582103TL04?1084.28326.912484.840.130.05080.00200.23310.00910.03330.00052296021372113TL04?1174.04138.132200.000.060.05050.00150.23600.00680.03390.00052204121562153TL04?1389.09225.362550.940.090.05020.00190.23210.00830.03350.00052069121272123TL04?14104.26319.203137.800.100.05030.00190.22900.00860.03300.00052095820972093TL04?16128.67350.283854.600.090.05060.00170.23290.00780.03340.00052244921362123TL04?1765.33174.061956.080.090.05040.00150.23130.00710.03330.00052144421162113TL04?18105.36279.983094.040.090.05050.00150.23650.00700.03390.00052194221662153TL04?19110.92267.753159.270.080.05060.00190.23940.00810.03430.00052228721872183TL04?21142.35511.504082.930.130.05120.00210.23620.00880.03350.00052489521572123TL04?2447.0374.871419.750.050.05010.00160.23150.00750.03350.00052014821162123
表3紅脊山地區(qū)香桃湖巖體全巖地球化學數(shù)據(jù)(主量元素:wt%;微量元素:×10-6)
Table 3 Concentrations of major (wt%) and trace elements (×10-6) of analyzed samples from Xiangtaohu pluton
樣品號TL01?H1TL01?H2TL01?H3TL01?H4TL01?H5TL01?H6TL01?H7TL01?H8TL01?H9TL01?H10SiO270.9771.0970.8668.6770.8370.5871.3071.4671.6071.41Al2O315.0914.9515.0116.2815.4115.2714.9614.9014.8714.90TiO20.260.270.290.260.250.280.280.270.270.27Fe2O30.270.350.250.400.390.390.450.340.410.33FeO1.701.681.961.601.511.751.651.681.651.70CaO2.632.502.702.692.642.612.322.612.502.47MgO0.710.730.830.720.690.800.780.740.740.73K2O3.823.733.644.313.883.943.823.653.743.98Na2O3.293.253.263.533.383.273.303.283.263.17MnO0.050.050.050.050.050.050.050.050.050.05P2O50.090.090.100.090.090.090.110.090.090.09LOI0.981.190.891.220.780.800.840.810.680.77Total99.8699.8699.8599.8399.8999.8499.8699.8699.8699.86K2O/Na2O1.161.151.121.221.151.201.161.111.151.26A/NKC1.051.071.061.061.061.061.091.061.071.06A/NK1.581.591.611.551.581.581.571.591.581.56石英(Q)29.7930.8930.0524.1929.0128.9230.8131.0231.2130.62鈣長石(An)12.8712.1913.113.2312.8912.7411.1112.712.1412.02鈉長石(Ab)28.1627.8727.8430.2928.8527.9628.1728.0227.7727.07正長石(Or)22.8122.3121.7425.8323.1523.5022.7821.7422.2623.71剛玉(C)0.891.170.961.030.971.011.380.951.061.02Sc4.554.755.775.274.985.355.095.215.015.44V29.3027.1035.5031.1029.7032.7030.1032.7031.8033.30Cr21.2022.1024.5024.1023.3024.2023.2023.7023.4025.00Co3.203.304.103.703.403.803.603.703.503.80Ni4.204.305.104.904.705.004.805.104.505.30Cu6.4010.0011.8014.3014.5013.5011.5012.5012.5014.90Zn45.0042.0148.6043.7044.3045.8048.3045.8044.5051.90Ga17.6217.5920.2120.5119.5519.2418.3019.1618.3119.49Rb158.9149.4171.2189.6177.1169.7174.2170.4164.4185.4Sr388.5392.2445.5465.4436.8433.8395.1406.3393.3420.0Y15.3516.2919.0016.9116.8315.4516.8817.0216.0718.05Zr123.1118.4138.8114.9109.5123.0111.9126.4121.0117.9Nb12.7613.4315.6214.4113.5414.1513.9114.3514.0414.85Cs7.727.628.597.828.717.6310.388.158.028.60Ba585.0631.7639.5750.7566.4780.5609.9587.7589.0630.3La32.9632.6240.6335.9436.6932.3536.8638.0534.5338.48Ce58.8358.4472.4365.2462.1456.8965.3264.9658.5466.82Pr6.476.537.997.236.776.307.137.036.337.32Nd22.5223.3028.0825.4223.5122.3024.9524.8722.2025.68Sm4.044.485.204.724.384.174.664.784.174.90Eu1.010.981.151.171.141.081.001.061.041.10Gd3.644.024.814.284.053.724.254.283.884.50Tb0.520.570.660.590.570.520.580.590.550.62Dy2.913.083.593.223.102.873.173.182.983.36Ho0.520.550.640.570.560.510.560.560.530.59Er1.531.591.851.661.621.511.601.651.541.71Tm0.240.250.290.260.260.240.240.260.250.27Yb1.541.651.921.681.711.541.621.691.611.79Lu0.250.270.300.270.280.250.260.270.260.29Hf5.004.895.254.434.174.634.424.774.644.43Ta1.531.601.661.621.551.451.691.631.561.66Pb35.7035.7037.3042.6038.9038.4033.7036.9035.5038.40Th16.1918.4820.0318.3515.4215.8718.6717.4119.0517.10U2.322.612.942.652.892.142.492.112.142.68TZr(℃)779779789772770780776782780778
續(xù)表3
Continued Table 3
樣品號TL01?H11TL01?H12TL01?H13TL01?H14TL01?H15TL01?H16TL01?H17TL01?H18TL01?H19TL01?H20SiO270.5070.4671.6570.1170.7469.9570.5569.9970.3571.27Al2O315.0615.2114.6415.1614.8515.4315.1815.5515.2614.66TiO20.270.260.260.270.280.370.360.350.370.36Fe2O30.550.480.450.450.640.510.590.780.560.51FeO1.461.511.511.651.501.941.771.581.921.89CaO2.392.242.372.502.442.702.572.742.602.42MgO0.710.700.690.740.750.760.730.750.800.76K2O4.224.503.704.263.794.073.973.953.663.94Na2O3.103.043.143.073.123.153.103.233.223.01MnO0.040.040.040.040.040.050.050.050.060.05P2O50.090.100.090.110.100.110.120.110.110.11LOI1.471.291.311.481.580.810.830.790.940.84Total99.8599.8399.8699.8599.8299.8599.8299.8599.8499.83K2O/Na2O1.361.481.181.381.211.291.281.221.141.31A/NKC1.081.091.091.071.091.061.081.071.091.08A/NK1.561.541.601.571.611.611.611.621.651.59石英(Q)29.9429.3132.7529.0931.6428.3430.1928.7330.2131.68鈣長石(An)11.6910.9411.612.1411.8813.1212.3113.2412.5511.63鈉長石(Ab)26.6326.1126.9826.4326.8426.9226.4927.5927.5325.74正長石(Or)25.3127.0022.1925.5622.7724.2523.7023.5321.8523.52剛玉(C)1.201.401.291.131.371.091.321.161.471.23Sc5.194.784.614.875.346.646.566.747.056.75V30.2027.7026.5026.3028.2028.9028.9029.1031.3029.10Cr24.3023.1022.9024.0024.1021.5021.8021.3022.7021.60Co3.102.702.803.103.204.004.004.004.203.90Ni4.804.604.404.804.604.504.704.405.004.90Cu17.8013.6014.0012.3016.0010.108.908.0013.6013.50Zn39.1034.3033.8037.1039.1048.5044.9041.0048.2046.90Ga20.7418.9418.6119.0420.4918.7918.4719.5419.6818.38Rb185.9177.9155.3173.2173.5167.8166.7171.8163.4168.3Sr430.1392.9384.2392.7406.6431.8422.1446.6431.7417.2Y18.1114.9915.3714.5715.4418.7818.9419.5522.6319.43Zr118.1115.0118.8115.5120.8153.6150.6140.6162.5154.5Nb15.9714.1113.9714.4316.2314.2214.3314.8515.9514.78Cs6.285.445.616.466.453.923.833.793.804.17Ba738.4853.4650.5768.6603.0674.5677.3525.9614.2597.7La40.2734.5735.1633.5233.4531.2429.9430.7337.6134.31Ce72.8764.0262.6659.5458.6857.2455.6454.8766.3560.88Pr8.036.996.856.786.656.536.216.277.386.82Nd28.1724.5424.0323.7823.4223.5622.4822.7826.4924.57Sm5.234.474.434.404.374.574.464.505.204.74Eu1.161.061.001.041.011.091.101.131.161.06Gd4.584.043.993.883.944.224.064.094.794.36Tb0.640.540.540.520.540.610.600.620.710.64Dy3.402.802.832.762.873.453.463.584.173.61Ho0.600.490.490.480.510.630.640.650.760.65Er1.761.401.461.391.481.831.851.882.211.88Tm0.270.220.230.220.240.280.290.300.350.29Yb1.831.441.521.481.581.851.911.972.321.88Lu0.300.230.250.240.260.290.310.310.380.31Hf4.394.214.454.404.605.475.485.185.975.47Ta1.721.401.511.521.771.561.561.811.961.65Pb31.6029.7025.9028.2027.0030.6031.8032.6032.7030.90Th17.9315.2918.0917.6915.8016.5517.5614.4518.7218.75U3.452.322.091.251.791.771.991.792.392.20TZr(℃)779779780775781798798790806802
續(xù)表3
Continued Table 3
樣品號TL04?H1TL04?H2TL04?H3TL04?H4TL04?H5TL04?H6TL04?H7TL04?H8TL04?H10SiO269.9974.0569.3971.6569.5168.8372.2868.0670.86Al2O315.0613.2515.8414.7115.4415.8114.1314.6815.33TiO20.360.280.300.260.320.320.260.510.25Fe2O30.660.480.450.480.450.490.461.170.42FeO2.201.802.011.682.132.131.633.041.59CaO2.832.492.952.502.642.892.772.452.87MgO1.110.890.930.830.980.990.841.610.77K2O3.433.063.653.994.223.983.574.393.64Na2O3.272.863.433.063.153.362.932.703.29MnO0.070.060.060.050.070.070.050.100.05P2O50.140.090.090.100.100.100.080.140.13LOI0.780.630.780.570.890.930.871.050.72Total99.9099.9299.8999.8799.8999.8999.8799.8999.92K2O/Na2O1.051.071.061.301.341.181.221.631.11A/NKC1.061.061.061.061.061.051.031.081.05A/NK1.651.651.651.571.581.611.631.601.64石英(Q)29.2738.3426.8131.2626.925.3833.826.7529.93鈣長石(An)13.4012.0014.3612.0612.7714.0713.5511.5113.69鈉長石(Ab)27.9324.3229.2626.126.9228.7425.0623.0828.08正長石(Or)20.4618.2121.7623.7525.223.7321.2726.2121.69剛玉(C)1.100.881.040.961.060.880.531.341.00Sc8.456.797.576.418.077.826.1410.975.73V41.0034.5038.9035.0041.6038.1033.5052.9030.40Cr29.9026.4027.2025.9028.9027.7026.0032.0025.10Co5.504.404.804.205.305.004.007.303.80Ni10.905.8010.105.7010.205.605.9010.805.30Cu12.5011.1011.6012.2012.308.3010.1012.1011.40Zn75.1042.1052.9039.6051.6048.3049.7065.2036.60Ga19.4216.4919.7417.2920.3419.8716.4218.6217.44Rb186.0151.5189.7170.8226.0205.2152.0218.8152.1Sr334.9296.7366.7340.2354.5348.8339.4260.4352.6Y21.6217.3226.8417.9325.0924.1816.2622.1515.11Zr120.4120.6111.0108.5116.8122.7126.5163.6112.2Nb18.0713.8116.2813.1918.0217.1612.0922.7511.50Cs9.676.6710.026.3511.4910.966.789.995.83Ba298.2210.7421.8580.6446.7437.0533.3411.3421.3La28.6426.5836.8523.5321.4825.0631.9626.2925.60Ce48.8044.8064.9041.5737.7043.8256.5244.6844.50Pr5.284.856.934.654.164.696.054.964.74Nd18.7117.1124.0916.5314.9316.4621.1117.6616.82Sm3.773.364.733.273.253.393.893.753.22Eu0.890.811.000.900.890.880.900.740.88Gd3.653.244.543.163.243.363.583.732.99Tb0.600.500.710.490.580.580.510.620.45Dy3.723.044.393.043.933.792.873.802.60Ho0.710.570.870.580.780.740.520.720.50Er2.071.642.621.722.392.281.532.071.44Tm0.340.260.450.280.420.400.250.330.23Yb2.231.753.021.872.842.701.582.111.49Lu0.370.280.500.300.470.440.260.350.25Hf4.194.124.043.664.174.264.155.483.83Ta2.261.562.561.502.652.691.372.481.26Pb50.530.336.334.638.734.333.030.833.2Th12.8912.9617.7814.3317.9216.3012.7716.3614.39U2.122.032.311.932.332.172.253.131.72TZr(℃)774779767770774774778803769
注:A/CNK=摩爾Al2O3/(CaO+Na2O+K2O),A/NK=摩爾Al2O3/(Na2O+K2O),TZr(℃)為鋯石飽和溫度(Watson and Harrison,1983)
圖4 香桃湖花崗巖鋯石稀土元素球粒隕石標準化模式圖(a, b)及U-Pb諧和圖(c, d)Fig.4 Chondrite-normalized REE patterns (a, b) and U-Pb zircon concordia diagram (c, d) of analyzed samples from Xiangtaohu pluton
4.2.2 微量元素
香桃湖花崗巖體的稀土、微量元素分析結果見表3。29件樣品顯示近一致的稀土元素特征: LREE相對HREE明顯富集,LREE/HREE=8.98~12.16,輕重稀土分餾顯著, (La/Yb)N=5.43~17.27,Eu負異常不明顯(Eu/Eu*=0.61~0.87),在REE元素球粒隕石標準化圖上呈現(xiàn)光滑的右傾曲線,曲線后半段相對平坦,且尾部具有微弱上翹趨勢(圖6a,c),暗示樣品同時存在中稀土元素的虧損(Zhuetal., 2008)。
香桃湖花崗巖具有較高的Sr含量(260.4×10-6~465.4×10-6),相對低的Yb(1.44×10-6~3.02×10-6)和Y含量(14.57×10-6~26.84×10-6)。在原始地幔標準化蛛網(wǎng)圖中(圖6b,d),所有樣品均表現(xiàn)為富集Rb、Ba、Th、U、K和La等大離子親石元素,相對虧損Nb、Ta、Ti、Zr 等高場強元素;顯著富集Pb元素,虧損P元素; Ba相對于Rb和Th較虧損,Sr弱虧損。
幾乎一致的主量元素和微量元素特征進一步表明,二云母二長花崗巖(TL01)與黑云母二長花崗巖(TL04)均為同源巖漿結晶的產(chǎn)物,但受不同程度鉀質(zhì)熱液蝕變樣品(TL01)相對未蝕變樣品(TL04)更加富鋁和LILE(Rb、Ba、Sr,K等)。
圖5 香桃湖花崗巖選擇性地球化學散點圖(a)-香桃湖花崗巖的 Q′-ANOR 標準礦物圖解(Streckeisen and Le Maitre,1979);(b)-SiO2-P2O5圖解(Li et al,2007);(c)-A/NK-A/CNK 圖解(Maniar and Piccoli,1989);(d)-SiO2-K2O 巖漿系列判別圖解(Rickwood, 1989)Fig.5 Selected geochemical plots of analyzed samples from Xiangtaohu pluton
本文在羌塘西部香桃湖巖體獲得鋯石 U-Pb 定年結果表明,香桃湖巖體形成于晚三疊世(210.9~212.6Ma),而非前人認為的晚侏羅世(全巖K-Ar法, 廣西壯族自治區(qū)地質(zhì)調(diào)查研究院, 2006*廣西壯族自治區(qū)地質(zhì)調(diào)查研究院. 2006. 中華人民共和國區(qū)域地質(zhì)報告1:25萬查多崗日幅)。沿龍木錯-雙湖縫合帶及南羌塘北緣:長梁山(~210Ma;李才未發(fā)表資料)、果干加年山(210Ma,胡培遠等,2010)、戈木日西部(225Ma,黃小鵬等,2007)、蜈蚣山南部(222Ma, 吉林大學地質(zhì)調(diào)查研究院,2006)以及岡塘錯地區(qū)(210Ma,Kappetal., 2003),均發(fā)現(xiàn)了與香桃湖巖體同期的花崗巖體(225~210Ma),其出露面積超過1400 km2。已有資料表明這一期花崗巖的成因類型十分復雜,西部的長梁山巖體為I型花崗巖(李才未發(fā)表資料),源于鎂鐵質(zhì)下地殼的部分熔融;果干加年山和岡塘錯巖體則具有S型花崗巖特征,可能是上地殼古老物質(zhì)部分熔融的產(chǎn)物(胡培遠等,2010;黃小鵬等,2007);蜈蚣山南部巖體部分樣品甚至表現(xiàn)出A型花崗巖特征(吉林大學地質(zhì)調(diào)查研究院,2006)(如富集HFSE,具有高的鋯石飽和溫度)。但無論哪種成因類型,巖體中普遍含有大量暗色包體,這是羌塘中部晚三疊世花崗巖的一個重要的共同特征。
同時代的火山熔巖-火山碎屑巖主要出露在北羌塘地塊的南緣,沿縫合帶一線分布,西起拉雄錯,向東到那底崗日,延伸超過300km(Zhaietal., 2013b),以中酸性巖石為主,并伴有少量基性巖石,時代為晚三疊世(225~202Ma,翟慶國等,2007;Wangetal., 2008; Fuetal., 2010;Zhangetal., 2011; Zhaietal., 2013b)。
圖6 香桃湖巖體的稀土元素球粒隕石標準化和微量元素原始地幔標準化圖解(標準化值據(jù)Sun and McDonough, 1989)Fig.6 Chondrite-normalized REE and Primitive Mantle-normalized trace element patterns of analyzed samples from Xiangtaohu pluton(normalization values after Sun and McDonough, 1989)
從上文分析可以看出,羌塘中部晚三疊世花崗巖的成因類型十分復雜,因此準確識別香桃湖巖體的成因類型,對進一步研究其源區(qū)性質(zhì)、構造背景以及進行區(qū)域?qū)Ρ染哂兄匾饬x。香桃湖巖體具有低的10000Ga/Al比值(2.15~2.6)以及低的Zr、Nb、Ge和Y含量(Zr+Nb+Ge+Y=181.2×10-6~267.4×10-6),不同于典型的A型花崗巖(Whalenetal. 1987),在Zr-10000Ga/Al圖解上,樣品全部位于鈣堿性花崗巖區(qū)域(圖7a);同時,較低的FeOT/MgO比值(2.51~3.16)和全堿含量(K2O+Na2O=5.58%~7.55%),表明其結晶分異程度不高,在FeOT/MgO-(Zr+Nb+Ce+Y)圖解上,樣品均落入未分異的鈣堿性花崗巖區(qū)域(圖7b)。根據(jù)野外產(chǎn)狀、礦物組合排除了M型花崗巖可能性,但在進一步的判斷中,缺少角閃石、堇青石等區(qū)分I型和S型花崗巖的礦物學標志(吳福元等,2007)。近年來,利用磷灰石在I型和S型花崗巖中不同行為,已成為判斷兩類花崗巖類型的有效手段(Chappell,1999; Li et al,2007)。大量實驗巖石學研究表明,磷灰石在準過鋁或弱過鋁質(zhì)I型花崗質(zhì)巖漿中溶解度很低,是優(yōu)先結晶的礦物,因此I型花崗巖的P2O5總是隨著SiO2含量的升高而降低;而磷灰石在強過鋁質(zhì)巖漿中主要呈不飽和狀態(tài),因此S型花崗巖的P2O5總是隨著SiO2含量的升高而升高或基本不變。本文數(shù)據(jù)顯示,香桃湖巖體為弱過鋁質(zhì)巖石(A/NCK<1.1),P2O5含量很低(0.08%~0.14%),并且SiO2含量與P2O5含量具有明顯的負相關性,與I性花崗巖演化趨勢一致(圖5b),這一趨勢同時亦可以得到Y和Rb呈現(xiàn)的正相關性的支持(圖7c)(Lietal.,2007;Zhuetal., 2009)。另外,鋯石飽和溫度計算表明(Watson and Harrison,1983),香桃湖巖體的母巖漿具有較高的溫度(767~806℃),和I型花崗巖的特征相符。綜上所述,香桃湖巖體屬于弱過鋁質(zhì)I型花崗巖,巖漿源于(變質(zhì))基性火成巖的部分熔融。
圖7 香桃湖巖體及區(qū)域內(nèi)晚三疊世花崗巖的成因分類和構造環(huán)境判別圖解(a, b)-香桃湖巖體的Zr-10000Ga/Al和FeOT/MgO-(Zr+Nb+Ce+Y)分類圖解(據(jù)Whalen et al., 1987),A-A型花崗巖;I-I型花崗巖;S-S型花崗巖;M-M型花崗巖;FG-分異型I、S或M型花崗巖;OGT-未分異的I、S或M型花崗巖;(c)-香桃湖巖體Rb-Y分類圖解(Li et al,2007);(d)-羌塘中部晚三疊世花崗巖體的Sr-Yb分類圖解(據(jù)張旗等,2010);(e, f)-羌塘中部晚三疊世花崗巖體Rb/30-Hf-3Ta(Pearce and Harris,1984)以及Rb-(Y+Nb)圖解(Pearce, 1996);其他巖體資料主要來源于kapp et al., 2000,2003;胡培遠等, 2010; 黃小鵬,2007Fig.7 Classification diagrams and distinguishing diagrams of tectonic settings for Late Triassic magmatism in central Qiangtang
根據(jù)Didieretal. (1991)的研究,花崗巖中的包體可分為3類:捕虜體、殘留體和暗色微粒包體。越來越多的研究表明,大部分的暗色微粒包體是巖漿混合作用的直接證據(jù)(莫宣學等,2002)。香桃湖花崗巖體中發(fā)育大量暗色淬冷包體,通過詳細的野外觀察和巖相學研究,本文認為其為基性巖漿注入寄主(花崗質(zhì))巖漿并遭受不同程度改造后固結的產(chǎn)物,可作為巖漿混合作用的有力證據(jù),其主要證據(jù)如下:(1)包體主要呈橢球狀、餅狀甚至透鏡狀(圖2b),這被普遍認為與液態(tài)表面張力有關,表明包體和寄主巖石曾以流體狀態(tài)共存(周新民等,1992),且這些包體均具有典型的巖漿結構(見前文描述),說明包體既不可能是圍巖捕擄體,更不可能是難熔殘留體;(2)暗色包體中發(fā)育大量針狀磷灰石(圖2d),實驗研究表明,針狀磷灰石為巖漿快速冷凝的產(chǎn)物(Wyllieetal., 1962),被認為是高溫的基性巖漿注入到相對低溫的酸性巖漿房中導致基性巖漿快速冷卻的結果(Hibbard,1991);(3)包體內(nèi)部具暗色礦物鑲邊的石英捕擄晶(圖2e),野外觀察表明這些石英捕擄晶有時甚至可以橫跨包體與寄主巖石的界限,它們是在寄主花崗質(zhì)巖漿中結晶的礦物,在巖漿混合時被基性巖漿捕獲,熔融作用的吸熱效應導致靠近石英邊緣的一圈熔體中形成了局部過冷的條件,導致細粒暗色礦物(這里主要是黑云母)圍繞石英捕擄晶晶出(付強等,2011);(4)包體中部分斜長石斑晶具有黑色細窄的內(nèi)環(huán)帶結構(圖2f),它是由大量細小熔體及黑云母等微粒暗色礦物組成的小環(huán)帶,被認為是巖漿混合作用的重要證據(jù)(Kawamoto, 1992; Baxteretal., 2002);(5)巖體中大多包體為閃長質(zhì)-石英閃長質(zhì),但也有少量偏中基性包體,它們是基性巖漿遭受了寄主巖漿不同程度改造的產(chǎn)物。但在野外研究過程中,我們極其幸運的發(fā)現(xiàn)了極少量基本未被改造的輝長(輝綠)質(zhì)包體(圖2c),可能代表了幔源巖漿最原始成分,為巖漿底侵和巖漿混合提供了最直接證據(jù)。
以上觀察暗示了香桃湖花崗巖體的混合成因,但對不同的巖漿端員和相對貢獻,還需要積累更多數(shù)據(jù)(尤其是同位素地球化學數(shù)據(jù))后再討論。
香桃湖花崗巖體整體為高鉀鈣堿性(少量為鈣堿性)I型花崗巖,并具有強烈的Nb、Ti的負異常和Pb的正異常,這些特征與大陸地殼相似(Rudnick and Fountain,1995)。樣品的Th/U比值為5.19~9.36,平均為7.55,與下地殼Th/U的平均值(6.00,Rudnick and Gao,2003)相近;Nb/Ta比值8.13~10.06,平均為8.97,略高于下地殼的平均值(8.3, Rudnick and Gao, 2003),與有角閃石和金紅石為殘留相的殼源花崗巖(9.00, Dostal and Chatterjee,2000)幾乎一致,表明香桃湖花崗巖可能為下地殼部分熔融的產(chǎn)物。香桃湖花崗巖具有高的Sr含量,低的Yb和Y含量,在花崗巖的Sr-Yb分類圖解(圖7d)上,絕大多數(shù)樣品落入了高Sr低Yb型花崗巖區(qū)域,說明巖漿起源于較高的壓力(張旗等, 2010)。Sr對于石榴石和輝石是強不相容元素,而HREE和Y對于石榴石是強相容元素,香桃湖花崗巖高Sr低Yb的特征,暗示源區(qū)主要殘留相可能為石榴石和輝石。在REE球粒隕石標準化圖上,香桃湖花崗巖具有平坦的HREE分布特征(Hon≈Ybn),且尾部具有微弱上翹趨勢(圖6a,c),暗示中稀土元素的虧損,說明角閃石也是重要的殘留相(Zhuetal. 2008)。樣品均具有弱的負Eu異常,說明源區(qū)可能有少量斜長石的殘留。綜合以上特征,香桃湖花崗巖源區(qū)主要殘留相為石榴石+輝石+角閃石±斜長石,進一步表明巖漿源于下地殼角閃巖相-榴輝巖相變質(zhì)基性火成巖的部分熔融,暗示區(qū)域內(nèi)仍可能存在加厚的下地殼。
花崗巖的地球化學成分主要取決于源區(qū)的性質(zhì)、熔融的物理化學條件以及巖漿的后期演化,對反應構造環(huán)境并不敏感(吳福元等,2007),因此我們在討論香桃湖巖體構造背景時,更多地結合區(qū)域內(nèi)時空演化格架、同時代巖漿活動、高壓變質(zhì)帶等多方面已有研究成果,給予充分的地質(zhì)制約。研究結果表明,包括香桃湖巖體,分布于南羌塘北緣大面積的晚三疊世花崗巖(225~210Ma)可能形成于后碰撞階段伸展構造背景,主要證據(jù)包括:
首先,區(qū)域內(nèi)高壓變質(zhì)帶及相關巖漿活動研究結果表明,在中三疊世(244~230Ma),龍木錯-雙湖縫合帶所代表的特提斯洋盆可能已完全關閉,實現(xiàn)了南北羌塘的陸陸碰撞(Zhaietal., 2011;Zhuetal., 2013);而在晚三疊世,羌塘部分地區(qū)已經(jīng)開始了新一輪的沉積,并以角度不整合覆蓋在混雜巖之上(李才等,2007b),暗示了區(qū)域內(nèi)已由陸陸碰撞環(huán)境開始向板內(nèi)環(huán)境過渡??p合帶內(nèi)部及南羌塘北緣晚三疊世花崗巖(225~210Ma)形成于陸陸碰撞晚期到造山帶向板內(nèi)環(huán)境過渡初期,從演化時限上符合后碰撞的定義。
其次,分析前人資料(吉林大學地質(zhì)調(diào)查研究院, 2006),我們發(fā)現(xiàn)蜈蚣山南部少數(shù)晚三疊世花崗巖具有高的Zr、Nb、Ce和Y含量(Zr+Nb+Ce+Y=392×10-6~530×10-6)以及高的鋯飽和溫度TZr=820~868℃,顯示出A型花崗巖的部分特點(Whalenetal.,1987),表明了區(qū)域內(nèi)晚三疊世應處于一個伸展構造背景。然而,香桃湖巖體高Sr低Y的特征和源區(qū)屬性,暗示區(qū)域內(nèi)可能仍存在加厚的下地殼,說明這一時期雖然處于伸展背景,但并未完全過渡到正常的板內(nèi)環(huán)境
第三,與這一期巖漿活動幾乎同時,區(qū)域內(nèi)高壓變質(zhì)巖系發(fā)生大規(guī)模的折返、侵位及剝露作用(227~203Ma,李才等,2006a;張修政等,2010;Zhaietal., 2011a),進一步證實晚三疊世區(qū)域內(nèi)的伸展構造背景,同時也說明塊體之間仍存在復雜的相互運動,不同于典型的板內(nèi)環(huán)境,而與后碰撞階段特征一致(Liegeois, 1998)。
第四,地球化學特征進一步顯示其后碰撞的特征,在Rb/30-Hf-3Ta以及Rb-(Y+Nb)構造環(huán)境判別圖解上(圖7e, f),區(qū)域內(nèi)絕大部分晚三疊世樣品落在后碰撞花崗巖范圍內(nèi)。
綜上所述,我們認為分布于縫合帶及其南側晚三疊世花崗巖形成于后碰撞階段伸展構造背景。而對于縫合帶及其北側同時代(220~205Ma)火山巖的構造背景,學術界目前主要有島弧(李才等,1995,2009;翟慶國等,2007;Zhaietal., 2013)以及板內(nèi)裂谷環(huán)境(Fuetal., 2010)兩種主流觀點。近期研究表明,這期火山巖中基性巖石的地球化學及同位素特征與典型島弧玄武巖差別較大,而顯示板內(nèi)玄武巖親緣性(Fuetal., 2010; Zhangetal., 2011);然而結合本文研究,這一時期區(qū)域內(nèi)并未完全過渡到典型的板內(nèi)環(huán)境,塊體間仍具有復雜的相互運動并可能存在加厚的下地殼;同時進一步分析前人數(shù)據(jù)(Zhaietal., 2013b),部分流紋巖樣品具有A2型花崗石的特征。因此,我們認為縫合帶及其北側同時期火山巖可能和南側晚三疊世花崗巖形成于相同的構造背景,即后碰撞階段伸展背景。
羌塘中部晚三疊世大規(guī)模巖漿活動說明這一時期區(qū)域內(nèi)具有高的巖漿產(chǎn)率和高的熔融異常,意味著必須有異常熱量注入。近年來學術界已認識到同碰撞-后碰撞階段,這種異常熱量注入引發(fā)的大規(guī)模巖漿活動通常和俯沖板片斷離(slab break-off)密切相關(Davies and von Blanckenburg, 1995; Coulonetal., 2002; Chungetal., 2005; Xuetal., 2008;van Hunen and Allen, 2011)。綜合區(qū)域內(nèi)已有資料和相關地質(zhì)事實,我們認為羌塘中部晚三疊世后碰撞巖漿事件具有板片斷離引發(fā)巖漿活動的一系列特定標志,主要包括:
(1)這一期巖漿活動以大量的中酸性巖石伴以少量的基性巖石為特征,同期的基性巖石(220Ma)具有高的Nb/Zr和Zr/Y比值以及正的εNd(t),不同于典型島弧玄武巖而顯示板內(nèi)玄武巖親緣性(Fuetal., 2010; Zhangetal., 2011);并且?guī)r漿作用沿龍木錯-雙湖-瀾滄江板塊縫合帶一線及其兩側大陸邊緣呈窄的帶狀分布,與板塊斷離引發(fā)巖漿活動的巖石類型及分布特征一致(Davies and von Blanckenburg., 1995;Ferrari,2004;Xuetal., 2008)。
(2)羌塘中部晚三疊世不僅存在大規(guī)模的后碰撞巖漿活動(225~202Ma),與此同時還伴隨著大量深俯沖物質(zhì)的快速折返和剝露事件(227~203Ma,李才等,2006a;張修政等,2010;Zhaietal., 2011a),這與板片斷離的數(shù)值模擬結果完全吻合。因為數(shù)值模擬表明,板片斷離不但能引發(fā)大規(guī)模巖漿活動,而且還將導致造山帶之下具有浮力的大陸地殼物質(zhì)沿俯沖通道排出并剝露出來(Duretzetal., 2011)。
(3)Zhuetal.(2013)進一步指出,隨著板片斷離,軟流圈物質(zhì)沿板片窗上涌,不但能導致碰撞造山帶上盤發(fā)生部分熔融,來源于軟流圈或地幔楔物質(zhì)減壓熔融的基性巖漿,也可以沿俯沖通道侵位于碰撞帶下盤,并可能導致碰撞帶下盤的地殼重熔。這與羌塘中部晚三疊世大規(guī)模巖漿活動橫跨縫合帶分布的特征吻合。另外,基性巖漿底侵造成碰撞帶下盤地殼重熔的同時,必然伴隨著廣泛的巖漿混合作用,這同樣得到南羌塘北緣(造山帶下盤)晚三疊世花崗巖中普遍存在與巖漿混合作用相關的暗色包體的支持。
綜上所述,我們認為龍木錯-雙湖縫合帶所代表的特提斯洋巖石圈向北俯沖以及隨后俯沖板片的斷離(可能在~220Ma)是羌塘中部晚三疊世后碰撞構造巖漿事件的重要機制。隨著板片的斷離,形成區(qū)域內(nèi)整體伸展背景,軟流圈物質(zhì)沿板片窗上涌,造成不同源區(qū)(包括上升的軟流圈地幔、富集的巖石圈地幔和上覆地殼)發(fā)生部分熔融,形成了北羌塘(碰撞帶上盤)南緣巖漿成分復雜的那底崗日火山巖;同時基性巖漿沿俯沖通道侵位于碰撞帶下盤的南羌塘地塊,導致不同層次地殼重熔并伴隨廣泛的巖漿混合作用,形成了南羌塘北緣成因類型多樣且普遍含有大量暗色包體的花崗巖。
(1)香桃湖巖體形成于晚三疊世,而并非前人認為的晚侏羅世;
(2)香桃湖花崗巖為弱過鋁質(zhì)高鉀鈣堿性-鈣堿性I型花崗巖,巖漿源于下地殼角閃巖相-榴輝巖相變質(zhì)基性火成巖的部分熔融;
(3)羌塘中部橫跨龍木錯-雙湖-瀾滄江板塊縫合帶分布的大規(guī)模晚三疊世巖漿事件形成于后碰撞階段伸展構造背景,俯沖板塊的斷離是其可能的成因機制。
致謝參加野外工作的還有劉海洋、黃光宇、魏寶旭、梁振旺同學;鋯石樣品制備、陰極發(fā)光照相、LA-ICP-MS U-Pb定年得到了中國地質(zhì)大學(北京)地學實驗中心蘇犁教授和張紅雨,李嬌碩士等的幫助;朱弟成教授為本文提出建設性修改意見;在此一并表示衷心的感謝。
Bao PS, Xiao XC, Wang J, Li C and Hu K. 1999. The blueschist belt in the Shuanghu region, Central-Northern Tibet and its tectonic implications. Acta Geologica Sinica, 73(4): 302-314 (in Chinese with English abstract)
Barbarin B. 1999. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos, 46(3): 605-626
Baxter S and Feely M. 2002. Magma mixing and mingling textures in granitoids: Examples from the Galway Granite, Connemara, Ireland. Mineralogy and Petrology, 76(1): 63-74
Chappell BW. 1999. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos, 46(3): 535-551
Chen L, Xu J and Su L. 2005. Characteristics of microspectrofluorimeter at STEM and it geological applications on zircon study. Progress in Natural Science, 15(11): 1403-1408 (in Chinese with English abstract)
Chung SL, Chu MF, Zhang YQ, Xie YW, Lo CH, Lee TY, Lan CY, Li XH, Zhang Q and Wang YZ. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Science Reviews, 68(3-4): 173-196
Coulon C, Megartsi M, Fourcade S, Maury R, Bellon H, Louni-Hacini A, Cotton J, Coutelle A and Hermitte D. 2002. Post-collisional transition from calc-alkaline toalkaline volcanism during the Neogene in Oranie (Algeria): Magmatic expression of a slab breakoff. Lithos, 62(3-4): 87-110
Davies HJ and von Blanckenburg F. 1995. Slab breakoff: A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth and Planetary Science Letters, 129(1-4): 85-102
Deng WM, Yin JX and Guo ZP. 1996. Basic-ultrabasic and volcanic rocks in Chagbu-Shuanghu area of northern Xizang (Tibet), China. Science in China (Series D), 39(4): 359-368
Deng XG, Ding L, Liu XH, An Y, Kapp PA, Murphy MA and Manning CE. 2000. Discovery of blueschists in Gangmar-Taoxing Co area, central Qiangtang, northern Tibet. Scientia Geologica Sinica, 35(2): 227-232 (in Chinese with English abstract)
Didier J and Barbarin B. 1991. Enclaves and Granite Petrology. Amsterdam: Elsevier: 1-625
Dong YS, Li C, Shi JR and Wang SY. 2009. Retrograde metamorphism and tectonic emplacement of high pressure metamorphic belt in central Qiangtang Tibet. Acta Petrologica Sinica, 25(9): 2303-2309 (in Chinese with English abstract)
Dostal J and Chatterjee AK. 2000. Contrasting behaviour of Nb/Ta and Zr/Hf ratios in a peraluminous granitic pluton Nova Scotia, Canada). Chemical Geology, 163(1-4): 207-218
Duretz T, Gerya TV and May DA. 2011. Numerical modelling of spontaneous slab breakoff and subsequent topographic response. Tectonophysics, 502(1-2): 244-256
Ferrari L. 2004. Slab detachment control on mafic volcanic pulse and mantle heterogeneity in central Mexico. Geology, 32(1): 77-80
Fu Q, Ge WS, Wen CS, Cai KQ, Li SF, Zhang ZW and Li XF. 2011. Geochemistry and genesis of Michang granites and their dark microgranular enclaves in Guangxi. Acta Geoscientica Sinica, 32(3): 293-303 (in Chinese with English abstract)
Fu XG, Wang J, Tan FW, Chen M and Chen WB. 2010. The Late Triassic rift-related volcanic rocks from eastern Qiangtang, northern Tibet (China): Age and tectonic implications. Gondwana Research, 17(1): 135-144
Hibbard MJ. 1991. Textural anatomy of twelve magma-mixed granitoid systems. In: Didier J and Barbarin B (eds.). Enclaves and Granite Petrology. Developments in Petrology. Amsterdam: Elsevier: 431-444
Hu PY, Li C, Yang HT, Zhang HB and Yu H. 2010. Characteristic, zircon dating and tectonic significance of Late Triassic granite in the Guoganjianianshan area, central Qiangtang, Qinghai-Tibet Plateau, China. Geological Bulletin of China, 29(12): 1825-1832 (in Chinese with English abstract)
Hu PY, Li C, Xie CM, Wu YW, Wang M and Su L. 2013. Albite granites in Taoxinghu ophiolite in central Qiangtang, Qinghai-Tibet Plateau, China: Evidences of Paleo-Tethys oceanic crust subduction. Acta Petrologica Sinica, 29(12): 4404-4414 (in Chinese with English abstract)
Huang JQ, Chen GM and Chen BW. 1984. Preliminary analysis of the Tethys-Himalayan tectonic domain. Acta Geologica Sinica, 58(1): 1-17 (in Chinese with English abstract)
Huang XP, Li C and Zhai QG. 2007. Geochemistry and tectonic settings of Indosinian granites in the Mayêr Kangri area, central Qiangtang, Tibet, China. Geological Bulletin of China, 26(12): 1646-1653 (in Chinese with English abstract)
Kapp P, Yin A, Manning CE, Harrison TM, Taylor MH and Ding L. 2003. Tectonic evolution of the Early Mesozoic blueschist-bearing Qiangtang metamorphic belt, central Tibet. Tectonics, 22(4): 1043, doi: 10.1029/2002TC001383
Kawamoto T. 1992. Dusty and honey comb plagioclase: Indicators of processes in the Uchino stratified magma chamber, lzu Peninsula, Japan. Journal of Volcanology and Geothermal Research, 49(3-4): 191-208
Li C. 1987. The Longmucuo-Shuanghu-Lanchangjiang plate suture and the north boundary of distribution of Gondwana facies Permian-Carboniferous System in northern Xizang, China. Journal of Changchun University of Earth Science, 17(2): 155-166 (in Chinese with English abstract)
Li C, Zhai QG, Dong YS and Huang XP. 2006a. Discovery of geclogite and its significance from the Qiangtang area, central Tibet. Chinese Science Bulletin, 51(9): 1095-1100
Li C, Huang XP, Zhai QG, Zhu TX, Yu YS, Wang GH and Zeng QG. 2006b. The Longmu Co-Shuanghu-Jitang plate suture and the northern boundary of Gondwanaland in the Qinghai-Tibet Plateau. Earth Science Frontiers, 13(4): 136-147 (in Chinese with English abstract)
Li C, Zhai QG, Dong YS, Zeng QG and Huang XP. 2007a. Longmu Co-Shanghu Plate suture in the Qinghai-Tibet Plateau and records of the evolution of the Paleo-Tethyan ocean in the Qiangtang area, Tibet, China. Geological Bulletin of China, 26(1): 13-21 (in Chinese with English abstract)
Li C, Zhai QG, Chen W, Dong YS and Yu JJ. 2007b. Geochronology evidence of the closure of Longmu Co-Shuanghu suture, Qinghai-Xiznag Plateau: Ar-Ar and zircon SHRIMP geochronology from ophiolite and rhyolite in Guoganjianian. Acta Pertrologica Sinica, 23(5): 911-918 (in Chinese with English abstract)
Li C. 2008. A review for 20 years’study of the Longmu Co-Shuanghu-Lancang River Suture Zone in the Qinghai-Xizang (Tibet) Plateau. Geological Review, 54(1): 105-119 (in Chinese with English abstract)
Li C, Zhai QG, Dong YS, Jiang GW, Xie CM, Wu YW and Wang M. 2008. The ocean crust in northern Gondwana Land: The evidence from Early Paleozoic ophiolite in central Qiangtang, Qinghai-Tibet Plateau. Geological Bulletin of China, 27(10): 1605-1612 (in Chinese with English abstract)
Li C, Zhai GY, Wang LQ, Yin FG and Mao XC. 2009. An important window for understanding the Qinghai-Tibet Plateau: A review on research progress in recent years of Qiangtang area, Tibet, China. Geological Bulletin of China, 28(9): 1169-1177 (in Chinese with English abstract)
Li XH, Li ZX, Li WX, Liu Y, Yuan C, Wei GJ and Qi CS. 2007. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I- and A-type granites from central Guangdong, SE China: A major igneous event in response to foundering of a subducted flat-slab? Lithos, 96(1-2): 186-204
Li YJ, Wu HR, Li HS and Sun DL. 1997. Dscovery of radioarians in the Amugang and Chasang groups and Lugu Formation in northern Tibet and some related geological problems. Geological Review, 43(3): 250-256 (in Chinese with English abstract)
Liegeois LP. 1998. Preface-ome words on the post-collisional magmatism. Lithos, 45: 15-17
Maniar PD and Piccoli PM. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101: 635-643
Mo XX, Luo ZH, Xiao QH, Yu XH, Liu CD, Zhao ZD and Zhou S. 2002. Evidence of magma mixing in granitoids plutons and the way of investgation. In: Xiao QH, Deng JF, Ma DQetal. (eds.). The way of investigation on Granitoids. Beijing: Geological Publishing House, 53-57 (in Chinese with English abstract)
Pan GT, Wang LQ and Zhu DC. 2004a. Thoughts on some important scientific problems in regional geological survey of the Qinghai-Tibet Plateau. Geological Bulletin of China, 23(1): 12-19 (in Chinese with English abstract)
Pan GT, Zhu DC, Wang LQ, Liao ZL, Gen QR and Jiang XS. 2004b. Bangong Lake-Nu River suture zone-the northern boundary of Gondwanaland: Evidence from geology and geophysics. Earth Science Frontiers, 11(4): 371-382 (in Chinese with English abstract)
Pearce J. 1996. Sourees and settings of granitic rocks. Episodes, 19(4): 120-125
Pullen A, Kapp P, Cehrels GE, Vervoort JD and Ding L. 2008. Triassic continental subduction in central Tibet and Mediterranean-style closure of the Paleo-Tethys Ocean. Geology, 36(5): 351-354
Rickwood PC. 1989. Boundary lines within petrologic diagrams which use oxides of minor and minor elements. Lithos, 22(4): 247-263
Rudnick RL and Fountain DM. 1995. Nature and composition of the continental crust: A lower crustal perspective. Reviews of Geophysics, 33(3): 267-309
Rudnick RL and Gao S. 2003. Composition of the continental crust. In: Rudnick RL (ed.). The Crust. Treatise in Geochemistry, 3: 1-64
Shi JR, Dong YS and Wang SY. 2009. Dating and tectonic significance of plagiogranite from Guoganjianian Mountain, central Qiangtang, northern Tibet, China. Geological Bulletin of China, 28(9): 1236-1243 (in Chinese with English abstract)
Streckeisen A and Le Maitre RW. 1979. A chemical approximation to the modal QAPF classification of the igneous rocks. Neues Jahrbuch für Mineralogie Abhandlungen, 136: 169-206
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalt: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. London Geological Society Special Publication, 42: 313-345
van Hunen J and Allen MB. 2011. Continental collision and slab break-off: A comparison of 3-D numerical models with observations. Earth and Planetary Science Letters, 302(1-2): 27-37
Wang Q, Wyman DA, Xu JF, Wan YS, Li CF, Zi F, Jiang ZQ, Qiu HN, Chu ZY, Zhao ZH and Dong YH. 2008. Triassic Nb-enriched basalts, magnesian andesites, and adakites of the Qiangtang terrane (Central Tibet): Evidence for metasomatism by slab-derived melts in the mantle wedge. Contributions to Mineralogy and Petrology, 155(4): 473-490
Watson EB and Harrison TM. 1983. Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64(2): 295-304
Whalen JB, Currie KL and Chappell BW. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419
White AJR. 1979. Sources of granite magmas. Geological Society of America Abstract with Programs, 11: 539
Wu YB and Zheng YF. 2004. Genesis of zircon and its constraints on interpretation of U-Pb age. Chinese Science Bulletin, 49(15): 1544-1569
Wu FY, Li XH, Yang JH and Zheng YH. 2007. Discussions on the Petrogenesis of granites. Aeta Petrologica Sinica, 23(6): 1217-1238 (in Chinese with English abstract)
Zhai QG, Li C, Chen LR and Zhang YC. 2004. Geological features of Permian ophiolite in the Jiaomuri area, Qiangtang, Tibet, and its tectonic significance. Geological Bulletin of China, 23(12): 1228-1230 (in Chinese with English abstract)
Zhai QG and Li C. 2007. Zircon SHRIMP dating of volcanic rock from the Nadigangri Formation in Juhuashan, Qiangtang, northern Tibet and its geological significance. Acta Geologica Sinica, 81(6): 795-800 (in Chinese with English abstract)
Zhai QG, Li C, Dong YS, Wang J, Chen W and Zhang Y. 2009. Petrology, mineralogy and40Ar/39Ar chronology for Rongma blueschist from central Qiangtang, northern Tibet. Acta Petrologica Sinica, 25(9): 2281-2288 (in Chinese with English abstract)
Zhai QG, Zhang RY, Jahn BM, Li C, Song SG and Wang J. 2011a. Triassic eclogites from central Qiangtang, northern Tibet, China: Petrology, geochronology and metamorphic P-T path. Lithos, 125(1-2): 173-189
Zhai QG, Jahn BM, Zhang RY, Wang J and Su L. 2011b. Triassic subduction of the Paleo-Tethys in northern Tibet, China: Evidence from the geochemical and isotopic characteristics of eclogites and blueschists of the Qiangtang Block. Journal of Asian Earth Sciences, 42(6): 1356-1370
Zhai QG, Jahn BM, Wang J, Su L, Mo XX, Wang KL, Tang SH and Lee HY. 2013a. The Carboniferous ophiolite in the middle of the Qiangtang terrane, Northern Tibet: SHRIMP U-Pb dating, geochemical and Sr-Nd-Hf isotopic characteristics. Lithos, 168-169: 186-199
Zhai QG, Jahn BM, Su L, Wang J, Mo XX, Lee HY. Wang KL and Tang SH. 2013b. Triassic arc magmatism in the Qiangtang area, northern Tibet: Zircon U-Pb ages, geochemical and Sr-Nd-Hf isotopic characteristics, and tectonic implications. Journal of Asian Earth Sciences, 63: 162-178
Zhang Q, Jin WJ, Li CD and Wang YL. 2010. On the classification of granitic rocks based on whole-rock Sr and Yb concentrations III: Practice. Acta Petrologica Sinica, 26(12): 3431-3455 (in Chinese with English abstract)
Zhang XZ, Dong YS, Shi JR and Wang SY. 2010a. Formation and significance of jadeite garnet mica schist newly discovered in Longmu Co-Shuanghu suture zone, central Qiangtang. Earth Science Frontiers, 17(1): 93-103 (in Chinese with English abstract.
Zhang XZ, Dong YS, Li C, Chen W, Shi JR, Zhang Y and Wang SY. 2010b. Identification of the elcogites in different ages and their tectonic significance in Central Qiangtang, Tibetan Plateau: Constraints from40Ar-39Ar isotope chronology. Geological Bulletin of China, 29(12): 1815-1824(in Chinese with English abstract)
Zhang XZ, Dong YS, Li C, Shi JR and Wang SY. 2010c. Geochemistry and tectonic significance of eclogites in Central Qiangtang, Tibetan Plateau. Geological Bulletin of China, 29(12): 1804-1814 (in Chinese with English abstract)
Zhang KJ, Tang XC, Wang Y and Zhang YX. 2011. Geochronology, geochemistry, and Nd isotopes of Early Mesozoic bimodal volcanism in northern Tibet, western China: Constraints on the exhumation of the central Qiangtang metamorphic belt. Lithos, 121(1-4): 167-175
Zeng LS, Gao LE, Xie KJ and Liu J. 2011. Mid-Eocene high Sr/Y granites in the Northern Himalayan gneiss domes: Melting thickened lower continental crust. Earth and Planetary Science Letters, 303(3-4): 251-266
Zhou XM, Yao YP and Xu XS. 1992. Quenched enclaves in Dajushan granitoid and their genesis, East Zhejiang, China. Acta Petrologica Sinica, 8(3): 234-242 (in Chinese with English abstract)
Zhu TX, Zhang QY, Dong H, Wang YJ, Yu YS and Feng XT. 2006. Discovery of the Late Devonian and Late Permian radiolarian cherts in tectonic mélanges in the Cêdo Caka area, Shuanghu, northern Tibet, China. Geological Bulletin of China, 25(12): 1413-1418 (in Chinese with English abstract)
Zhu DC, Pan GT, Chun SL, Liao ZL, Wang LQ and Li GM. 2008. SHRIMP zircon age and geochemical constraints on the origin of Early Jurassic volcanic rocks from the Yeba Formation, southern Gangdese in South Tibet. International Geology Review, 50(5): 442-471
Zhu DC, Mo XX, Wang LQ, Zhao ZD, Niu YL, Zhou CY and Yang YH. 2009. Petrogenesis of highly fractionated I-type granites in the Zayu area of eastern Gangdese, Tibet: Constraints from zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopes. Science in China (Series D), 52(9): 1223-1239
Zhu DC, Zhao ZD, Niu YL, Dilek Y, Hou ZQ and Mo XX. 2013. The origin and Pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429-1454
附中文參考文獻
鮑佩聲, 肖序常, 王軍, 李才, 胡克. 1999. 西藏中北部雙湖地區(qū)藍片巖帶及其構造涵義. 地質(zhì)學報, 73(4): 302-314
陳莉, 徐軍, 蘇犁. 2005. 場發(fā)射環(huán)境掃描電子顯微鏡上陰極熒光譜儀特點及其在鋯石研究中的應用. 自然科學進展, 15(11): 1403-1408
鄧萬明, 尹集祥, 咼中平. 1996. 羌塘茶布-雙湖地區(qū)基性超基性巖和火山巖研究. 中國科學(D輯), 26(4): 296-301
鄧希光, 丁林, 劉小漢, An Y, Kapp PA, Murphy MA, Manning CE. 2000. 藏北羌塘中部岡瑪日—桃形錯藍片巖的發(fā)現(xiàn). 地質(zhì)科學, 35(2): 227-232
董永勝, 李才, 施建榮, 王生云. 2009. 羌塘中部高壓變質(zhì)帶的退變質(zhì)作用及其構造侵位. 巖石學報, 25(9): 2303-2309
付強, 葛文勝, 溫長順, 蔡克勤, 李世富, 張志偉, 李小飛. 2011. 廣西米場花崗巖及其暗色微粒包體的地球化學特征和成因分析. 地球?qū)W報, 32(3): 293-303
黃汲清, 陳國銘, 陳炳蔚. 1984. 特提斯-喜馬拉雅構造域初步分析. 地質(zhì)學報, 58(1): 1-17
胡培遠, 李才, 楊韓濤, 張海波, 于紅. 2010. 青藏高原羌塘中部果干加年山一帶晚三疊世花崗巖的特征、鋯石定年及其構造意義. 地質(zhì)通報, 29(12): 1825-1832
胡培遠,李才,解超明,吳彥旺,王明,蘇犁. 2013. 藏北羌塘中部桃形湖蛇綠巖中鈉長花崗巖——古特提斯洋殼消減的證據(jù). 巖石學報, 29(12): 4404-4414
黃小鵬, 李才, 翟慶國. 2007. 西藏羌塘中部瑪依崗日地區(qū)印支期花崗巖的地球化學特征及其形成環(huán)境. 地質(zhì)通報, 29(12): 1646-1653
李才. 1987. 龍木錯-雙湖-瀾滄江板塊縫合帶與石炭二疊紀岡瓦納北界. 長春地質(zhì)學院學報, 17(2): 155-166
李才, 翟慶國, 董永勝, 黃小鵬. 2006a. 青藏高原羌塘中部發(fā)現(xiàn)榴輝巖及其意義. 科學通報, 25(1-2): 70-75
李才, 黃小鵬, 翟慶國, 朱同興, 于遠山, 王根厚, 曾慶高. 2006b. 龍木錯-雙湖-吉塘板塊縫合帶與青藏高原岡瓦納北界. 地學前緣, 13(4): 136-147
李才, 翟慶國, 董永勝, 曾慶高, 黃小鵬. 2007a. 青藏高原龍木錯-雙湖板塊縫合帶與羌塘古特提斯洋演化記錄. 地質(zhì)通報, 26(1): 13-21
李才, 翟慶國, 陳文, 董永勝, 于介江. 2007b. 青藏高原龍木錯-雙湖板塊縫合帶閉合的年代學證據(jù)——來自果干加年山蛇綠巖與流紋巖Ar-Ar和SHRIMP年齡制約. 巖石學報, 23(5): 911-918
李才. 2008. 青藏高原龍木錯-雙湖-瀾滄江板塊縫合帶研究二十年. 地質(zhì)論評, 54(1): 105-119
李才, 翟慶國, 董永勝, 蔣光武, 解超明, 吳彥旺, 王明. 2008. 岡瓦納大陸北緣早期洋殼信息——來自青藏高原羌塘中部早古生代蛇綠巖依據(jù). 地質(zhì)通報, 27(10): 1605-1612
李才, 翟剛毅, 王立全, 尹福光, 毛曉長. 2009. 認識青藏高原的重要窗口——羌塘地區(qū)近年來研究進展評述(代序). 地質(zhì)通報, 28(9): 1169-1177
李曰俊, 吳浩若, 李紅生, 孫東立. 1997. 藏北阿木崗群、查桑群和魯谷組放射蟲的發(fā)現(xiàn)及有關問題討論. 地質(zhì)論評, 43(3): 250-256
莫宣學, 羅照華, 肖慶輝, 喻學惠, 劉成東, 趙志丹, 周肅. 2002. 花崗巖類巖石中巖漿混合作用的識別與研究方法. 見: 肖慶輝, 鄧晉福, 馬大銓等主編. 花崗巖研究思維與方法. 北京: 地質(zhì)出版社: 53-70
潘桂棠, 王立全, 朱第成. 2004a. 青藏高原區(qū)域地質(zhì)調(diào)查中幾個重大科學問題的思考. 地質(zhì)通報, 23(1): 12-19
潘桂棠, 朱弟成, 王立全, 廖忠禮, 耿全如, 江新勝. 2004b. 班公湖-怒江縫合帶作為岡瓦納大陸北界的地質(zhì)地球物理證據(jù). 地學前緣, 11(4): 371-382.
施建榮, 董永勝, 王生云. 2009. 藏北羌塘中部果干加年山斜長花崗巖定年及其構造意義. 地質(zhì)通報, 28(9): 1236-1243
吳元保, 鄭永飛. 2004. 鋯石成因礦物學研究及其對U-Pb年齡解釋的制約. 科學通報, 49(16): 1589-1604
吳福元, 李獻華, 楊進輝, 鄭永飛. 2007. 花崗巖成因研究的若干問題. 巖石學報, 23(6): 1217-1238
翟慶國, 李才, 程立人, 張以春. 2004. 西藏羌塘角木日地區(qū)二疊紀蛇綠巖的地質(zhì)特征及意義. 地質(zhì)通報, 23(12): 1228-1230.
翟慶國, 李才. 2007. 藏北羌塘菊花山那底崗日組火山巖鋯石SHRIMP定年及其意義. 地質(zhì)學報, 81(6): 795-800
翟慶國, 李才, 董永勝, 王軍, 陳文, 張彥. 2009. 藏北羌塘中部絨瑪?shù)貐^(qū)藍片巖巖石學、礦物學和40Ar/39Ar年代學. 巖石學報, 25(9): 2281-2288
張旗, 金惟俊, 李承東, 王元龍. 2010. 三論花崗巖按照Sr-Yb的分類: 應用. 巖石學報, 26(12): 3431-3455
張修政, 董永勝, 施建榮, 王生云. 2010a. 羌塘中部龍木錯-雙湖縫合帶中硬玉石榴石二云母片巖的成因及意義. 地學前緣, 17(1): 93-103
張修政, 董永勝, 李才, 陳文, 施建榮, 張彥, 王生云. 2010b. 青藏高原羌塘中部不同時代榴輝巖的識別及其意義——來自榴輝巖及其圍巖40Ar-39Ar年代學的證據(jù). 地質(zhì)通報, 29(12): 1815-1824
張修政, 董永勝, 李才, 施建榮, 王生云. 2010c. 青藏高原羌塘中部榴輝巖地球化學特征及其大地構造意義. 地質(zhì)通報, 29(12): 1804-1814
朱同興, 張啟躍, 董瀚, 王玉凈, 于遠山, 馮心濤. 2006. 藏北雙湖地區(qū)才多茶卡一帶構造混雜巖中新發(fā)現(xiàn)晚泥盆世和晚二疊世放射蟲硅質(zhì)巖. 地質(zhì)通報, 25(12): 1413-1418
周新民, 姚玉鵬, 徐夕生. 1992. 浙東大衢山花崗巖中淬冷包體及其成因機制. 巖石學報, 8(3): 234-242