吳發(fā)富 王宗起 閆臻 陳雷 夏長玲 郭延輝 彭遠民
1. 中國地質(zhì)科學(xué)院礦產(chǎn)資源研究所國土資源部成礦作用與礦產(chǎn)資源評價重點實驗室,北京 1000372. 中國地質(zhì)調(diào)查局武漢地質(zhì)調(diào)查中心,武漢 4302053. 中國地質(zhì)科學(xué)院地質(zhì)研究所,北京 1000374. 西北有色地質(zhì)勘查局713總隊,商洛 7260001.
秦嶺造山帶是華北板塊和揚子板塊古生代俯沖-增生造山作用和中生代碰撞造山作用共同形成的疊合型造山帶(王宗起等,2009)。該造山帶被商(縣)丹(鳳)和勉(縣)略(陽)兩條縫合帶所分割,自北而南依次被稱為北秦嶺、南秦嶺構(gòu)造帶和揚子板塊。該造山帶內(nèi)的巖漿活動強烈,主要發(fā)育中-晚印支期(237~199Ma)花崗巖(嚴陣,1985;尚瑞鈞和嚴陣,1988;李先梓等,1993;盧欣祥等,1996,1999,2007;胡健民等,2004;王曉霞等,2005;弓虎軍等,2009a,b;Qinetal.,2009,2010;秦江鋒,2010;Jiangetal.,2010;Liuetal.,2011;劉樹文等,2011)。在山陽-柞水地區(qū)出露有沙河灣、柞水和東江口等巖體,它們分布于商丹斷裂帶南側(cè)中秦嶺弧前盆地和弧前增生雜巖帶(Yanetal.,2006,2012)中。這些花崗巖多屬于高鉀鈣堿性I型花崗巖,并具有埃達克巖的地球化學(xué)特征(秦江鋒等,2005,2007;Zhangetal.,2007;張成立等,2008;Qinetal.,2009,2010;Jiangetal.,2010;秦江鋒,2010),是由虧損地幔巖漿與古老下地殼部分熔融巖漿發(fā)生混合作用所形成(王曉霞等,2005;王娟等,2008;弓虎軍等,2009a,b;田偉等,2009;秦江鋒,2010;劉樹文等,2011;Liuetal.,2011)。同時,在商丹縫合帶兩側(cè)也有大量的侏羅紀-白堊紀巖漿作用。在該縫合帶北側(cè)主要表現(xiàn)為莽嶺巖體、藍田巖體、華山巖體、合峪巖體等巖基,而在其南側(cè)的山陽-柞水地區(qū)主要表現(xiàn)為閃長巖、石英閃長巖、花崗巖閃長巖、二長花崗巖等中酸性小巖珠、小巖枝。
近年來,在山陽-柞水地區(qū)相繼發(fā)現(xiàn)了眾多與燕山中晚期中酸性花崗(斑)巖體密切相關(guān)的斑巖-矽卡巖型Cu-Mo-Fe、Cu-Mo-Au-Fe礦床(點),然而,對于這些花崗巖的巖相學(xué)、巖石地球化學(xué)和形成時代研究相對較弱。盡管前人對山陽-柞水地區(qū)的花崗(斑)巖體進行了不同程度的研究,并獲得了一系列同位素年齡證據(jù),但這些年齡數(shù)據(jù)主要是花崗巖黑云母K-Ar年齡和全巖Rb-Sr等時線模式年齡,年齡范圍變化較大(276.6~94.6Ma)(萬義文,1980;嚴陣,1985;尚瑞鈞和嚴陣,1988;李先梓等,1993),缺乏相對系統(tǒng)的鋯石U-Pb同位素年代學(xué)研究。此外,系統(tǒng)的巖石學(xué)和巖石地球化學(xué)研究也相對缺乏。這些均影響和制約了該區(qū)與花崗質(zhì)巖漿作用相關(guān)的礦產(chǎn)的地質(zhì)找礦預(yù)測。因此,準確厘定山陽-柞水地區(qū)花崗(斑)巖體的形成時代、巖石學(xué)及其地球化學(xué)特征和巖漿源區(qū),對于探討侏羅紀-白堊紀秦嶺造山帶構(gòu)造演化乃至指導(dǎo)該區(qū)的區(qū)域找礦都具有重要的理論和實際意義。
本文對山陽-柞水地區(qū)白沙溝Au礦化點、池溝Cu-Mo-Au礦區(qū)以及土地溝Cu-Mo礦化點內(nèi)出露的閃長(玢)巖、石英閃長巖、花崗閃長巖、二長花崗巖等主要巖類進行了系統(tǒng)的野外調(diào)查,采集了相關(guān)分析樣品。室內(nèi)在巖石學(xué)和地球化學(xué)研究基礎(chǔ)上,運用LA-ICP-MS鋯石U-Pb測年方法進行了成巖年齡測定,并研究了鋯石Lu-Hf同位素組成,進而探討了這些含礦巖體的巖石類型、地球化學(xué)特征、形成時代及巖漿源區(qū)性質(zhì)和形成的構(gòu)造背景。
研究區(qū)位于陜西省山陽縣-柞水縣一帶,屬南秦嶺造山帶,其北部邊界為商丹斷裂,南部為鳳鎮(zhèn)-山陽斷裂(圖1a)。商丹斷裂將秦嶺造山帶分為北秦嶺和南秦嶺(李春昱等,1978)。近EW向的鳳鎮(zhèn)-山陽斷裂為本區(qū)南界斷層,是一條由NS向逆沖推覆與近EW向走滑剪切疊加形成的大型斷層帶,控制了本研究區(qū)南界。在鳳鎮(zhèn)-山陽斷裂及其以北的多條與其近于平行的斷層被NS、NNE向左行走滑斷層所切割(圖1a),它們共同控制了區(qū)內(nèi)花崗(斑)巖體和地層的產(chǎn)出與分布。山陽-柞水地區(qū)主要出露泥盆紀地層,研究區(qū)內(nèi)主要出露中泥盆世劉嶺群,為一套濱淺海相-三角洲相沉積組合(閆臻等,2007);研究區(qū)南側(cè)主要出露石炭系和中上泥盆統(tǒng),屬深海相-淺海相沉積組合(Yanetal.,2006)(圖1a)。區(qū)域構(gòu)造分析以及砂巖碎屑組成等綜合研究表明,山陽-柞水地區(qū)的晚古生代沉積為一套弧前盆地沉積組合(王宗起等,2002;閆臻等,2007;Yanetal.,2006,2012)。在鳳鎮(zhèn)-山陽斷裂內(nèi)部,自西向東斷續(xù)分布有新元古代小磨嶺雜巖、冷水溝雜巖和板板山巖體等,它們以構(gòu)造透鏡體形式與泥盆系碎屑巖相互混雜。
圖1 秦嶺山陽-柞水地區(qū)地質(zhì)簡圖(a)及池溝地區(qū)地質(zhì)簡圖(b)1-新生界;2-石炭系;3-早石炭世到晚泥盆世油房坪組;4-晚泥盆世桐峪寺組;5-晚泥盆世饅頭山組;6-晚泥盆世沙河灣組;7-晚泥盆世火星溝組;8-晚泥盆世云鎮(zhèn)組;9-晚泥盆世羅家灣組;10-晚泥盆世星紅鋪組;11-中泥盆世龍洞組;12-中泥盆世古道嶺組;13-中泥盆世大楓溝組;14-中泥盆世青石埡組;15-中泥盆世池溝組;16-池溝組一段;17-池溝組二段;18-池溝組三段;19-中泥盆世牛耳川組;20-前寒武紀地層;21-印支期花崗巖;22-輝綠巖;23-燕山期花崗巖類;24-逆沖推覆構(gòu)造及斷層;25-地層界線;26-采樣點;27-地名Fig.1 Geological sketch map of Shanyang-Zhashui region in Qinling orogenic belt (a) and geological sketch map of Chigou area (b)1-Cenozoic; 2-Carboniferous; 3-Early Carboniferous to Late Devonian Youfangping Fm.; 4-Late Devonian Tongyusi Fm.; 5-Late Devonian Mantoushan Fm.; 6-Late Devonian Shahewan Fm.; 7-Late Devonian Huoxinggou Fm.; 8-Late Devonian Yunzhen Fm.; 9-Late Devonian Luojiawan Fm.; 10-Late Devonian Xinghongpu Fm.; 11-Middle Devonian Longdong Fm.; 12-Middle Devonian Gudaoling Fm.; 13-Middle Devonian Dafenggou Fm.; 14-Middle Devonian Qingshiya Fm.; 15-Middle Devonian Chigou Fm.; 16-the first member of Chigou Fm.; 17-the second member of Chigou Fm.; 18-the third member of Chigou Fm.; 19-Middle Devonian Niuerchuan Fm.; 20-Precambrian; 21-Indosinian granite; 22-diabase; 23-Yanshanian granitoids; 24-thrust nappes and faults; 25-geological boundary; 26-sampling location; 27-village and town
山陽-柞水地區(qū)以印支期和燕山期兩期巖漿活動最為顯著(嚴陣,1985;尚瑞鈞和嚴陣,1988;張本仁等,1989;盧欣祥等,1999,2007;胡健民等,2004;王曉霞等,2005;弓虎軍等,2009a,b;Qinetal.,2009,2010;Jiangetal.,2010;Liuetal.,2011;劉樹文等,2011)。在西北部及北部分別出露柞水、曹坪以及沙河灣等印支中-晚期花崗巖基(圖1a),主要為黑云母二長花崗巖、石英二長巖、二長花崗巖和黑云角閃二長花崗巖(嚴陣,1985;尚瑞鈞和嚴陣,1988;李先梓等,1993);這些巖基內(nèi)均發(fā)育大量大小不一且不規(guī)則、無變形的輝長巖及閃長巖包體(崔建堂等,1998;胡健民等,2004;王曉霞等,2005;秦江鋒,2010;Jiangetal.,2010)。
燕山期中酸性巖類在山陽-柞水地區(qū)廣泛出露(圖1a),主要發(fā)育閃長巖、花崗閃長巖、石英閃長巖、二長花崗巖等花崗(斑)巖體。巖體以長數(shù)百米、厚數(shù)米至十余米者較多,出露面積一般小于0.12km2,最大0.17km2,呈巖枝、巖株、巖瘤狀產(chǎn)出(張銀龍,2002),巖體分布受近EW、NE/NNE向2組斷裂的控制,成群成帶出露,侵入于劉嶺群中,約40余個。在這些燕山期花崗(斑)巖體內(nèi)及其與地層接觸帶廣泛出露斑巖-矽卡巖型礦化。區(qū)內(nèi)目前已發(fā)現(xiàn)下官坊Fe-Cu礦床、園子街Cu-Au-Fe多金屬礦床、小河口Cu-Mo礦床、池溝Cu-Mo-Au礦床、冷水溝Cu-Mo礦床等一系列斑巖-矽卡巖型多金屬礦床。
本文在對白沙溝、池溝和土地溝一帶出露的中酸性花崗(斑)巖體(圖1b)進行了詳細的野外研究的基上,采集了代表性分析樣品,室內(nèi)對其進行了顯微結(jié)構(gòu)分析,具體如下。
(1)白沙溝巖體:出露于池溝Ⅶ號巖體東北側(cè)約1km處(圖1b)。巖體呈不規(guī)則的斜三角狀產(chǎn)出,出露面積約0.07km2,在主巖體附近有小型巖枝產(chǎn)出,由閃長玢巖(圖2a)、石英閃長巖、花崗閃長巖共同構(gòu)成。閃長玢巖:斑狀結(jié)構(gòu)(圖2b),斑晶為斜長石,粒徑2.5~4mm左右,斜長石斑晶以發(fā)育環(huán)帶狀結(jié)構(gòu)為特征。主要礦物成分為斜長石(60%)、鉀長石(8%~10%)、角閃石(15%)、石英(5%)和黑云母(4%);副礦物主要見榍石、磷灰石、鋯石、磁鐵礦等;發(fā)育綠泥石化、綠簾石化。石英閃長巖:細粒結(jié)構(gòu),粒徑<2mm;主要礦物成份為斜長石(40%)、鉀長石(10%)、石英(18%)、角閃石(15%)、黑云母(8%);副礦物有磷灰石、榍石、磁鐵礦和鋯石等;風(fēng)化較強?;◢忛W長巖:細粒結(jié)構(gòu),粒徑約1mm左右;主要礦物為斜長石(35%)、鉀長石(15%)、石英(25%)、角閃石(11%)、黑云母(4%~5%);副礦物主要為磷灰石、榍石以及鋯石;長石發(fā)育簡單雙晶;見弱綠泥石化。
(2)池溝巖體:包括Ⅰ號、Ⅱ號、Ⅲ號、Ⅳ號、Ⅴ號、Ⅵ號以及Ⅶ號小巖體(圖1b)。Ⅰ號巖體巖性為黑云母二長花崗斑巖,出露于最南側(cè),出露兩支,均呈東西向展布,巖體長80~430m,寬10~160m,面積約0.06km2。Ⅱ~Ⅶ號巖體巖性為閃長巖、閃長玢巖、石英閃長巖、花崗閃長巖等。Ⅱ號巖體出露于Ⅰ號巖體東北約500m處,呈巖枝(脈)狀南北向延伸,長320m,寬20~70m,面積0.02km2。Ⅳ號巖體出露于Ⅱ號巖體北西側(cè)約150m,呈不規(guī)則小巖珠產(chǎn)出,長、寬都在40~60m之間,出露面積約0.006km2,Ⅲ號巖體出露于Ⅳ號巖體正西側(cè),是本區(qū)出露最小的巖體,面積不到0.001km2。Ⅴ號、Ⅵ號和Ⅶ號巖體全部出露于Ⅱ號及Ⅳ號巖體北側(cè),與Ⅱ號巖體呈北北東向串珠狀排列。Ⅴ號巖體相對較大,出露面積約0.02km2,Ⅵ號和Ⅶ號巖體出露面積都在0.001km2以下。這些巖體發(fā)育不同程度的綠泥石化、綠簾石化以及黃鐵礦化、黃銅礦化和少量輝鉬礦化等。此外,在池溝小(斑)巖體的鉆孔巖芯中見到多個閃長質(zhì)暗色包體。
Ⅰ號巖體黑云母二長花崗斑巖,呈斑狀結(jié)構(gòu),斑晶包括鉀長石(Kfs)、斜長石(Pl)以及少量黑云母,粒徑0.9~1.8mm;主要礦物成分為鉀長石(30%)、斜長石(25%)、石英(32%),黑云母(8%)和角閃石(4%),副礦物主要有榍石、鋯石、磁鐵礦等。Ⅱ號和Ⅳ號閃長巖(圖2c):細粒結(jié)構(gòu)(2d),粒徑0.5~1.2mm;主要礦物為斜長石(60%)、鉀長石(11%)、石英(5%)、角閃石(16%)和黑云母(5%)組成,斜長石發(fā)育卡鈉雙晶;副礦物有榍石、磷灰石和鋯石等;可見綠泥石化、綠簾石化和泥化。Ⅲ號石英閃長巖:細粒結(jié)構(gòu),粒徑<0.2mm,局部見斜長石斑晶,粒徑1mm左右。主要由石英(15%)、斜長石(35%)、鉀長石(15%)、角閃石(15%)、黑云母(5%);副礦物磷灰石、榍石、磁鐵礦和鋯石等;風(fēng)化較強,長石多綠泥石化。Ⅴ號、Ⅵ號以及Ⅶ號為花崗閃長巖(圖2e),呈細粒結(jié)構(gòu)(圖2f),粒徑約0.5mm左右;主要礦物為斜長石(35%)、鉀長石(15%)、石英(25%)、角閃石(11%)、黑云母(4~5%);含少量磷灰石、榍石、磁鐵礦等副礦物;長石具卡斯巴雙晶、簡單雙晶;見弱綠泥石化。
(3)土地溝巖體:在平面上呈近南北向展布,向東南端突出,南北方向長約300m,東西寬約20~120m,出露面積約0.03km2(圖1b);巖體風(fēng)化及礦化顯著,發(fā)育高嶺土化。巖性為二長花崗斑巖(圖2g),呈斑狀結(jié)構(gòu)(圖2h),斑晶為鉀長石(Kfs)和斜長石(Pl),粒徑0.8~1.5mm,基質(zhì)為隱晶結(jié)構(gòu),主要由石英、鉀長石和斜長石組成;主要礦物成分為鉀長石(30%)、斜長石(25%)、石英(32%);暗色礦物為角閃石和黑云母,總含量不到5%;副礦物有榍石、磷灰石、鋯石、磁鐵礦等;發(fā)育綠泥石化以及綠簾石化。
上述巖相學(xué)特征表明,山陽-柞水地區(qū)出露的小(斑)巖體包括中性和酸性兩類。其中,白沙溝小(斑)巖體和池溝Ⅱ~Ⅶ號巖體為中性巖類,包括閃長巖、閃長玢巖、石英閃長巖、花崗閃長巖幾種巖性;而池溝Ⅰ號巖體和土地溝巖體為酸性巖,其巖性為二長花崗巖。巖體野外地質(zhì)特征顯示各巖體的不同巖性間呈漸變過渡,無明顯界限,因此山陽-柞水地區(qū)出露的小(斑)巖體可能為同源巖漿結(jié)晶分異形成。
圖2 池溝地區(qū)燕山期花崗(斑)巖體標本及鏡下照片(a)-白沙溝閃長玢巖標本;(b)-白沙溝閃長玢巖鏡下照片;(c)-池溝Ⅳ號巖體閃長巖標本;(d)-池溝Ⅳ號巖體閃長巖鏡下照片;(e)-池溝Ⅴ號巖體花崗閃長巖標本;(f)-池溝Ⅴ號巖體花崗巖閃長巖鏡下照片;(g)-土地溝二長花崗巖標本;(h)-土地溝二長花崗斑巖鏡下照片.Qtz-石英;Kfs-鉀長石;Pl-斜長石;Am-角閃石;Bt-黑云母Fig.2 Photos and micrographs of the Yanshanian granite (porphyry) from the Chigou area(a)-photo of the diorite-porphyrite in Baishagou; (b)-micrograph of the diorite-porphyrite in Baishagou; (c)-photo of the diorite from the Ⅳ pluton in Chigou; (d)-micrograph of the diorite from the Ⅳ pluton in Chigou; (e)-photo of the granodiorite from the Ⅴ pluton in Chigou; (f)-the micrograph of the granodiorite from the Ⅴ pluton in Chigou; (g)-photo of the monzonite granite in Tudigou; (h)-micrograph of the monzonite granite in Tudigou. Qtz-quartz; Kfs-K-feldspar; Pl-plagioclase; Am-amphibole; Bi-biotite
本文在對區(qū)研區(qū)小(斑)巖體進行顯微結(jié)構(gòu)分析的基礎(chǔ)上,選擇白沙溝閃長玢巖、石英閃長巖和花崗閃長巖,池溝黑云母二長花崗巖、閃長巖、閃長玢巖、石英閃長巖以及花崗閃長巖,土地溝二長花崗斑巖樣品進行了巖石地球化學(xué)分析。并選取白沙溝石英閃長玢巖、池溝(Ⅳ號)閃長巖、池溝(Ⅴ號)花崗閃長巖和土地溝二長花崗巖進行LA-LCP-MS鋯石U-Pb年齡測定和Lu-Hf同位素分析。
全巖主量、微量和稀土元素測試分析在中國地質(zhì)科學(xué)院國家地質(zhì)實驗測試中心完成。測試過程中3個標準樣品GSR1、GSR2和GSR3一同被測試,用于控制實驗分析誤差和精度。主量元素利用Phillips 4400 X-熒光光譜儀進行測試,燒失量(LOI)通過對樣品加熱至1000℃后1小時稱量其重量變化獲得,F(xiàn)eO采用容量滴定法測定。微量元素和稀土元素采用等離子體質(zhì)譜儀(ICP-MS)來測定。主量元素檢測限為<0.01%(TiO2和MnO為<0.001%);微量、稀土元素檢測限為1×10-6~0.05×10-6。主量元素分析結(jié)果精度優(yōu)于1%,誤差小于5%,微量稀土元素分析誤差為5%~10%。
鋯石的分離在河北省廊坊地質(zhì)調(diào)查研究院選礦實驗室進行。樣品經(jīng)人工破碎后,用常規(guī)重力和磁選方法分選出鋯石,然后在雙目鏡下挑選出晶形和透明度較好的鋯石。將待測樣品的鋯石顆粒置于樹脂臺上,經(jīng)打磨、拋光后并鍍環(huán)氧樹脂制靶,用于陰極發(fā)光、U-Pb定年和Lu-Hf同位素分析。鋯石陰極發(fā)光在北京鋯年領(lǐng)航科技有限公司完成。鋯石U-Pb測年在中國地質(zhì)科學(xué)院礦產(chǎn)資源研究所國土資部成礦作用與資源評價重點實驗室完成,所用儀器為Finnigan Neptune型MC-ICP-MS及與之配套的Newwave UP 213激光剝蝕系統(tǒng)。采用單點剝蝕的方式,激光剝蝕所用斑束直徑為25μm,頻率為10Hz,能量密度約為2.5J/cm2,以He為載氣。鋯石U-Pb測年以鋯石GJ-1為外標,U、Th含量以鋯石M127(U=923×10-6;Th=439×10-6;Th/U=0.475)(Nasdalaetal.,2008)為外標進行校正。測試過程中每測定10個樣品前后重復(fù)測定兩個標樣鋯石GJ1對樣品進行校正,并測量一個鋯石標樣Plesovice,觀察儀器的狀態(tài)和測試的重現(xiàn)性,鋯石標準的重現(xiàn)性在1%(2σ)左右。數(shù)據(jù)處理采用程序(ICPMS Data Calt)(Liuetal.,2008),測量過程中大多數(shù)分析點206Pb/204Pb>1000,未進行普通鉛校正,204Pb由離子計數(shù)器檢測,204Pb含量異常高的分析點可能受包體普通Pb的影響,這些點在計算時剔除,鋯石年齡諧和圖用Isoplot 3.0程序制作,表達式中所列單個數(shù)據(jù)點的誤差均為1σ,加權(quán)平均年齡具95%的置信度。實驗測試過程見侯可軍等(2009)。本次樣品分析過程中,Plesovice標樣作為未知樣品的分析結(jié)果為337.1±2.9Ma(n=5,2σ),對應(yīng)的年齡推薦值為337.13±0.37Ma(2σ)(Slamaetal.,2008),兩者在誤差范圍內(nèi)一致。
鋯石Lu-Hf同位素測試在中國地質(zhì)科學(xué)院礦產(chǎn)資源研究所國土資源部成礦作用與資源評價重點實驗室Neptune多接收等離子質(zhì)譜和Newwave UP 213紫外激光剝蝕系統(tǒng)(LA-MC-ICP-MS)上進行,實驗過程中采用He作為剝蝕物質(zhì)載氣,剝蝕直徑采用55μm。測定時使用鋯石國際標樣GJ1作為參考物質(zhì),分析點與U-Pb測年分析點位于同一顆鋯石的相同位置。相關(guān)儀器運行條件及詳細分析流程見侯可軍等(2007)。分析過程中鋯石標準GJ1的176Hf/177Hf測試加權(quán)平均值分別為0.282008±20(2σ,n=12),分別與推薦值0.2823075±58(2σ)(Wuetal.,2006)和0.282015±0.000019(2σ)(Elhlouetal.,2006)在誤差范圍內(nèi)完全一致。εHf的計算采用176Lu衰變常數(shù)為1.865×10-11a-1(Schereretal.,2001),球粒隕石現(xiàn)今的176Hf/177Hf=0.282772,176Lu/177Hf=0.0332(Blichert-Toft and Albarede,1997),Hf虧損地幔二階段模式年齡(tDM2)的計算采用平均陸殼的176Lu/177Hf比值0.015(Griffinetal.,2002)。
4.1.1 白沙溝巖體
對白沙溝小(斑)巖體的花崗閃長巖、石英閃長巖和閃長玢巖三種主要巖性進行了主量元素分析(表1),結(jié)果顯示其SiO2變化范圍56.61%~64.37%,K2O含量為2.52%~3.60%,Na2O含量為4.47%~5.19%,里特曼指數(shù)(σ)為3.37~3.47,Al2O3含量為14.83%~16.10%,CaO含量為3.55%~4.96%,F(xiàn)eOT含量為3.95%~9.00%,TiO2含量為0.55%~0.83%,P2O5含量為0.38%~0.60%,MgO含量為1.60%~3.74%,Mg#值為50.06~56.00。A/CNK比值為0.75~0.86,A/NK比值為1.29~1.47。
4.1.2 池溝巖體
對池溝小(斑)巖體的閃長巖、閃長玢巖、石英閃長巖、花崗閃長巖以及二長花崗巖進行了主量元素分析,其SiO2變化范圍55.73%~67.80%,K2O含量為3.25%~4.64%,Na2O含量為3.48%~4.82%,里特曼指數(shù)(σ)為2.41~4.66,Al2O3含量為14.61%~16.00%,CaO含量為2.34%~6.18%,F(xiàn)eOT含量為2.06%~6.38%,TiO2含量為0.44%~0.95%,P2O5含量為0.29%~0.83%,MgO含量為1.32%~5.52%,Mg#值為49.90~67.14,A/CNK比值為0.64~1.07,A/NK比值為1.31~1.68。
4.1.3 土地溝巖體
土地溝二長花崗斑巖的SiO2變化范圍64.11%~64.18%,K2O含量為6.25%~6.40%,Na2O含量為1.94%~2.15%,σ值為3.28~3.37,Al2O3含量為15.08%~15.47%,CaO含量為2.63%~2.71%,F(xiàn)eOT含量為2.42%~2.44%,TiO2含量為0.44%~0.45%,P2O5含量為0.24%,MgO含量為1.34%,Mg#值為51.55~51.65,A/CNK比值為1.00~1.03,A/NK比值為1.49~1.50。
以上分析結(jié)果表明,白沙溝、池溝以及土地溝小(斑)巖體的地球化學(xué)組成相似,均顯示鈣堿性花崗巖特征;在K2O-SiO2巖石系列判別圖(圖3a)中,分析樣品屬于高鉀鈣堿性系列,部分屬鉀玄巖系列;在A/CNK-A/NK圖解(圖3b)中,分析樣品屬于準鋁質(zhì)花崗巖,有2件池溝閃長巖樣品屬過鋁質(zhì)花崗巖。樣品的A/CNK比值全部小于1.1,屬I型花崗巖,在Zr-SiO2圖(圖4a)和Y-SiO2圖(圖4b)上,樣品投點也全部落入I型花崗巖范圍內(nèi)。
圖3 池溝地區(qū)燕山期花崗(斑)巖體K2O-SiO2巖石系列判別(a,據(jù)Peccerillo and Taloy,1976)和A/NK-A/CNK鋁質(zhì)-準鋁判別圖(b,據(jù)Maniar and Piccoli,1989)Fig.3 K2O vs. SiO2 diagram (a, after Peccerillo and Taloy, 1976) and A/NK vs. A/CNK diagram (b, after Maniar and Piccoli, 1989) of the Yanshanian granite (porphyry) from the Chigou area
圖4 池溝地區(qū)燕山期花崗(斑)巖體Zr-SiO2判別圖(a)和Y-SiO2判別圖(b)(據(jù)Collins,1982)Fig.4 Zr vs. SiO2 diagram (a) and Y vs. SiO2 diagram (b) of the intermediate-acidic porphyry plutons from the Chigou area (after Collins, 1982)
白沙溝閃長玢巖、石英閃長巖、花崗閃長巖的稀土元素和微量元素組成高度一致(表1)。ΣREE=196.9×10-6~257.1×10-6,LREE=181.0×10-6~239.7×10-6,HREE=15.6×10-6~17.4×10-6,LREE/HREE=11.37~13.80,(La/Yb)N=15.20~17.73。稀土配分模式圖明顯呈右傾型(圖5a),輕稀土富集、重稀土虧損;輕稀土分異顯著((La/Sm)N=4.65~5.84);重稀土分異程度低((Gd/Lu)N=1.72~2.06);銪異常不明顯(δEu=0.76~0.92)。在微量元素標準化蛛網(wǎng)圖上(圖5b),這些巖石樣品富集K、Rb、Sr和Ba等大離子親石元素,顯著富集Pb,虧損Nb、Ta、Ti、P和Hf等高場強元素。不同分析樣品的稀土及微量元素組成特征相似,顯示其具有相似的源區(qū)及形成構(gòu)造環(huán)境。
圖5 池溝地區(qū)燕山期花崗(斑)巖體的球粒隕石標準化稀土元素配分模式圖和原始地幔標準化微量元素蛛網(wǎng)圖(標準化值據(jù)Sun and McDonough, 1989)Fig.5 Chondrite-normalized REE patterns and primitive mantle-normalized trace elements distribution patterns of the Yanshanian granite (porphyry) from the Chigou area (normalization values after Sun and McDonough, 1989)
池溝閃長巖、閃長玢巖、石英閃長巖以及花崗閃長巖的稀土元素和微量元素組成也極為相近,ΣREE=188.7×10-6~241.6×10-6,LREE=175.2×10-6~225.0×10-6,HREE=13.5×10-6~17.8×10-6,LREE/HREE=10.73~13.87,(La/Yb)N=13.84~20.41。稀土配分模式圖也明顯呈右傾型(圖5c),輕稀土富集、重稀土虧損;輕稀土分異顯著((La/Sm)N=3.97~5.10);重稀土分異程度低((Gd/Lu)N=1.95~2.41);具弱銪負異常(δEu=0.79~0.99)。在微量元素標準化蛛網(wǎng)圖上(圖5d),所有巖石樣品均富集K、Rb、Sr和Ba等大離子親石元素,顯著富集Pb,虧損Nb、Ta、Ti、P和Hf等高場強元素。
池溝(Ⅰ號)與土地溝二長花崗巖具有非常相近的稀土元素和微量元素組成,ΣREE=154.7×10-6~241.7×10-6,LREE=142.2×10-6~225.6×10-6,HREE=12.5×10-6~15.5×10-6,LREE/HREE=11.39~14.56,(La/Yb)N=12.64~26.94。稀土配分模式圖同樣呈右傾型(圖5e),輕稀土富集、重稀土虧損;輕稀土分異顯著((La/Sm)N=4.25~6.63);重稀土分異程度低((Gd/Lu)N=1.73~2.09);無明顯銪異常(δEu=0.84~1.19)。在微量元素標準化蛛網(wǎng)圖上(圖5f),分析樣品均富集K、Rb、Sr和Ba等大離子親石元素,虧損Nb、Ta、Ti、P和Hf等高場強元素,其中土地溝樣品的Nb、Ta虧損程度相對更高。
本文選取白沙溝石英閃長玢巖(BSG-10)、池溝閃長巖(Ⅳ號:CG-2)、池溝花崗閃長巖(Ⅴ號:CGⅤ-1)、土地溝二長花崗巖(TDG-3)4件樣品進行了LA-ICP-MS鋯石U-Pb測年和Lu-Hf同位素組成分析,測試結(jié)果分別見表2和表3。
表2溝池地區(qū)燕山期花崗(斑)巖體的LA-ICP-MS鋯石U-Pb分析結(jié)果
Table 2 LA-ICP-MS zircon U-Pb data of the Yanshanian granite (porphyry) from the Chigou area
測點號ThU(×10-6)Th/U同位素比值年齡(Ma)207Pb206Pb1σ207Pb235U1σ206Pb238U1σ207Pb206Pb1σ207Pb235U1σ206Pb238U1σBSG?1011151091050050040000560155070001870022480000121982305146416143308BSG?1021991841080050150000360153910001420022240000122112185145412141808BSG?1031551331160048760000560147390001780021920000112001278139616139807BSG?1041951421380049580000490154690001610022630000101760222146014144306BSG?1052121601320049990000450154340001650022390000151945222145715142809BSG?106107921170049440000640152660002260022410000191686296144320142912BSG?1071671261330048750000540151550001870022570000152001259143316143909BSG?1082381841300048870000450151430001710022480000161427222143215143310BSG?1091711521130048870000500149030001820022140000181427241141116141211BSG?10101501271180049100000550153390001990022700000201538306144918144712BSG?10112852221280049920000380155400001840022590000221908185146716144014BSG?1012971030930049620000580152690002210022350000221760306144319142514BSG?10131611401140049540000500153240001690022490000171723241144815143411BSG?1014981000980051180000580157000002020022260000162501213148118142010BSG?10151501401070049040000530152740001910022590000141501259144317144009BSG?10161071100970049030000520152960001980022610000161501259144517144110BSG?10171461221190048880000540151620001780022520000131427231143316143608BSG?101880840950049300000650153530002090022620000131612296145018144208BSG?101968770880049250000680152560002270022490000161668315144220143410BSG?10201861461270048880000510150800001810022380000151427241142616142709CG?212001351480049740000570153030001880022340000141834213144617142409CG?2387621420049020000800150600002660022300000181501389142424142211CG?241051011040049590000690152200002490022310000241760333143822142215CG?2572631140049340000700151270002590022250000231649333143023141815CG?26124841470050020000710153310002840022240000261945333144825141816CG?27112941190050290000670152860002800022120000322093315144425141020CG?2849510960050380000900152090003400021950000322130407143830140020CG?291901361400048920000490150850002090022430000261427241142718143016CG?21062630980049280000790152160003120022450000321612370143827143120CG?211110971130050230000600156530002530022620000262056278147722144216CG?212107991080049970000570154650002500022450000271945259146022143117CG?213100851180049130000660147640002330021870000251538296139821139416CG?2151841251480049640000490149600002350021850000271890287141621139417CG?21752550940049080000850148150002740021970000231501407140324140114CG?21888791110048720000760146800002600021860000222001370139123139414CG?2191961221610048910000580150560002140022360000211427250142419142513CG?220142851670049870000730150210002500021880000221871398142122139614CG?22173671090049990000690150580002300021890000181945361142420139611CG?2222371681410049460000430153800001560022570000151686204145314143909CG?22485751120049520000690150690002330022090000191723361142521140912CG?2251721141510049560000570149710001980021930000171760324141717139810CGV?111331031290049700000520152710001790022290000121890194144316142107CGV?121081041030048820000580147880001840022010000141390296140016140409CGV?13104891160050860000680156460002370022360000212353268147621142613CGV?14119961230049290000590152730002190022520000221612296144319143614CGV?1582821000048660000640147870002330022030000191316296140021140512CGV?1676721050049450000780151700002710022220000181686370143424141711CGV?1785751140049110000690151170002360022340000181538315142921142411CGV?1861620990049830000840152250002640022240000201871435143923141813CGV?1959750780049730000720153990002280022520000171890333145420143611
續(xù)表2
Continued Table 2
測點號ThU(×10-6)Th/U同位素比值年齡(Ma)207Pb206Pb1σ207Pb235U1σ206Pb238U1σ207Pb206Pb1σ207Pb235U1σ206Pb238U1σCGV?11069840820050090000670153760002220022310000181982315145220142311CGV?1111411171200049410000580151160001990022210000171686278142918141611CGV?11270701000049980000780153430002630022290000181945324144923142111CGV?1131471261160049890000540155500002010022620000191908259146818144212CGV?11481701140048980000750149910002570022260000221464370141823141914CGV?11562511210048750000840146650002660021900000212001407139024139613CGV?117129961350048570000620148120002350022070000171279343140321140810TDG?311632070790049630000410155880001360022800000101760157147112145307TDG?321941831060049130000380152390001280022510000091538-139144011143506TDG?33841140740048910000480151890001550022550000121427222143614143807TDG?341081420760049840000450154560001560022500000121871222145914143507TDG?35661050620048760000520150790001770022440000132001259142616143108TDG?36651190550049750000540155140001730022660000131834213146415144408TDG?391291271010049740000490154510001590022550000111834194145914143807TDG?3101351311030050770000530159450001870022780000142316241150216145209TDG?3112042200930049580000360154980001300022700000141760120146311144709TDG?3143862401600049110000340154720001340022850000131538-157146112145708TDG?3152262450920049810000380157020001460022870000131871213148113145708TDG?31669641090051220000800160420002420022810000172501370151121145410TDG?3171771840960049460000400155470001610022810000161686185146714145410TDG?318931090850050060000540156770001840022750000151982305147916145010TDG?3191361221120050070000490158100001860022890000141982222149016145909TDG?3201141320860049110000490154530001700022830000141538222145915145509
圖6 池溝地區(qū)燕山期花崗(斑)巖體代表鋯石的陰極發(fā)光(CL)圖像及測試位置實線圓和虛線圓分別代表U-Pb年齡測試和Lu-Hf同位素測試的位置Fig.6 Cathodoluminescence (CL) images of representative zircon grains of the Yanshanian granite (porphyry) from the Chigou areaThe continuous-line circles and dashed circles represent locations of U-Pb dating and Lu-Hf analysis, respectively
表3池溝地區(qū)燕山期花崗(斑)巖體的LA-ICP-MS鋯石Lu-Hf同位素分析結(jié)果
Table 3 LA-ICP-MS zircon Lu-Hf isotopic results of the Yanshanian granite (porphyry) from the Chigou area
測點號t(Ma)176Yb/177Hf176Lu/177Hf176Hf/177Hf2σ176Hf/177HfiεHf(0)εHf(t)tDM1(Ma)tDM2(Ma)fLu/Hf白沙溝石英閃長玢巖(BSG?10)BSG?100114300350070000786028268300000140282681-316-0098021202-098BSG?100214200567030001379028265700000190282653-408-1108521265-096BSG?100314000392900000860028266900000170282667-364-0658231235-097BSG?100414400371880000803028263500000180282633-484-1758691309-098BSG?100514300397740000846028262700000210282625-512-2078811327-097BSG?100614300451030000959028266800000210282666-366-0628261235-097BSG?100714400478790001042028270400000200282701-2400667771155-097BSG?100814300413530000873028269400000210282692-2740327871176-097BSG?100914100416140000892028262600000190282623-517-2168841332-097BSG?101014500606160001289028271800000220282715-1901157621124-096BSG?101114400488210001025028261800000200282615-544-2388981348-097BSG?101214200630120001380028268600000240282683-303-0038091198-096BSG?101314300528280001144028270300000230282700-2450597811159-097BSG?101414200721690001534028263900000290282634-472-1758811306-095BSG?101514400498550001055028269100000210282688-2880187961185-097BSG?101614400435980000897028265300000200282651-420-1138461269-097BSG?101714400346700000707028266600000190282665-373-0658231238-098BSG?101814400368150000771028261100000220282608-571-2629031364-098BSG?101914300552100001160028261700000230282614-547-2439021351-097BSG?102014300459850000964028269300000220282691-2780267911179-097池溝(Ⅳ號)閃長巖(CG?2)CG?20114200543980001182028271700000250282714-1931097611126-096CG?20214500485150001060028268200000260282679-318-0098081203-097CG?20314200310270000662028262100000210282619-534-2288851340-098CG?20414200495480001077028269000000220282687-2900127981188-097CG?20514200532760001104028263100000240282628-497-1968811320-097CG?20614200348500000779028264000000210282638-467-1638611299-098CG?20714100386660000824028264300000220282641-457-1558591293-098CG?20814000302520000649028265700000260282655-407-1068351261-098CG?20914300332270000703028266600000280282664-375-0678231239-098CG?21014300317140000674028268800000240282686-2990097931190-098CG?21114400357670000755028262400000240282622-523-2148831333-098CG?21214300545810001249028266600000260282663-374-0728351242-096CG?21313900405940000875028262700000220282625-513-2158821330-097CG?21413800445340000943028267200000230282669-355-0618211231-097CG?21513900566960001245028272700000250282723-1601347491107-096CG?21613800454390001001028263500000240282632-485-1928741314-097CG?21714000303560000683028261400000230282612-558-2578951358-098CG?21813900294680000683028263500000200282633-485-1858661311-098CG?21914300399740000925028264700000220282645-441-1378551283-097CG?22014000357400000816028265500000220282653-415-1168421267-098CG?22114000170840000418028263400000190282633-488-1868621312-099CG?22214400547940001337028263200000200282628-495-1928861319-096CG?22314600634360001425028267900000210282675-330-0238211213-096CG?22414100524940001174028264300000240282640-457-1598671296-096CG?22514000469860001023028264000000240282637-467-1698671301-097池溝(V號)花崗閃長巖(CGV?1)CGV?10114200614760001464028267900000230282675-331-0328221216-096CGV?10214000367190000760028264400000210282642-452-1518551290-098CGV?10314300391980000817028267100000220282669-356-0518191228-098CGV?10414400373930000775028264800000180282645-440-1328511281-098
續(xù)表3
Continued Table 3
測點號t(Ma)176Yb/177Hf176Lu/177Hf176Hf/177Hf2σ176Hf/177HfiεHf(0)εHf(t)tDM1(Ma)tDM2(Ma)fLu/HfCGV?10514000567230001195028273400000280282731-1341637381090-096CGV?10614200470140000970028269900000230282696-2580447831167-097CGV?10714200580850001170028268600000230282683-305-0038051197-096CGV?10814200482460000969028262200000230282620-529-2278911340-097CGV?10914400325290000677028267400000210282672-347-0388121221-098CGV?11014200354240000736028265700000200282655-407-1018371260-098CGV?11114200320670000665028263000000200282628-502-1988731321-098CGV?11214200465470000998028265300000220282651-420-1178481270-097CGV?11314400771750001645028267300000230282668-350-0508341228-095CGV?11414200389600000818028261800000240282616-545-2418931349-098CGV?11514000303610000660028266900000210282667-365-0658191235-098CGV?11613800321460000677028256100000220282559-748-4509701479-098CGV?11714100337060000730028272500000220282723-1661367411108-098CGV?11813900352820000811028263100000220282629-497-2018741320-098CGV?11913800464000001034028262500000220282622-522-2298891338-097CGV?12013800351250000803028261000000220282608-573-2779041369-098土地溝二長花崗巖(TDG?3)TDG?30114500591760001329028268600000170282683-3030038081196-096TDG?30214300824910001798028266800000190282663-367-0698451240-095TDG?30314400772330001685028269500000160282691-2720288031179-095TDG?30414300763000001717028269300000200282689-2780208071183-095TDG?30514300742730001599028273000000220282726-1481517511100-095TDG?30614400705850001563028270000000210282696-2550477941167-095TDG?30714500808700001729028271300000210282708-2090927791138-095TDG?30814500704640001496028264800000200282644-439-1368671284-095TDG?30914400729760001514028268400000210282680-310-0098151202-095TDG?31014500916190001890028266700000270282662-370-0698481242-094TDG?31114500677170001417028266700000230282663-371-0678381240-096TDG?31214500625260001334028261500000240282611-557-2529101358-096TDG?31314200766310001599028267500000230282671-342-0468301224-095TDG?31414600800120001589028269600000220282691-2700348011176-095TDG?31514600648360001366028266900000220282666-363-0568331234-096TDG?31614500549360001158028273500000240282732-1301787351084-097TDG?31714500683810001459028266400000240282660-382-0778431247-096TDG?31814500678060001506028260000000200282596-607-3039351391-095TDG?31914600895440002117028266700000240282662-370-0708531242-094TDG?32014600570800001313028266500000200282661-379-0738391244-096
白沙溝石英閃長玢巖樣品(BSG-10)的鋯石為柱狀,粒徑80~160μm,長寬比為1.2:1~2.3:1,陰極發(fā)光圖像顯示鋯石振蕩環(huán)帶發(fā)育(圖6),為典型的巖漿鋯石(Hanchar and Miller,1993;Hoskinetal.,2000)。對樣品的20顆鋯石共進行了20個點的LA-ICP-MS鋯石U-Pb年齡測試。鋯石的Th、U含量分別為67.6×10-6~285.1×10-6和76.8×10-6~222.3×10-6,Th/U比值為0.88~1.38,平均1.14。所測的20顆鋯石的年齡比較集中,其中16個點的數(shù)據(jù)落于諧和曲線上,另外4個點207Pb/235U值較大,偏離諧和曲線(圖7a)。鋯石的CL圖像和反射、透射光圖像均顯示鋯石結(jié)晶完好,無包體、裂紋、晶格缺陷,因此4個點偏離諧和曲線可能是由于測試過程中Pb丟失造成。20個點的206Pb/238U加權(quán)平均年齡為143.32±0.43Ma(MSWD=0.96),代表白沙溝巖體的形成年齡。
圖7 池溝地區(qū)燕山期花崗(斑)巖體的鋯石U-Pb年齡諧和圖Fig.7 Zircon U-Pb Concordia diagrams of the Yanshanian granite (porphyry) from the Chigou area
池溝(Ⅳ號)閃長巖樣品(CG-2)的鋯石多呈柱狀、短柱狀,粒徑80~200μm,長寬比1.2:1~3:1,振蕩環(huán)帶清晰(圖6),為典型的巖漿鋯石(Hanchar and Miller,1993;Hoskinetal.,2000)。對該樣品的21顆鋯石進行了一共21個點的LA-ICP-MS鋯石U-Pb年齡測試。鋯石的Th、U含量分別為48.9×10-6~237.4×10-6和50.8×10-6~167.8×10-6,Th/U比值為0.94~1.67,平均1.26。所測21顆鋯石的年齡集中,全部落入諧和曲線上(圖7b),21個點的206Pb/238U加權(quán)平均年齡為141.50±0.58Ma(MSWD=1.4),代表池溝Ⅳ號巖體的形成時代。
池溝(Ⅴ號)花崗閃長巖樣品(CGⅤ-1)的鋯石形態(tài)也多呈柱狀、短柱狀,粒徑80~180μm,巖漿振蕩環(huán)帶清楚,暗示鋯石為典型的巖漿鋯石(Hanchar and Miller,1993;Hoskinetal.,2000)。對樣品的16顆鋯石進行了16個點的LA-ICP-MS鋯石U-Pb年齡測試。鋯石的Th、U含量分別為59.1×10-6~146.5×10-6和51.2×10-6~126.0×10-6,Th/U比值為0.78~1.35,平均1.1。所測的16顆鋯石的年齡數(shù)值集中,16個點的數(shù)據(jù)落于諧和曲線上(圖7c),16個點的206Pb/238U加權(quán)平均年齡為144.26±0.54Ma(MSWD=0.63),代表池溝Ⅴ號巖體的形成年齡。
土地溝二長花崗巖樣品(TDG-3)的鋯石大多為柱狀、短柱狀,粒徑60~180μm,鋯石振蕩環(huán)帶清晰,為典型的巖漿鋯石(Hanchar and Miller,1993;Hoskinetal.,2000)。該樣品的16顆鋯石共進行了16個點的LA-ICP-MS鋯石U-Pb年齡測試。鋯石的Th、U含量分別為64.7×10-6~385.5×10-6和64.0×10-6~244.9×10-6,Th/U比值為0.55~1.60,平均0.93。所測的16個點的年齡相對集中,其中12個點的數(shù)據(jù)落于諧和曲線上,4個點的數(shù)據(jù)偏離諧和曲線(圖7d)。在鋯石的CL圖像和反射、透射光圖像上均顯示鋯石結(jié)晶完好,無包體、裂紋、晶格缺陷,因此4個點偏離諧和曲線可能是由于測試過程中的Pb丟失或U含量較高造成。16個點的206Pb/238U加權(quán)平均年齡為144.58±0.40Ma(MSWD=1.5),可代表土地溝巖體的成巖年齡。
4件測年樣品(BSG-10、CG-2、CGV-1、TDG-3)的鋯石原位Lu-Hf同位素測試數(shù)據(jù)表明大多數(shù)鋯石的176Lu/177Hf小于0.002,這說明鋯石在形成以后具有較低的放射成因Hf積累。4件樣品的fLu/Hf平均值分別為-0.97、-0.97、-0.97和-0.95,明顯小于鎂鐵質(zhì)地殼的fLu/Hf(-0.34;Amelinetal.,1999)和硅鋁質(zhì)地殼的fLu/Hf(-0.72;Vervoortetal.,1999),因此二階段模式年齡更能反映其源區(qū)物質(zhì)從虧損地幔被抽取的時間。根據(jù)Hf同位素相關(guān)計算公式,采用平均陸殼的176Lu/177Hf比值0.015(Griffinetal.,2002)計算各樣品的初始εHf(t)、tDM1和tDM2,計算結(jié)果見表3。
白沙溝石英閃長玢巖(BSG-10)20顆鋯石對應(yīng)的20個分析點的176Hf/177Hf為0.282611~0.282718(平均0.282663),εHf(t)為-2.62~+1.15(平均-0.81),Hf同位素二階段模式年齡(tDM2)變化范圍為1364~1124Ma(平均1248Ma)。池溝閃長巖(Ⅳ號:CG-2)鋯石的25個分析點的176Hf/177Hf為0.282614~0.282727(平均0.282655),εHf(t)為-2.57~+1.34(平均-1.14),Hf同位素二階段模式年齡(tDM2)變化范圍為1358~1107Ma(平均1267Ma)。池溝花崗閃長巖(Ⅴ號:CGⅤ-1)鋯石的20個分析點的176Hf/177Hf為0.282561~0.282734(平均0.282655),εHf(t)為-4.50~+1.63(平均-1.11),Hf同位素二階段模式年齡(tDM2)變化范圍為1479~1090Ma(平均為1265Ma)。土地溝二長花崗巖(TDG-3)鋯石的20個分析點的176Hf/177Hf為0.282600~0.282735(平均0.282677),εHf(t)為-3.03~+1.78(平均為-0.34),Hf同位素二階段模式年齡(tDM2)變化范圍為1391~1084Ma(平均1218Ma)。
山陽-柞水地區(qū)出露的燕山期花崗(斑)巖體均侵入于泥盆系中,且在區(qū)內(nèi)白堊紀地層中可見花崗巖礫石(張銀龍,2002),由此可見這些花崗(斑)巖體的形成時代應(yīng)為石炭紀至白堊紀之間。萬義文(1980)測得本區(qū)小巖體的黑云母K-Ar成巖年齡范圍為276.6~101.7Ma,并測得袁家溝花崗斑巖和小河口花崗閃長斑巖的鋯石U-Pb年齡分別為149Ma和141Ma。嚴陣(1985)獲得采自小河口、袁家溝以及馬陰溝(雙元溝)花崗(斑)巖體的4件樣品的U-Pb等時線年齡為148Ma;尚瑞鈞等(1988)獲得小河口巖體的全巖Rb-Sr等時線年齡為230Ma;牛寶貴等(2006)測得冷水溝正長閃長斑巖的SHRIMP鋯石U-Pb年齡為141.7±1.4Ma;謝桂青等(2012)獲得池溝石英閃長巖的LA-ICP-MS鋯石U-Pb年齡為分別為146±1Ma和145.1±1Ma。上述研究結(jié)果表明山陽-柞水地區(qū)出露的燕山期花崗(斑)巖體的成巖時代測年結(jié)果變化范圍較大,但最新的精確的鋯石U-Pb測年結(jié)果則趨向于認為成巖時代為晚侏羅世-早白堊世。
本文對山陽-柞水地區(qū)中部中酸性花崗(斑)巖體的LA-ICP-MS鋯石U-Pb同位素測年結(jié)果表明,白沙溝閃長玢巖的形成年齡143.32±0.43Ma,池溝(Ⅳ號)閃長巖的形成時代為141.50±0.58Ma,池溝(Ⅴ號)花崗閃長巖的形成年齡為144.26±0.54Ma,土地溝二長花崗巖的形成年齡為144.58±0.40Ma。各花崗(斑)巖體成巖年齡相近,巖體成巖時代變化范圍為144.6~141.5Ma,為晚侏羅世至早白堊世。結(jié)合前人對山陽-柞水地區(qū)的花崗(斑)巖體的測年結(jié)果,我們認為山陽-柞水地區(qū)廣泛出露的小規(guī)?;◢?斑)巖體形成時代為149~141Ma。
前人對本區(qū)燕山期中酸性花崗(斑)巖體的巖漿源區(qū)及成因進行過一定的研究,但存在不同認識。嚴陣(1985)根據(jù)袁家溝、小河口、馬陰溝(又稱雙元溝)、土地溝等地花崗(斑)巖體的巖相學(xué)特征以及硫同位素組成,認為這些花崗(斑)巖體是上地幔(包括部分下地殼)部分熔融和結(jié)晶分異的產(chǎn)物,屬于地幔分異型花崗巖;張本仁等(1989)根據(jù)小河口、雙元溝等地花崗(斑)巖體的稀土元素組成特征以及黑云母單礦物的化學(xué)組成特點認為這些巖體的成巖物質(zhì)來自于上地幔,是上地幔巖石圈物質(zhì)部分熔融的產(chǎn)物;謝桂青(2012)根據(jù)池溝(斑)巖體的黑云母和角閃石的化學(xué)成分特征、全巖Sr-Nd同位素組成以及與斑巖體相關(guān)的輝鉬礦的Re含量特征認為其成巖物質(zhì)來自深部。
山陽-柞水地區(qū)燕山期花崗(斑)巖體均侵入于泥盆系中,且全部為小型花崗(斑)巖體;巖相學(xué)分析表明小斑巖體的巖石組合相似,主要包括閃長巖、閃長玢巖、石英閃長巖、花崗閃長巖幾種巖性,不同巖性間呈漸變過渡,無明顯界限;成巖主要礦物(斜長石、鉀長石、石英)與副礦物(磷灰石、榍石、磁鐵礦以及鋯石)都相近;小(斑)巖體成巖時代相近,集中于149~141Ma之間。這些特征均表明山陽-柞水地區(qū)出露的小(斑)巖體應(yīng)具有相同的巖漿源區(qū)及相似的形成環(huán)境,同源巖漿結(jié)晶分異形成小(斑)巖體從中性到酸性的多種巖石類型組合。
圖8 池溝地區(qū)燕山期花崗(斑)巖體的P2O5與SiO2相關(guān)圖Fig.8 P2O5 vs. SiO2 diagrams of the Yanshanian granite (porphyry) from the Chigou area
巖石地球化學(xué)分析結(jié)果表明白沙溝、池溝、土地溝的花崗(斑)體均富集K、Rb、Sr和Ba等大離子親石元素,虧損Nb、Ta、Ti、P和Hf等高場強元素;稀土元素分異明顯,輕稀土富集,重稀土虧損,無明顯的銪異常,這表明它們具有相似的地球化學(xué)特征。多數(shù)樣品Na2O>3.2%,A/CNK<1.1,并富集Ca(CaO介于0.88%~2.35%之間)等,含大量角閃石、黑云母、榍石、磁鐵礦等礦物,表明這些巖體屬I型花崗巖(Chappell,1999);P2O5與SiO2呈負相關(guān)性(圖8),也顯示了I型花崗巖特征(Chappell,1999;李獻華等,2007),進一步說明它們?yōu)镮型花崗巖。白沙溝、池溝以及土地溝花崗(斑)巖體的化學(xué)成分總體偏基性,具準鋁質(zhì)花崗巖的特征,其成巖物質(zhì)可能來源于偏基性的地殼物質(zhì)的熔融巖漿(Wolf and Wyllie,1992;Johannes and Holtz,1996;Sissonetal.,2005)。典型MORB的Mg#為60左右,而玄武巖部分熔融產(chǎn)生的熔體的Mg#<45(Rappetal.,1997),白沙溝、池溝以及土地溝花崗(斑)巖體的Mg#介于45~60之間,平均為49,因此其巖漿源區(qū)并非源于單一的基性地殼熔融巖漿,可能有地幔物質(zhì)的混染(Yogodzinski,1995;Rappetal.,1999)。分析樣品具有高的Sr含量和低的Y及Yb含量,暗示源區(qū)存在石榴石相的殘余,并且所有樣品都富集大離子親石元素(LILE)虧損高場強元素(HFSE),均表明巖漿源區(qū)可能源于加厚地殼的熔融(張旗等,2006)。上述分析表明區(qū)內(nèi)燕山期花崗(斑)巖體的巖漿源區(qū)可能是基性下地殼脫水熔融產(chǎn)生的熔融巖漿與底侵的地幔物質(zhì)的混合。
圖9 池溝地區(qū)燕山期花崗(斑)巖體鋯石的εHf(t)與U-Pb年齡圖Fig.9 εHf(t) vs. U-Pb ages for zircons of the Yanshanian granite (porphyry) from the Chigou area
白沙溝、池溝以及土地溝花崗(斑)巖體4件樣品的Hf同位素組成相似(圖9),也進一步說明了區(qū)內(nèi)不同花崗(斑)巖體間的源區(qū)及巖漿演化特征類似。從圖9中可見εHf(t)值介于-4.5~1.78之間,分布于球粒隕石線上及側(cè)附近。白沙溝石英閃長玢巖的εHf(t)值介于-2.62~1.15之間,平均為-0.81。在20個分析點中,有14個分析點的εHf(t)為負值,占分析點總數(shù)的70%,介于-2.62~-0.03之間;其余6個點的εHf(t)為正值,介于0.18~1.15之間。池溝(Ⅳ號)閃長巖的εHf(t)值介于-2.57~1.34之間,平均為-1.14。在25個分析點中,有21個點的εHf(t)為負值,占分析點總數(shù)的84%,介于-2.57~-0.09之間;其余4個點的εHf(t)為正值,介于0.09~1.34之間。池溝(V號)花崗閃長巖的εHf(t)值介于-4.5~1.63之間,平均為-1.11。在20個分析點中,有17個點的εHf(t)為負值,占分析點總數(shù)的85%,介于-4.5~-0.03之間;其余3個點的εHf(t)為正值,介于0.44~1.63之間;土地溝二長花崗巖的εHf(t)值介于-3.03~1.78之間,平均為-0.34。在20個分析點中,有12個點的εHf(t)為負值,占分析點總數(shù)的60%,介于-3.03~-0.09之間;其余8個點的εHf(t)為正值,介于0.03~1.78之間。上述事實表明,所有測試樣品都既有εHf(t)>0又有εHf(t)<0的值,其中以εHf(t)<0的值為主,進一步表明區(qū)內(nèi)花崗(斑)巖體的巖漿源區(qū)可能來自幔源巖漿與古老地殼物質(zhì)的混合,這一認識與巖體的巖石地球化學(xué)特征所反映的結(jié)果吻合。但研究區(qū)Hf同位素組成變化范圍不大,這可能是巖漿混熔程度較高,從而使得殼源和幔源巖漿的Hf同位素組成趨于均一化。該Hf同位素組成特征與北側(cè)的柞水巖體(εHf(t)=-5.8~+4.4)、曹坪巖體(εHf(t)=-6.0~+3.3)、沙河灣巖體(εHf(t)=-1.7~+5.0)等相似,這幾個巖體都被認為是殼幔巖漿混合形成(弓虎軍等,2009a,b)。以上分析表明山陽-柞水地區(qū)的巖漿源區(qū)可能為地殼熔融巖漿與幔源巖漿的混合。
圖10 池溝地區(qū)燕山期花崗(斑)巖 Rb-(Y+Nb)(a,據(jù)Pearce,1996)和R1-R2(b,據(jù)Batchelor and Bowden,1985)構(gòu)造環(huán)境判別圖WPG-板內(nèi)花崗巖;ORG-大洋脊花崗巖;VAG-火山弧花崗巖;syn-COLG-同碰撞花崗巖;Post-COLG-后碰撞花崗巖;①地幔斜長花崗巖;②板塊碰撞前消減地區(qū)花崗巖;③板塊碰撞后隆起期花崗巖;④晚造山期花崗巖;⑤非造山區(qū)A型花崗巖;⑥同碰撞(S型)花崗巖;⑦造山期后A型花崗巖;R1=4Si-11(Na+K)-2(Fe+Ti);R2=6Ca+2Mg+AlFig.10 Rb-(Y+Nb) (a, after Pearce, 1996) and R1-R2 (b, after Batchelor and Bowden, 1985) discrimination diagrams of the Yanshanian granite (porphyry) from the Chigou areaIn Fig. a: WPG-within-plate granite; ORG-ocean-ridge granite; VAG-volcanic-arc granite; syn-COLG-syn-collision granite; post-COLG-post-collision granite; In Fig. b: ①mantle fractionates granite; ②pre-plate collision granite; ③post-collision uplift granite; ④late-orogenic granite; ⑤anorogenic granite; ⑥syn-collision granite; ⑦post-orogenic granite; R1=4Si-11(Na+K)-2(Fe+Ti); R2=6Ca+2Mg+Al
白沙溝、池溝以及土地溝花崗(斑)巖體的二階段模式年齡(tDM2)為1479~1084Ma(表3),其中白沙溝石英閃長玢巖的二階段模式年齡(tDM2)為1364~1124Ma,池溝(Ⅳ號)閃長巖的二階段模式年齡(tDM2)為1358~1107Ma,池溝(V號)花崗閃長巖的二階段模式年齡(tDM2)為1479~1090Ma,土地溝二長花崗巖的二階段模式年齡(tDM2)為1391~1084Ma,各花崗(斑)巖體的二階段模式年齡相近,均為中-新元古代。二階段模式年齡反應(yīng)的是巖漿源區(qū)物質(zhì)的年齡,對于巖漿源區(qū)為殼?;旌系幕◢弾r,如果其幔源源區(qū)為古老巖石圈地幔的熔融,其二階段模式年齡應(yīng)該反應(yīng)該巖石圈地幔從原始地幔分離的時間。張宏飛等(1997)研究認為南秦嶺地區(qū)中新元古代(1.7~1.0Ga之間,峰期為1.1Ga左右)發(fā)生了強烈的地殼增生事件,形成大量的基性火山巖物質(zhì)。山陽-柞水地區(qū)的小(斑)巖體的巖漿源區(qū)可能源于新元古代地殼物質(zhì)的熔融巖漿與巖石圈地幔熔融巖漿的混合。這說明區(qū)內(nèi)花崗巖類的巖漿源區(qū)物質(zhì)的形成時代應(yīng)為中-新元古代。在研究區(qū)北側(cè)的三疊紀花崗巖體也存在相近的Hf同位素二階段模式年齡,東江口、柞水、曹坪以及沙河灣4個花崗巖體的鋯石Hf同位素二階段模式年齡變化范圍分別為2348~1068Ma(集中于1400Ma左右)、1353~883Ma、1366~887Ma和1138~791Ma(弓虎軍等,2009a,b)??梢妳^(qū)內(nèi)印支期花崗巖和燕山期中酸性花崗(斑)巖體的源區(qū)物質(zhì)的形成時代都為中新元古代(1.4~1.0Ga)。
綜上所述,山陽-柞水地區(qū)的燕山期花崗(斑)巖體源于基性地殼熔融巖漿與巖石圈地幔熔融巖漿的混合,其源區(qū)物質(zhì)可能與南秦嶺地區(qū)中新元古代(1.7~1.0Ga之間)發(fā)生的地殼增生事件有關(guān)。通過與研究區(qū)北部印支期東江口、柞水、曹坪以及沙河灣花崗巖體的Hf同位素組成特征對比,發(fā)現(xiàn)二者巖漿源區(qū)具相似性,都源于地殼熔融巖漿與地幔物質(zhì)的混合,且源區(qū)物質(zhì)與南秦嶺新元古代增生事件相關(guān)。
在花崗巖Rb-(Y+Nb)構(gòu)造環(huán)境判別圖(圖10a)中,白沙溝、池溝以及土地溝花崗(斑)巖體分析樣品落入后碰撞型花崗巖范圍內(nèi);在R1-R2圖解(圖10b)中,樣品投點落入板塊碰撞后隆起期花崗巖和晚造山期花崗巖區(qū)域。前述巖石地球化學(xué)分析還說明燕山中晚期本區(qū)地殼加厚,造山帶抬升,符合碰撞后花崗巖的形成環(huán)境。這些事實都說明本區(qū)燕山期花崗(斑)巖體屬碰撞后花崗巖類。對白沙溝、池溝以及冷水溝花崗(斑)巖體的鋯石U-Pb測年結(jié)果顯示其成巖時代介于144.6~141.5Ma之間,為晚侏羅世至早白堊世,與秦嶺造山帶從陸內(nèi)俯沖向伸展轉(zhuǎn)變的時期(Chenetal.,2000)對應(yīng);花崗(斑)巖體具后碰撞型花崗巖的巖石地球化學(xué)特征,也與造山帶從陸內(nèi)俯沖向伸展轉(zhuǎn)變的構(gòu)造背景(Chenetal.,2000)相吻合,可見本區(qū)花崗(斑)巖體形成于造山帶從陸內(nèi)俯沖向伸展轉(zhuǎn)變的構(gòu)造背景之下。造山作用晚期發(fā)生拆沉作用的階段被認為是花崗巖形成的重要構(gòu)背景(Kay and Kay,1991;Rudnick,1995),常形成大規(guī)模的花崗巖基,而山陽-柞水地區(qū)小(斑)巖體規(guī)模都較小。對此,目前有兩種推測:一是認為造山帶后期抬升有可能對巖體有剝蝕作用;二是認為可能有燕山期隱伏大巖基,而目前出露的小(斑)巖體僅為其巖枝,西北有色地勘局2011年的1:50000航磁異常圖顯示小(斑)巖體出露區(qū)有較強的正異常(與西北有色地勘局713任濤高級工程師交流),但目前未得到鉆探工作的證實。此外,造山帶由于后期大規(guī)模的走滑剪切等作用,也可能會破壞巖體,從而造成出露巖體的規(guī)模較小。綜上,山陽-柞水地區(qū)燕山期小(斑)巖體可能是在碰撞造山向造山后伸展的轉(zhuǎn)換期間,隨著造山帶應(yīng)力由擠壓轉(zhuǎn)向松弛,加厚的地殼發(fā)生熔融形成花崗巖質(zhì)巖漿,大量花崗巖漿經(jīng)過多期次重熔作用,并與底侵的地幔巖漿混合,上升侵位形成。
(1)山陽-柞水地區(qū)燕山期花崗(斑)巖體由閃長巖、閃長玢巖、石英閃長巖、花崗閃長巖以及二長花崗巖共同構(gòu)成,形成于149~141Ma。
(2)山陽-柞水地區(qū)燕山期花崗(斑)巖屬于高鉀鈣堿性、準鋁質(zhì)I型花崗巖。巖體稀土元素分異顯著,無明顯銪異常;大離子親石元素K、Rb、Sr和Ba等富集,高場強元素Nb、Ta、Ti、P和Hf等虧損,高Sr低Y(Yb),為碰撞后花崗巖,形成于晚侏羅世至早白堊世秦嶺造山帶由陸內(nèi)俯沖轉(zhuǎn)為造山后伸展的構(gòu)造體制轉(zhuǎn)換階段。
(3)區(qū)內(nèi)燕山期花崗(斑)巖體鋯石的εHf(t)值為-4.5~+1.78(平均為-0.87),Hf同位素二階段模式年齡(tDM2)為1479~1084Ma,說明成巖物質(zhì)源于基性地殼物質(zhì)的熔融巖漿與幔源巖漿的混合(以地殼熔融成份為主),且其殼源源區(qū)物質(zhì)可能形成于中晚元古代。
致謝在野外地質(zhì)考察過程中得到了西北有色地質(zhì)勘查局713總隊李劍斌、任濤、李向陽高級工程師以及中國科學(xué)院地質(zhì)與地球物理研究所李繼亮研究員的指導(dǎo);巖石地球化學(xué)分析和鋯石U-Pb年齡、Lu-Hf同位素測定分別得到了中國地質(zhì)科學(xué)院國家地質(zhì)實驗測試中心相關(guān)實驗人員以及中國地質(zhì)科學(xué)院礦產(chǎn)資源研究所成礦作用與資源評價重點開放實驗室侯可軍、郭春麗博士的幫助;兩位匿名審稿人和貴刊編輯俞良軍博士對本文提出了建設(shè)性的修改意見;在此一并表示感謝!
Amelin Y, Lee DC, Halliday AN and Pidgeon RT. 1999. Nature of the Earth’s earliest crust from hafnium isotopes in single detrital zircons. Nature, 399(6733): 252-255
Batchelor RA and Bowden P. 1985. Petrogenetic interpretation of granitoids rock series using multicationic parameters. Chemical Geology, 48(1-4): 43-55
Blichert-Toft J and Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters, 148(1-2): 243-258
Chappell BW. 1999. Aluminum saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos, 46(3): 535-551
Chen YJ, Li C, Zhang J, Li Z and Wang HH. 2000. Sr and Q isotopic characteristics of porphyries in the Qinling molybdenum deposit belt and their implication to genetic mechanism and type. Science in China (Series D), 43(Suppl.): 82-94
Collins WJ, Beams SD, White AJR.etal. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189-200
Cui JT and Zhao CY. 1998. The geological characteristic of ring-mottled granite in Dongjiangkou and Zhashui masses, Shaanxi Province. Geology of Shaanxi, 16(1): 51-57(in Chinese with English abstract)
Cui JT, Zhao CY and Wang JC. 1999. The rock-lineage units classification and evolution of Dongjiangkou and Zhashui rock bodies in southern Qinling. Geology of Shaanxi, 17(2): 7-15(in Chinese with English abstract)
Elhlou S, Belousova E, GriffinWL, Pearson NJ and O’Reilly SY. 2006. Trace element and isotopic composition of GJ-red zircon standard by laser ablation. Geochimica et Cosmochimica Acta, 70(18): A158
Gong HJ, Zhu LM, Sun BY, Li B and Guo B. 2009a. Zircon U-Pb ages and Hf isotope characteristics and their geological significance of the Shahewan, Caoping and Zhashui granitic plutons in the South Qinling orogen. Acta Petrologica Sinica, 25(2): 248-264(in Chinese with English abstract)
Gong HJ, Zhu LM, Sun BY, Li B, Guo B and Wang JQ. 2009b. Zircon U-Pb ages and Hf isotopic composition of the Dongjiangkou granitic pluton and its mafic enclaves in the South Qinling terrain. Acta Petrologica Sinica, 25(11): 3029-3042(in Chinese with English abstract)
Griffin WL, Wang X, Jackson SE, Pearson SE, O’Reilly SY and Zhou XM. 2002. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous compexes. Lithos, 61(3-4): 237-269
Hanchar JM and Miller CF. 1993. Zircon zonation patterns as revealed by cathodoluminescence and backscattered electron images: Implications for interpretation of complex crustal histories. Chemical Geology, 110(1-3): 1-13
Hoskin PWO and Black LP. 2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. Journal of Metamorphic Geology, 18(4): 423-439
Hou KJ, Li YH, Zou TR, Qu XM, Shi YR and Xie GQ. 2007. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications. Acta Petrologica Sinica, 23(10): 2595-2604(in Chinese with English abstract)
Hou KJ, Li YH and Tian YR. 2009. In situ U-Pb zircon dating using laser ablation-multiion couting-ICP-MS. Mineral Deposits, 28(4): 481-492 (in Chinese with English abstract)
Hu JM, Cui JT, Meng QR and Zhao CY. 2004. The U-Pb age of zircons separated from the Zhashui granite in Qinling Orogen and its significance. Geological Review, 50(3): 323-329(in Chinese with English abstract)
Jiang YH, Jin GD, Liao SY, Qing Z and Peng Z. 2010. Geochemical and Sr-Nd-Hf isotopic constraints on the origin of Late Triassic granitoids from the Qinling orogen, central China: Implications for a continental arc to continent-continent collision. Lithos, 117(3-4): 183-197
Johannes W and Holtz F. 1996. Petrogenesis and Experimental Petrology of Granitic Rocks. Berlin: Springer, 1-254
Kay RW and Kay SM. 1991. Creation and destruction of lower continental crust. Geologische Rundschau, 80(2): 259-278
Li CY, Liu YW, Zhu BQ, Feng YM and Wu HQ. 1978. Tectonic evolution of Qinling and Qilian Mountains. Northwestern Geology, 4: 1-12 (in Chinese)
Li XH, Li WX and Li ZX. 2007. On the genetic classification and tectonic implications of the Early Yanshanian granitoids in the Nanling Range, South China. Chinese Science Bulletin, 52(14): 1873-1885
Li XZ, Yan Z and Lu XX. 1993. Granitoids of Mt. Qinling-Dabieshan. Beijing: Geological Publishing House, 1-218(in Chinese with English abstract)
Liu SW, Li QG, Tian W, Wang ZQ, Yang PT, Wang W, Bai X and Guo RR. 2011. Petro-genesis of Indosinian granitoids in middle-segment of south Qinling tectonic belt: Constraints from Sr-Nd isotopic systematics. Acta Geologica Sinica, 85(3): 610-628
Liu SW, Yang PT, Li QG, Wang ZQ, Zhang WY and Wang W. 2011. Indosinian granitoids and orogenic processes in the middle segment of the Qinling orogen, China. Journal of Jilin University (Earth Science Edition), 41(6): 1928-1943(in Chinese with English abstract)
Liu YS, Hu ZC, Gao S, Günther D, Xu J, Gao C and Chen H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34-43
Lu XX, Dong Y, Chang QL, Xiao QH, Li XB and Wang XX. 1996. Indosinian Shahewan rapakivi granite in Qinling and its dynamic significance. Science in China (Series D), 39(3): 266-272
Lu XX, Wei XD, Xiao QH, Zhang ZQ, Li HM and Wang W. 1999. Geochronological studies of rapakivi granites in Qinling and its geological implications. Geological Journal of China Universities, 5(4): 372-377(in Chinese with English abstract)
Lu XX, Wang XX, Xiao QH and Xing ZY. 2007. Comparison of Qinling-Kunlun orogenic-type rapakivi granite with world typical rapakivi granite. Geological Science and Technology Information, 26(1): 1-10(in Chinese with English abstract)
Maniar PD and Piccoli PM. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5): 635-643
Nasdala L, Hofmeister W, Norberg N, Martinson JM. Corfu F, Dorr W, Kamo SL. Kennedy AK, Kronz A, Reiners PW, Frei D, Kosler J, Wan YS, Gotze J, Hager T, Kroner A and Valley JW. 2008. Zircon M257: A homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon. Geostandards and Geoanalytical Research, 32(3): 247-265
Niu BG, He ZJ, Ren JS, Wang J and Deng P. 2006. SHRIMP U-Pb ages of zircon from the intrusion in the western Douling-Xiaomaoling uplift and their geological significances. Geological Review, 52(6): 826-835 (in Chinese with English abstract)
Pearce JA. 1996. Sources and settings of granitic rocks. Episodes, 19(4): 120-125
Peccerillo A and Taylor SR. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81
Qin JF, Lai SC and Li YF. 2005. Petrogenesis and geological significance of Yangba granodiorites from Bikou area, north margin of Yangtze Plate. Acta Petrologica Sinica, 21(3): 697-710(in Chinese with English abstract)
Qin JF, Lai SC and Li YF. 2007. Genesis of the Indosinian Guangtoushan adakitic biotite plagiogranite in the Mianxian-Lueyang (Mianlue) suture, South Qinling, China, and its tectonic implications. Geological Bulletin of China, 26(4): 466-471(in Chinese with English abstract)
Qin JF, Lai SC, Grapes, Diwu CR, Ju YJ and Li YF. 2009. Geochemical evidence for origin of magma mixing for the Triassic monzonitic granite and its enclaves at Mishuling in the Qinling orogeny (central China). Lithos, 112(3-4): 259-276
Qin JF. 2010. Petrogenesis and geodynamic implications of the Late-Triassic granitoids from the Qinling Orogenic Belt. Ph. D. Dissertation. Xi’an: Northwest University, 1-266(in Chinese with English summary)
Qin JF, Lai SC, Grapes R. Diwu CR, Ju YJ and Li YF. 2010. Origin of Late Triassic high-Mg adakitic granitoid rocks from the Dongjiangkou area, Qinling orogen, central China: Implication for subduction of continent crust. Lithos, 120(3-4): 347-367
Rapp RP. 1997. Heterogeneous source regions for Archean granitoids. In: deWit MJ and Ashwal LD (eds.). Greenstone Belts. Oxford: Oxford University Press, 35-37
Rapp RP, Shimizn N, Norman MD and Applegate GS. 1999. Reaction between slab-derived melt and peridotite in the mantle wedge: Experimental constraints at 3.8Gpa. Chemical Geology, 160(4): 335-356
Rudnick RL. 1995. Making continental crust. Nature, 378(6557): 571-578
Scherer E, Münker C and Mezger K. 2001. Calibration of the Lutetium-hafnium clock. Science, 293(5530): 683-687
Shan RJ and Yan Z. 1988. Granites of Qinling-Dabashan Mountains. Wuhan: China University of Geosciences Press, 1-229(in Chinese)
Sisson TW, Ratajeski K and Hankins WB. 2005. Voluminous granitic magmas from common basaltic sources. Contributions to Mineralogy and Petrology, 148(6): 635-661
Slama J, Kosler J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Horstwood MSA, Morris GA, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett MN and Whitehouse MJ. 2008. Plesovice zircon: A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology, 249(1-2): 1-35
Sun SS and MeDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42: 313-345
Tian W, Dong SB, Chen MM and Zhu WP. 2009. “Mantle signature” on the Indosinian granitoid belt in south Qinling, Central China. Earth Science Frontiers, 16(2): 119-128 (in Chinese with English abstract)
Vervoort JD and Blicher-Toft J. 1999. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochimica et Cosmochimica Acta, 63(3-4): 533-556
Wan YW. 1980. Mineralization characteristics and ore deposit model of intermediate-acid granitoid porphyry from Shanyang region. Regional Characteristics of Qinling, (3): 1-36(in Chinese)
Wang J, Li X, Lai SC and Qin JF. 2008. Petrogenesis of the Early Triassic Xichahe and Wulong plutons in the South Qinling Mountains and their tectonic significance. Geology in China, 35(2): 207-216(in Chinese with English abstract)
Wang XX, Wang T, Ilmari H and Lu XX. 2005. Genesis of mafic enclaves from rapakivi-textured granites in the Qinling and its petrological significance: Evidence of elements and Nd, Sr isotopes. Acta Petrologica Sinica, 21(3): 935-946(in Chinese with English abstract)
Wang ZQ, Wang T, Yan Z and Yan QR. 2002. Late Paleozoic forearc accretionary piggyback type basin system in the South Qinling, Central China. Regional Geology of China, 21(8-9): 456-464(in Chinese with English abstract)
Wang ZQ, Yan QR, Yan Z, Wang T, Jiang CF, Gao LD, Li QG, Chen JL, Zhang YL, Liu P, Xie CL and Xiang ZJ. 2009. New division of the main tectonic units of the Qinling Orogenic Belt, Central China. Acta Geologica Sinica, 83(11): 1527-1546(in Chinese with English abstract)
Wolf MB and Wyllie PJ. 1992. The formation of tonalitic liquids during the vapor-absent partial melting of amphibolite at 10kbar. Eos, 70: 506-518
Wu FY, Yang YH, Xie LW, Yang JH and Xu P. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology, 234(1-2): 105-126
Xie GQ, Ren T, Li JB, Wang RT, Xia CL, Guo YH, Dai JZ and Shen ZC. 2012. Zircon U-Pb age and Petrogenesis of ore-bearing granitoids for the Chigou Cu-Mo deposit from the Zhashan basin, Shaanxi Province. Acta Petrologica Sinica, 28(1): 15-26(in Chinese with English abstract)
Yan Z. 1985. Granite from Shaanxi Province. Xi’an: Xi’an Jiaotong University Press, 1-321(in Chinese)
Yan Z, Wang ZQ, Yan QR, Wang T, Xiao WJ, Li JL, Han FL, Chen JL and Yang YC. 2006. Devonian sedimentary environments and provenance of the Qinling Orogen: Constraints on Late Paleozoic southward accretionary tectonics of the North China Craton. International Geology Review, 48(7): 585-618
Yan Z, Wang ZQ, Wang T, Yan QR, Xiao WJ, Li JL, Han FL and Chen JL. 2007. Tectonic setting of Devonian sediments in the Qinling orogen: Constraints from detrital modes and geochemistry of clastic rocks. Acta Petrologica Sinica, 23(5): 1023-1042(in Chinese with English abstract)
Yan Z, Wang ZQ, Yan QR, Wang T and Guo XQ. 2012. Geochemical constraints on the provenance and depositional setting of the Devonian Liuling Group, East Qinling Mountains, Central China: Implications for the tectonic evolution of the Qinling orogenic belt. Journal of Sedimentary Research, 82(1): 9-20
Yogodzinski CM, Kay RW, Volynets ON, Koloskov AV and Bolynets ON. 1995. Magnesian andesite in the western Aleutian Komandorsky region: Implications for slab melting and processes in the mantle wedge. Geological Society of America Bulletin, 107(5): 505-519
Zhang BR, Chen DX, Li ZJetal. 1989. Region Geochemistry of Shanyang-Zhashui Metallogenic Belt, Shaanxi Province. Wuhan: Press of China University of Geosciences, 1-221(in Chinese with English abstract)
Zhang CL, Wang T and Wang XX. 2008. Origin and tectonic setting of the Early Mesozoic granitoids in Qinling Orogenic Belt. Geological Journal of China Universities, 14(3): 304-316 (in Chinese with English abstract)
Zhang HF, Zhang BR, Ling WL, Gao S and Ouyang JP. 1997. Late Proterozoic crustal accretion of South Qinling: Na isotopic study from granitic rocks. Geochimica, 26(5): 16-24 (in Chinese with English abstract)
Zhang HF, Parrish R, Zhang L Xu WC, Yuan HL, Gao S and Crowley QG. 2007. A-type granite and adakitic magmatism association in Songpan Garze fold belt, eastern Tibetan Plateau: Implication for lithospheric delamination. Lithos, 97(3-4): 323-335
Zhang Q, Wang Y, Li CD, Wang YL, Jin WJ and Jia XQ. 2006. Granite classification on the basis of Sr and Yb contents and its implications. Acta Petrologica Sinica, 22(9): 2249-2269(in Chinese with English abstract)
Zhang YL. 2002. Geological features and the metallogentic conditions of acid-intermediate acid small rock bodies in Xiaohekou area of Shanyang County, Shaanxi Province. Shaanxi Geology, 20(2): 27-38(in Chinese with English abstract)
Zhang ZQ, Zhang GW, Tang SH and Lu XX. 1999. Age of the Shahewan rapakivi granite in the Qinling orogen, China, and its constraints on the end time of the main orogenic stage of this orogen. Chinese Science Bulletin, 44(21): 2001-2004
附中文參考文獻
崔建堂, 趙長纓. 1998. 東江口、柞水巖體環(huán)斑花崗巖地質(zhì)特征. 陜西地質(zhì), 16(1): 51-57
崔建堂, 趙長纓, 王炬川. 1999. 南秦嶺東江口、柞水巖體巖石譜系單位劃分及演化. 陜西地質(zhì), 17(2): 7-15
弓虎軍, 朱賴民, 孫博亞, 李犇, 郭波. 2009a. 南秦嶺沙河灣、曹坪和柞水巖體鋯石U-Pb年齡、Hf同位素特征及其地質(zhì)意義. 巖石學(xué)報, 25(2): 248-264
弓虎軍, 朱賴民, 孫博亞, 李犇, 郭波, 王建其. 2009b. 南秦嶺地體東江口花崗巖及其基性包體的鋯石U-Pb年齡和Hf同位素組成. 巖石學(xué)報, 25(11): 3029-3042
侯可軍, 李延河, 鄒天人, 曲曉明, 石玉若, 謝桂青. 2007. LA-MC-ICP-MS鋯石Hf同位素的分析方法及地質(zhì)應(yīng)用. 巖石學(xué)報, 23(10): 2595-2604
侯可軍, 李延河, 田有榮. 2009. LA-MC-ICP-MS鋯石微區(qū)原位U-Pb定年技術(shù). 礦床地質(zhì), 28(4): 481-492
胡健民, 崔建堂, 孟慶任, 趙長纓. 2004. 秦嶺柞水巖體鋯石U-Pb年齡及其地質(zhì)意義. 地質(zhì)論評, 50(3): 323-329
李春昱, 劉仰文, 朱寶清, 馮益民, 吳漢泉. 1978. 秦嶺及祁連山構(gòu)造發(fā)展史. 西北地質(zhì), 4: 1-12
李獻華, 李武顯, 李正祥. 2007. 再論南嶺燕山早期花崗巖的成因類型與構(gòu)造意義. 科學(xué)通報, 52(9): 981-991
李先梓, 嚴陣, 盧欣祥. 1993. 秦嶺-大別山花崗巖. 北京: 地質(zhì)出版社, 1-218
劉樹文, 楊朋濤, 李秋根, 王宗起, 張萬益, 王偉. 2011. 秦嶺中段印支期花崗質(zhì)巖漿作用與造山過程. 吉林大學(xué)學(xué)報(自然科學(xué)版), 41(6): 1928-1943
盧欣祥, 董有, 常秋嶺, 肖慶輝, 李曉波, 王曉霞. 1996. 秦嶺印支期沙河灣奧長環(huán)斑花崗巖及其動力學(xué)意義. 中國科學(xué)(D輯), 26(3): 244-248
盧欣祥, 尉向東, 肖慶輝, 張宗清, 李惠民, 王衛(wèi). 1999. 秦嶺環(huán)斑花崗巖的年代學(xué)研究及其意義. 高校地質(zhì)學(xué)報, 5(4): 372-377
盧欣祥, 王曉霞, 肖慶輝, 邢作云. 2007. 秦嶺-昆侖造山型環(huán)斑花崗巖與世界典型環(huán)斑花崗巖的對比. 地質(zhì)科技情報, 26(1): 1-10
牛寶貴, 何政軍, 任紀舜, 王軍, 鄧平. 2006. 秦嶺地區(qū)陡嶺-小磨嶺隆起西段幾個巖體的SHRIMP鋯石U-Pb測年及其地質(zhì)意義. 地質(zhì)論評, 52(6): 826-835
秦江鋒, 賴紹聰, 李永飛. 2005. 揚子板塊北緣碧口地區(qū)陽壩花崗閃長巖體成因研究及其地質(zhì)意義. 巖石學(xué)報, 21(3): 697-710
秦江鋒, 賴紹聰, 李永飛. 2007. 南秦嶺勉縣-略陽縫合帶印支期光頭山埃達克質(zhì)花崗巖的成因及其地質(zhì)意義. 地質(zhì)通報, 26(4): 466-471
秦江鋒. 2010. 秦嶺造山帶晚三疊世花崗巖類成因機制及其動力學(xué)背景. 博士學(xué)位論文. 西安:西北大學(xué), 1-266
尚瑞鈞, 嚴陣. 1988. 秦巴花崗巖. 武漢: 中國地質(zhì)大學(xué)出版社, 1-229
田偉, 董申保, 陳咪咪, 朱文萍. 2009. 南秦嶺印支期花崗巖帶的“地幔印記”. 地學(xué)前緣, 16(2): 119-128
萬義文. 1980. 山陽一帶中酸性斑巖體的成礦特點與成礦模式. 秦嶺區(qū)測, (3): 1-36
王娟, 李鑫, 賴紹聰, 秦江鋒. 2008. 印支期南秦嶺西茬河、五龍巖體成因及構(gòu)造意義. 中國地質(zhì), 35(2): 207-216
王曉霞, 王濤, Ilmari H, 盧欣祥. 2005. 秦嶺環(huán)斑結(jié)構(gòu)花崗巖中暗色包體的巖漿混合成因及巖石學(xué)意義——元素和Nd、Sr同位素地球化學(xué)證據(jù). 巖石學(xué)報, 21(3): 935-946
王宗起, 王濤, 閆臻, 閆全人. 2002. 秦嶺晚古生代弧前增生的背馱型盆地體系. 地質(zhì)通報, 21(8-9): 456-464
王宗起, 閆全人, 閆臻, 王濤, 姜春發(fā), 高聯(lián)達, 李秋根, 陳雋璐, 張英利, 劉平, 謝春林, 向忠金. 2009. 秦嶺造山帶主要大地構(gòu)造單元的新劃分. 地質(zhì)學(xué)報, 83(11): 1527-1546
謝桂青, 任濤, 李劍斌, 王瑞廷, 夏長玲, 郭延輝, 代軍治, 申志超. 2012. 陜西柞山盆地池溝銅鉬礦區(qū)含礦巖體的鋯石年齡和巖石成因. 巖石學(xué)報, 28(1): 15-26
閆臻, 王宗起, 王濤, 閆全人, 肖文交, 李繼亮, 韓芳林, 陳雋璐. 2007. 秦嶺造山帶泥盆系形成構(gòu)造環(huán)境: 來自碎屑巖組成和地球化學(xué)方面的約束. 巖石學(xué)報, 23(5): 1023-1042
嚴陣. 1985. 陜西省花崗巖. 西安: 西安交通大學(xué)出版社, 1-321
張本仁, 陳德興, 李澤九等. 1989. 陜西柞水山陽成礦帶區(qū)域地球化學(xué). 武漢: 中國地質(zhì)大學(xué)出版社, 1-221
張成立, 王濤, 王曉霞. 2008. 秦嶺造山帶早中生代花崗巖成因及其構(gòu)造環(huán)境. 高校地質(zhì)學(xué)報, 14(3): 304-316
張宏飛, 張本仁, 凌文黎, 高山, 歐陽建平. 1997. 南秦嶺新元古代地殼增生事件: 花崗質(zhì)巖石釹同位素示蹤. 地球化學(xué), 26(5): 16-24
張旗, 王焰, 李承東, 王元龍, 金惟俊, 賈秀勤. 2006. 花崗巖的Sr-Yb分類及其地質(zhì)意義. 巖石學(xué)報, 22(9): 2249-2269
張銀龍. 2002. 陜西省山陽縣小河口地區(qū)酸性-中酸性巖體地質(zhì)特征及其成礦地質(zhì)條件分析. 陜西地質(zhì), 20(2): 27-38