• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Molecular detection of Xanthomonas oryzae pv.oryzae,Xanthomonas oryzae pv.oryzicola,and Burkholderia glumae in infected rice seeds and leaves

    2014-03-13 05:51:10WenLuLuqiPnHijunZhoYulinJiYnliWngXiopingYuXueynWng
    The Crop Journal 2014年6期

    Wen Lu,Luqi Pn,Hijun Zho,Yulin Ji,Ynli Wng ,Xioping Yu,Xueyn Wng,*

    aZhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine,College of Life Science,China Jiliang University,Hangzhou 310018,China

    bInstitute of Nuclear-Agricultural Science,Zhejiang University,Hangzhou 310029,China

    cUnited States Department of Agriculture,Agricultural Research Service,Dale Bumpers National Rice Research Center(USDA-ARS DB NRRC),Stuttgart,AR,USA

    dInstitute of Plant Protection and Microbe,Zhejiang Academy of Agricultural Sciences,Hangzhou 310021,China

    1.Introduction

    Rice,one of the most important food crops,is constantly challenged by bacterial pathogens,such as those causing bacterial blight,leaf streak,and bacterial panicle blight.Bacterial blight,caused by Xanthomonas oryzae pv.oryzae,is a prevalent and destructive rice disease that causes annual yield losses ranging from 10 to 20% and up to 50% to 70% in severely infected fields [1,2].This disease also affects grain quality by interfering with the maturation process[3].Bacterial leaf streak caused by X.oryzae pv.oryzicola,the pathovar of X.oryzae pv.oryzae,usually results in the wilting of leaves andlosses as high as 32%in 1000-grain weight[4].It is important to note that hybrid rice varieties are more susceptible to this bacterial pathogen than non-hybrid varieties [5].Rice bacterial panicle blight(bacterial grain rot),caused by Burkholderia glumae was first reported in Japan in 1956 [6].Yield losses due to B.glumae can reach as high as 40%in the southern U.S.[7].Given that the optimal temperature for the growth of B.glumae ranges from 30 to 50 °C [7],warmer temperatures during the ricegrowing season increase the severity of the disease [8].The presence of X.oryzae pv.oryzae,X.oryzae pv.oryzicola,B.glumae in infected seeds may cause disease transmission,so that many countries have listed the three bacteria as quarantined

    organisms.Both conventional and real-time PCR have been widely used to detect or verify the presence of X.oryzae pv.

    Table 1-Sequences,annealing temperature,predicted product size,primers,and primer sources used in this study.

    Table 2-Bacterial and fungal strains used for specificity tests.

    oryzae[9–13],X.oryzae pv.oryzicola[14–16],and B.glumae[17–20]in recent decades.These molecular-based methods are rapid,accurate and sensitive for detecting pathogens.However,they can detect only one pathogen each.Several methods have been developed to distinguish highly similar pathovars of X.oryzae pv.oryzae and X.oryzae pv.oryzicola using multiplex or real-time PCR[21,22].

    In the present study,we used genome sequence information available in public databases to develop PCR primers for accurate identification of X.oryzae pv.oryzae,X.oryzae pv.oryzicola,and B.glumae.The objective of this study was to develop multiplex PCR and SYBR Green real-time PCR methods for simultaneous detection of the presence of X.oryzae pv.oryzae,X.oryzae pv.oryzicola,and B.glumae.

    2.Materials and methods

    2.1.Bacterial and fungal strains and culture conditions

    Strains of X.oryzae pv.oryzae,X.oryzae pv.oryzicola,and B.glumae; the other closely related pathogens Xanthomonas campestris,Xanthomonas maltophilia,Burkholderia gladioli pv.alliicola,and Burkholderia cepacia;and the rice fungal pathogens Magnaporthe oryzae and Ustilaginoidea oryzae were used to develop specific primer sets.Bacterial strains were cultured on a Luria–Bertani medium (1% tryptone,0.5% yeast extract,1%NaCl,and 1.5%agar)at 28 °C for two days.Fungal isolates were cultured on corn meal medium(3%corn meal and 1.5%agar)at room temperature for four to five days[23].

    2.2.DNA preparation

    Genomic DNA of bacterial strains was extracted with a Genomic DNA Prep Kit (Sangon,Shanghai,China) following the manufacturer's protocol,except that DNA was eluted in 30 μL double-distilled water(ddH2O).Genomic DNA of fungal and leaf tissue was prepared using the CTAB method [24,25].DNA concentrations were measured with a Nanodrop 2000 instrument (Thermo Fisher Scientific,Wilmington,DE).The OD260:OD280 ratios of all samples were approximately 1.8.All samples were diluted to 1 ng μL-1in ddH2O.

    2.3.Development of specific DNA primers

    The sequence of the putative glycosyltransferase gene of X.oryzae pv.oryzae (AF169030.1) was identified in GenBank,and then aligned with the putative glycosyltransferase genes of X.oryzae pv.oryzicola (CP003057.1),X.campestris pv.campestris (AF204145.1),X.campestris pv.vesicatoria(AM039952.1),Xanthomonas axonopodis pv.citrumelo(CP002914.1),and Xanthomonas albilineans(FP565176)using BioEdit[26].Specific primers for X.oryzae pv.oryzae were designed from non-conserved regions (Table 2,Fig.S1).Using the same strategy,the AvrRxo gene of X.oryzae pv.oryzicola(AY395713.1) was used as a template for designing specific primers for X.oryzae pv.oryzicola (Fig.S2).Ribosomal internal transcribed spacers (ITSs) of B.glumae (D87080),B.plantarii(AB183680.1),B.gladioli (EF552066.1),B.gladioli pv.alliicola(D87082.1),B.gladioli pv.agricicola (EF552068.1),and B.cepalia(FJ870551.2)were aligned,after which the nonconserved regions were used to design specific primers(Fig.S3).The PCR product lengths ranged from 100 to 250 bp for both conventional and real-time PCR assays.

    2.4.Polymerase chain reaction (PCR)

    Conventional PCR assays were used to test the specificity and sensitivity of primers using a T100 Thermal Cycler (Bio-Rad,California,USA).The concentration of the sample used for testing the specificity of the primers was 1 ng μL-1.The pathogens X.oryzae pv.oryzae OS198,X.oryzae pv.oryzicola AHB4-75,and B.glumae LMG2196 were diluted to 5 × 10-1,1 × 10-1,5 × 10-2,1 × 10-2,5 × 10-3,1 × 10-3,5 × 10-4,and 1 × 10-4ng μL-1with ddH2O to test primer sensitivity.PCR reactions were performed in a final volume of 20 μL containing 10 μL of 2 × Taq master mix(Sangon,Shanghai,China),0.4 μL of each 10 μmol L-1primer,1 μL of genomic DNA,and 8.6 μL ddH2O,vortexed thoroughly.PCR amplification was as follows:initial denaturation for 3 min at 94 °C;35 cycles of 30 s at 94 °C,30 s at 58 °C,30 s at 72 °C,and final extension for 10 min at 72 °C.PCR products were separated on a 1%agarose gel(1 × TAE buffer)by electrophoresis at 100 V for 30 min and visualized with a Gene Genius Bio Imaging System (Syngene,Cambridge,UK).DNA templates were replaced with ddH2O as a negative control.

    Fig.1-Sensitivity tests of primer sets using conventional PCR.A:sensitivity test of JLXooF/R with the template OS198;B:sensitivity test of JLXocF/R with the template AHB4-75;C:sensitivity test of JLBgF/R with the template LMG2196.Lane M,DNA ladder(DL 2000,Takara,Shiga,Japan);lanes 1-9:1,5 × 10-1,1 × 10-1,5 × 10-2,1 × 10-2,5 × 10-3,1 × 10-3,5 × 10-4,and 1 × 10-4 ng μL-1;lane 10:negative control.The arrows point to the limiting detection concentrations of the primer sets.

    2.5.SYBR Green real-time PCR

    The SYBR Green real-time PCR assay was used to test the sensitivity of the primers with an IQ5 Multicolor real-time PCR Detection System (Bio-Rad,Hercules,CA).DNA of OS198,AHB4-75,and LMG2196 was 10-fold serially diluted from 1 to 1 × 10-6ng μL-1.Each PCR reaction contained 10 μL of 2 × SYBR Premix Ex Taq (TaKaRa,Shiga,Japan) and 0.4 μL of each 10 μmol L-1primer,1 μL template,and 8.6 μL ddH2O.Realtime PCR was performed with the following program: 45 s at 95 °C;40 cycles of 5 s at 95 °C,30 s at 61 °C for 30 s;and melting curve at 65 to 95 °C with increases of 0.5 °C.DNA templates were replaced by ddH2O as a negative control.

    2.6.Multiplex PCR

    To perform multiplex PCR,1 ng μL-1genomic DNA of OS198,AHB4-75 and LMG2196 was used as positive templates in three PCR tubes,respectively.The three genomes were mixed with different concentrations and proportions of DNA to test the primers' sensitivity in a multiplex PCR reaction.The total volume of multiplex PCR was 20 μL (10 μL of 2 × Taq master mix,0.4 μL of 10 μmol L-1of each primer,and 1 μL DNA mix).PCR products were separated on a 1.5%agarose gel (1 × TAE buffer) by electrophoresis at 90 V for 50 min and visualized with the Gene Genius Bio Imaging System.DNA templates were replaced by ddH2O as a negative control.

    Fig.2-Sensitivity tests of JLXooF/R primer set using SYBR Green RT-PCR.A: Standard curve.For each assay,templates (1-7)were diluted 10-fold to concentrations ranging from 1.0 to 1.0 × 10-6 ng μL-1.B: Melting-peak analysis.C: Fluorescence intensity;1.0 to 1.0 × 10-6 ng μL-1;1-7:samples;8:negative control.The arrow points to the limiting detection concentration of the primer set;D:CT(cycle threshold)and SE (standard error).

    2.7.Artificial inoculation of seeds with X.oryzae pv.oryzae,X.oryzae pv.oryzicola,and B.glumae

    Five grams(approximately 150 seeds)of rice cultivar Nipponbare were surface-disinfected in 75%ethanol for 10 min,incubated in approximately 0.5% chlorine solution for 30 min,and rinsed three times with sterilized distilled water.After disinfection,the seeds were transferred to Petri dishes containing sterilized filter paper and allowed to air-dry for 3 h in a laminar-flow chamber.The surface-disinfected seeds were inoculated with 5 mL g-1of bacterial suspensions of OS198 or AHB4-75 or LMG2196 or a mixture of OS198,AHB4-75,and LMG2196 with OD600equal to 0.01(×108CFU mL-1),respectively.OD600values were measured using a Nanodrop (ND 100 spectrophotometer,NanoDrop Technologies,Inc.).The inoculation was vacuum infiltrated for 60 min.After inoculation,the artificially infected seeds were allowed to air-dry in the laminar air flow chamber and stored at 4until use.

    2.8.The detection of pathogens on rice seeds

    Detection of X.oryzae pv.oryzae,X.oryzae pv.oryzicola,and B.glumae in rice seed lots was performed by washing 1 g healthy and 1 g infected seeds infected by X.oryzae pv.oryzae,X.oryzae pv.oryzicola,B.glumae,or a mixture of the three bacteria in 5 mL sterile dH2O,shaking at 100 r min-1for 2 h at 4 °C.One microliter of suspension was used as the template for the multiplex PCR described above for detection of X.oryzae pv.oryzae,X.oryzae pv.oryzicola,and B.glumae.All experiments were repeated twice.

    3.Results

    3.1.Primer design and specificity

    The specific primers JLXooF/R for X.oryzae pv.oryzae,JLXocF/R for X.oryzae pv.oryzicola,and JLBgF/R for B.glumae were developed based on the polymorphic regions of the corresponding putative glycosyltransferase gene,AvrRxo gene and ITS sequence,respectively(Table 1,Figs.S1,S2,and S3).The 230 bp DNA fragments were amplified from all X.oryzae pv.oryzae strains using the JLXooF/R.However,the expected fragments were not amplified either from closely related bacterial strains,including X.oryzae pv.oryzicola and X.campestris,or from other bacterial or fungal strains(Table 2,Fig.S4).An expected 112 bp DNA product was amplified only from X.oryzae pv.oryzicola strains using the primer set JLXocF/R (Table 2,Fig.S5),and a product of 164 bp was amplified only from B.glumae using JLBgF/R (Table 2,Fig.S6).The results suggest that these primer sets were specific to the target pathogens tested.

    3.2.Sensitivity of PCR amplification

    The purified DNA was used to test the primers' sensitivity in both conventional PCR and real-time PCR assays.The primer sets JLXooF/R,JLXocF/R,and JLBgF/R detected as little as 1 pg μL-1DNA of OS198,0.5 pg μL-1DNA of AHB4-75,and 1 pg μL-1DNA of LMG2196 in the 20 μL PCR reactions(Fig.1).

    SYBR Green real-time PCR was also used to test the sensitivity of the primer sets.The amplification profiles of OS198,AHB4-75,and LMG2196 dilutions are shown in Figs.2,3,and 4,respectively.The R2values of JLXooF/R,JLXocF/R,and JLBgF/R were equal to 0.998,0.996,and 0.992,respectively,indicating a good linear response of each primer set.The linear regression slope gave coefficients of –3.359 for JLXooF/R,–3.426 for JLXocF/R,and –3.245 for JLBgF/R,corresponding to PCR efficiencies of 102.7%,95.8%,and 107.9%,respectively(Figs.2-A,3-A,4-A).Melting curve analysis showed a single peak for each primer at around 85 °C (Figs.2-B,3-B,4-B)suggesting the absence of primer dimers.The cycle threshold(Ct)in a real-time PCR assay is defined as the number of cycles required for the fluorescent signal to pass the threshold.The sample is considered to be negative or to represent environmental contamination when the Ct value is above 38.5.The detection limits of the genomic DNAs by SYBR Green PCR were 1 fg μL-1for OS198(Fig.2-C),1 fg μL-1for AHB4-75(Fig.3-C),and 10 fg μL-1for LMG2196(Fig.4-C).The primer sets developed in this study can be used to detect the presence of the target pathogens by both conventional and real-time PCR.

    Fig.3-Sensitivity assay of JLXocF/R primer set for X.oryzae pv.oryzicola using SYBR Green RT-PCR.A:Standard curve.For each assay,templates(1-7)were diluted 10-fold to concentrations ranging from 1.0 to 1.0 × 10-6 ng μL-1.B:Melting-peak analysis.C:Fluorescence intensity;1.0 to 1.0 × 10-6 ng μL-1;1-7:samples;8:negative control.The arrow points to the limiting detection concentration of the primer set;D:CT(cycle threshold)and SE (standard error).

    3.3.Multiplex PCR for detection of three pathogens and its sensitivity

    To test further whether the primer sets could be used to detect the three target bacterial organisms simultaneously,artificial genomic DNA mixtures of OS198,AHB4-75,and LMG2196 were prepared based on different concentrations displayed in Table 3.When mix 1–4 was used as template in multiplex PCRs,all of the products specific to the three pathogens were visible on the 1.5%agarose gel(Table 3 and Fig.5).However,the specific amplicon of B.glumae was not detectable when mix 5 was used as template.Only the amplicon of X.oryzae pv.oryzicola was detected when mix 6 was used as template in multiplex PCR.The detection limits for the multiplex PCR assay were 0.3 pg μL-1for X.oryzae pv.oryzae,0.167 pg μL-1for X.oryzae pv.oryzicola,and 16.7 pg μL-1for B.glumae in the 20 μL reaction.The detection limits of each pathogen in multiplex PCR were highly similar to those of the single pathogen in conventional PCR.

    Fig.4-Sensitivity assay of JLBgF/R primer set for B.glumae using SYBR Green RT-PCR.A:Standard curve.For each assay,templates(1-7)were diluted 10-fold to concentrations ranging from 1.0 to 1.0 × 10-6 ng μL-1.B:Melting-peak analysis.C:Fluorescence intensity;1.0 to 1.0 × 10-6 ng μL-1;1-7:samples;8:negative control.The arrow points to the limiting detection concentration of the primer set;D:CT(cycle threshold)and SE(standard error).

    3.4.Pathogen detection in the artificial inoculated rice seeds

    To determine whether multiplex PCR could detect the target pathogens in infected rice seeds,rice seeds were artificially infected by X.oryzae pv.oryzae,X.oryzae pv.oryzicola,or B.glumae and the mixture of the these three pathogens,respectively.If the seeds were infected by one pathogen,only the corresponding PCR product appeared on the gel using multiplex PCR assays.As a negative control,no amplification was observed from sterile distilled water-treated seeds.When the seeds were infected with a mixture of the three pathogens,the 230,164,and 112 bp fragments for X.oryzae pv.oryzae,X.oryzae pv.oryzicola,and B.glumae,respectively,were detected(Fig.6).

    Table 3-Sample mixtures for multiplex PCR.

    Fig.5-One-tube multiplex PCR for diagnosing three pathogens and its sensitivity.Lane M,DNA ladder(DL2000;TaKaRa);lanes 1-6 mixture of X.oryzae pv.oryzae strain OS225,X.oryzae pv.oryzicola AHB4-75,and B.glumae strain LMG2196,in concentrations 1 ng μL-1,5 × 10-1 ng μL-1,10 × 10-1 ng μL-1,5 × 10-2 ng μL-1,1 × 10-2 ng μL-1,5 × 10-3 ng μL-1.

    4.Discussion

    Conventionally,identification or detection of a plant pathogen requires pathogen isolation,cultivation,and verification based on bacteriological characteristics,colony morphology,electron microscopic observation,and other means–a timeconsuming process.In addition,the detection process requires much equipment and chemicals,increasing the cost.In the present study,an efficient multiplex PCR method was used to rapidly and accurately detect the rice bacterial pathogens X.oryzae pv.oryzae,X.oryzae pv.oryzicola,and B.glumae simultaneously in infected rice seeds,using new specific primer sets developed from specific sequence comparisons of X.oryzae pv.oryzae,X.oryzae pv.oryzicola,and B.glumae against their closely related species.

    The bottleneck for PCR-based diagnostic or detection tools has been the availability of pathogen-specific primers.Sequence polymorphisms of 16S–23S ITS are often observed in strains of different species.In previous studies,specific DNA primers and probes have been designed based from 16S–23S ITS sequences for identification,separation and classification of some species of pathogens [6,9,17,27–32].16S–23S ITS of different species of Burkholderia were used to separate B.glumae from other Burkholderia species.However,it is difficult to separate pathovars using 16S–23S ITS [9].With advances in sequencing techniques,more and more bacterial genomic DNA sequences have been deposited in the GenBank database,allowing the development of specific primers using genomic comparisons[21].By genomic comparison among the X.oryzae pv.oryzae strains (PXO99A,MAFF311018,and KACC 10331),X.oryzae pv.oryzicola strains(BLS256),we identified the putative glycosyltransferase gene specific to X.oryzae pv.oryzae,and the AvrRxo gene specific to X.oryzae pv.Oryzicola (X.Wang,unpublished data).We then designed specific primers from the polymorphic DNA regions of these specific genes (Figs.S1,S2,S3).Although we used a limited number of strains of each pathogen,the primer sets we developed were specific.We amplified no sequences from the closely related bacterial pathogens X.campestris,X.maltophilia,B.gladioli pv.alliicola,or B.cepacia,or from the fungal pathogens,M.oryzae and U.oryzae.

    Fig.6-Pathogen detection in artificial inoculated rice seeds.One-tube multiplex PCR for diagnosing three pathogens.Lane M,DNA ladder(DL 2000;TaKaRa);lane 1:seeds infected by X.oryzae pv.oryzae strain OS198;lane 2:seeds infected by X.oryzae pv.oryzicola strain AHB4-75;lane 3:seeds infected by B.glumae strain LMG;lane 4:mixture of seeds infected by OS198,AHB4-75,and LMG;lane 5:negative control.

    For pathogen quarantine and inspection,primer sets are often required to be not only specific to the templates,but also sensitive to small quantities of the pathogens.Given that the amplified PCR fragments ranged from 112 to 230 bp in length,these primer sets can be used for both conventional and SYBR Green PCR.This knowledge will allow users to select the desired PCR platform to detect the pathogens.

    Multiplex PCR has been applied to detect several pathogens in one PCR tube.Given that the lengths of the amplicons were very different,they were clearly visible on the 1.5%agarose gel after 50 min of separation.When complex templates consisting of three mixed samples were used,the detection limits of each sample were highly similar to those when single samples was used as the PCR template,suggesting that the multiplex PCR developed in the study can be used for simultaneous detection of the three rice bacterial pathogens.One common problem is that the detection sensitivity of multiplex PCR is lower than that of real-time PCR.To determine whether each primer set could amplify the corresponding DNA fragment from mixed samples with multiple pathogens using SYBR Green real time PCR,we made the following DNA mixtures: 1.DNA of OS198,AHB4-75 and LMG2196 with 1 ng μL-1at equal volume;and 2.detection limits of OS198,AHB4-75,and LMG2196 at equal volume.We observed specific real-time PCR products using the complex genomic DNA as templates and with even tiny amounts of DNA(Fig.S7).These findings suggest that our primers are specific and sensitive for simultaneous use in both multiplex and real-time PCR.

    Sowing rice seeds containing the organisms of X.oryzae pv.oryzae,X.oryzae pv.oryzicola,or B.glumae can cause severe yield and economic losses in rice production.Rice leaves naturally infected by X.oryzae pv.oryzae and X.oryzae pv.oryzicola were collected from rice fields in Hangzhou in 2013 and infections were verified by phenotypic examination.The mixture of primer sets was used to detect different pathogens in these diseased leaves using multiplex PCR.The PCR products expected from positive controls were amplified using DNA from diseased leaf tissue infected by X.oryzae pv.oryzae and X.oryzae pv.oryzicola (Fig.S8),suggesting that these primer sets are highly effective and specific.

    In conclusion,we have developed a user-friendly PCR based method to detect pathogens at extremely low levels in infected rice seeds and leaves.This method should be tested using diseased rice seeds from commercial fields before worldwide adoption for rapid pathogen inspection and quarantine.

    We thank Professor Guanlin Xie of Zhejiang University for supplying B.glumae strain,Dr.Zhen Zhang of Zhejiang Academy of Agricultural Sciences for supplying the strains of X.oryzae pv.oryzae and X.oryzae pv.oryzicola,Dr.Yuan Fang of Zhejiang Normal University for supplying B.gladioli pv.alliicola strain and B.cepacia strain,and Dr.Stefano Costanzo of USDA APHIS-PPQ and Tracy Bianco of USDA-ARS DB NRRC for the critical review.This work was performed with the support of the National 863 Project (2012AA021601) and the New Seedling program for graduate students of Zhejiang Province(2012R409012).USDA is an equal opportunity provider and employer.

    Supplementary material

    Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.cj.2014.06.005.

    [1] T.W.Mew,Current status and future prospects of research on bacterial blight of rice,Annu.Rev.Phytopathol.25(1987)359–382.

    [2] T.W.Mew,A.M.Alvarez,J.E.Leach,J.Swings,Focus on bacterial blight of rice,Plant Dis.77(1993) 5–12.

    [3] M.Goto,Fundamentals of Bacterial Plant Pathology,Academic Press,San Diego,CA,1992.210–224.

    [4] S.H.Ou,Rice Diseases,2nd edn Commonwealth Mycological Institute,Kew,Surrey,England,1985.380.

    [5] A.P.K.Reddy,K.Krishnaiah,Z.T.Zhang,Y.Shen,Managing vulnerability of hybrid rice to biotic stresses in China and India,in:S.S.Virmani,E.A.Siddiq,K.Muralidharan (Eds.),Proceedings of the 3rd International Symposium on Hybrid Rice Technology: Advances in Hybrid Rice Technology,Hyderabad,India &International Rice Research Institute,Philippines,1998,pp.147–156.

    [6] K.Goto,K.Ohata,New bacterial disease of rice(brown stripe and grain rot),Ann.Phytopathol.Soc.Jpn.21(1956) 46–47.

    [7] R.Nandakumar,A.K.M.Shahjahan,X.L.Yuan,E.R.Dickstein,D.E.Groth,C.A.Clark,R.D.Cartwright,M.C.Rush,Burkholderia glumae and B.gladioli cause bacterial panicle blight in rice in the southern United States,Plant Dis.93(2009)896–905.

    [8] J.H.Ham,R.A.Melanson,M.C.Rush,Burkholderia glumae:next major pathogen of rice? Mol.Plant Pathol.12(2011)329–339.

    [9] N.Adachi,T.Oku,PCR-mediated detection of Xanthomonas oryzae pv.oryzae by amplification of the 16S–23S rDNA spacer region sequence,J.Gen.Plant Pathol.66(2000) 303–309.

    [10] N.Sakthivel,C.N.Mortensen,S.B.Mathur,Detection of Xanthomonas oryzae pv.oryzae in artificially inoculated and naturally infected rice seeds and plants by molecular techniques,Appl.Microbiol.Biotechnol.56(2001)435–441.

    [11] C.M.Vera Cruz,L.Halda-Alija,F.J.Louws,D.Z.Skinner,M.L.George,R.J.Nelson,F.J.DeBruijn,C.W.Rice,J.E.Leach,Repetitive sequence-based polymerase chain reaction of Xanthomonas oryzae pv.oryzae and Pseudomonas species,Int.Rice Res.Notes 20 (1995) 23–24.

    [12] M.S.Cho,M.J.Kang,C.K.Kim,Y.J.Seol,J.H.Hahn,S.C.Park,D.S.Park,Sensitive and specific detection of Xanthomonas oryzae pv.oryzae by real-time bio-PCR using pathovar-specific primers based on an rhs family gene,Plant Dis.95(2011)589–594.

    [13] W.J.Zhao,S.Zhu,X.L.Liao,H.Chen,T.W.Tan,Detection of Xanthomonas oryzae pv.oryzae in seeds using a specific TaqMan probe,Mol.Biotechnol.35 (2007) 119–127.

    [14] M.J.Kang,M.H.Kim,D.J.Hwang,M.S.Cho,Y.Seol,J.H.Hahn,D.S.Park,Quantitative in planta PCR assay for specific detection of Xanthomonas oryzae pv.oryzicola using putative membrane protein based primer set,Crop.Prot.40 (2012)22–27.

    [15] M.J.Kang,J.K.Shim,M.S.Cho,Y.Seol,J.H.Hahn,D.J.Hwang,D.S.Park,Specific detection of Xanthomonas oryzae pv.oryzicola in infected rice plant by use of PCR assay targeting a membrane fusion protein gene,J.Microb.Biotechnol.18(2008) 1492–1995.

    [16] H.Zhang,Y.H.Jiang,B.S.Hu,F.Q.Liu,Z.G.Xu,Specific detection of Xanthomonas oryzae pv.oryzicola by PCR techniques,Acta Phytopathol.Sin.38(2008) 1–5(in Chinese with English abstract).

    [17] N.Furuya,U.R.A.Hiroyuki,K.Iiyama,M.Matsumoto,M.Takeshita,Y.Takanami,Specific oligonucleotide primers based on sequences of the 16S–23S rDNA spacer region for the detection of Burkholderia gladioli by PCR,J.Gen.Plant Pathol.68(2002) 220–224.

    [18] Y.Maeda,H.Shinohara,A.Kiba,K.Ohnishi,N.Furuya,Y.Kawamura,Y.Hikichi,Phylogenetic study and multiplex PCR-based detection of Burkholderia plantarii,Burkholderia glumae and Burkholderia gladioli using gyrB and rpoD sequences,Int.J.Syst.Evol.Microbiol.56(2006) 1031–1038.

    [19] Y.Huai,L.H.Xu,S.H.Yu,G.L.Xie,Real-time fluorescence PCR method for detection of Burkholderia glumae from rice,Chin.J.Rice Sci.23(2009) 107–110 (in Chinese with English abstract).

    [20] R.J.Sayler,R.D.Cartwright,Y.Yang,Genetic characterization and real-time PCR detection of Burkholderia glumae,a newly emerging bacterial pathogen of rice in the United States,Plant Dis.90(2006) 603–610.

    [21] J.M.Lang,J.P.Hamilton,M.G.Q.Diaz,M.A.Van Sluys,M.R.G.Burgos,C.M.Vera Cruz,J.E.Leach,Genomics-based diagnostic marker development for Xanthomonas oryzae pv.oryzae and X.oryzae pv.Oryzicola,Plant Dis.94(2010)311–319.

    [22] X.L.Liao,S.F.Zhu,W.J.Zhao,K.Luo,Y.X.Qi,Detection and identification of Xanthomonas oryzae pv.oryzae and Xanthomonas oryzae pv.oryzicola by real-time fluorescent PCR,Acta Microbiol.Sin.43(2003) 626–634.

    [23] N.J.Talbot,D.J.Ebbole,J.E.Hamer,Identification and characterization of MPG1,a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea,Plant Cell 5(1993) 1575–1590.

    [24] U.M.Csaikl,H.Bastian,R.Brettschneider,S.Gauch,A.Meir,M.Schauerte,B.Ziegenhagen,Comparative analysis of different DNA extraction protocols: a fast,universal maxi-preparation of high quality plant DNA for genetic evaluation and phylogenetic studies,Plant Mol.Biol.Rep.16(1998) 69–86.

    [25] W.K.Kim,W.Mauthe,G.Hausner,G.R.Klassen,Isolation of high molecular weight DNA and double-stranded RNAs from fungi,Can.J.Bot.68(1990) 1898–1902.

    [26] T.A.Hall,Bioedit: a user-friendly biological sequence alignment editor and analysis program for window 95/98/NT,Nucleic Acids Symp.Ser.41(1999) 95–98.

    [27] J.Garcia-Martinez,S.G.Acinas,A.I.Anton,F.Rodriguez-Valera,Use of the 16S–23S ribosomal genes spacer region in studies of prokaryotic diversity,J.Microbiol.Methods 36(1999)55–64.

    [28] J.García-Martínez,I.Bescós,J.J.Rodríguez-Sala,F.Rodríguez-Valera,RISSC:a novel database for ribosomal 16S–23S RNA genes spacer regions,Nucleic Acids Res.29(2001) 178–180.

    [29] E.R.Gon?alves,Y.B.Rosato,Phylogenetic analysis of Xanthomonas species based upon 16S–23S rDNA intergenic spacer sequences,Int.J.Syst.Evol.Microbiol.52(2002)355–361.

    [30] V.Gürtler,V.A.Stanisich,New approaches to typing and identification of bacteria using the 16S–23S rDNA spacer region,Microbiology 142 (1996) 3–16.

    [31] L.Hauben,L.Vauterin,J.Swings,E.R.B.Moore,Comparison of 16S ribosomal DNA sequences of all Xanthomonas species,Int.J.Syst.Bacteriol.47(1997) 328–335.

    [32] A.Roth,M.Fischer,M.E.Hamid,S.Michalke,W.Ludwig,H.Mauch,Differentiation of phylogenetically related slowly growing mycobacteria based on 16S–23S rRNA gene internal transcribed spacer sequences,J.Clin.Microbiol.36 (1998)139–147.

    免费搜索国产男女视频| 法律面前人人平等表现在哪些方面| 亚洲九九香蕉| 久久婷婷人人爽人人干人人爱 | 亚洲精品一区av在线观看| 国产精品98久久久久久宅男小说| 一级毛片精品| 国产精品野战在线观看| 久久热在线av| 国产在线精品亚洲第一网站| 亚洲精品国产色婷婷电影| 亚洲avbb在线观看| 日韩大码丰满熟妇| 51午夜福利影视在线观看| 变态另类丝袜制服| 一区二区日韩欧美中文字幕| 嫩草影视91久久| 欧美亚洲日本最大视频资源| 成年版毛片免费区| 黄片播放在线免费| 成熟少妇高潮喷水视频| 女警被强在线播放| 亚洲一区高清亚洲精品| 国产单亲对白刺激| 久久精品国产99精品国产亚洲性色 | 999精品在线视频| 国产成人欧美| ponron亚洲| 亚洲精品在线美女| 国产熟女xx| 中文字幕精品免费在线观看视频| 欧美日韩瑟瑟在线播放| 午夜福利影视在线免费观看| 韩国av一区二区三区四区| 亚洲色图综合在线观看| 精品久久久精品久久久| 成人特级黄色片久久久久久久| 国产午夜福利久久久久久| 亚洲专区中文字幕在线| 成人av一区二区三区在线看| 精品国产超薄肉色丝袜足j| 国产1区2区3区精品| 亚洲欧美精品综合久久99| 十八禁人妻一区二区| www.www免费av| 亚洲色图 男人天堂 中文字幕| 色精品久久人妻99蜜桃| 国产精品久久视频播放| 青草久久国产| 母亲3免费完整高清在线观看| 99国产精品一区二区蜜桃av| 一区二区三区精品91| 人人妻人人澡人人看| 最新在线观看一区二区三区| 国产精品 欧美亚洲| 精品第一国产精品| av天堂久久9| 看片在线看免费视频| 一区二区三区国产精品乱码| 搡老熟女国产l中国老女人| 曰老女人黄片| 日韩国内少妇激情av| 亚洲午夜精品一区,二区,三区| 777久久人妻少妇嫩草av网站| 亚洲欧美激情在线| 妹子高潮喷水视频| www.自偷自拍.com| 在线观看一区二区三区| 国产又色又爽无遮挡免费看| 国产精品二区激情视频| 90打野战视频偷拍视频| 欧美日韩亚洲综合一区二区三区_| 亚洲性夜色夜夜综合| 日韩av在线大香蕉| 美女 人体艺术 gogo| 久久精品国产99精品国产亚洲性色 | 欧美色视频一区免费| 精品国产一区二区久久| 精品午夜福利视频在线观看一区| 丁香六月欧美| 熟妇人妻久久中文字幕3abv| 9热在线视频观看99| 日本黄色视频三级网站网址| 成人国产一区最新在线观看| 波多野结衣高清无吗| 国产真人三级小视频在线观看| 久久婷婷人人爽人人干人人爱 | 美女 人体艺术 gogo| 国内精品久久久久久久电影| 午夜福利成人在线免费观看| 亚洲 欧美一区二区三区| 美国免费a级毛片| 老汉色∧v一级毛片| 97碰自拍视频| 一a级毛片在线观看| 欧美激情 高清一区二区三区| 午夜福利免费观看在线| 国产伦人伦偷精品视频| 一个人观看的视频www高清免费观看 | 在线观看www视频免费| 久久人人97超碰香蕉20202| 免费看a级黄色片| 国产私拍福利视频在线观看| 一级片免费观看大全| 人人妻人人澡人人看| 日韩大尺度精品在线看网址 | 国产一区二区三区综合在线观看| 琪琪午夜伦伦电影理论片6080| 极品教师在线免费播放| 18美女黄网站色大片免费观看| 国产欧美日韩综合在线一区二区| 欧美中文综合在线视频| 99久久99久久久精品蜜桃| 女性被躁到高潮视频| 欧美在线黄色| 色播亚洲综合网| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品乱码一区二三区的特点 | 最新美女视频免费是黄的| 在线观看www视频免费| 天堂√8在线中文| 99香蕉大伊视频| 一级毛片高清免费大全| 国产又爽黄色视频| 亚洲五月婷婷丁香| 91精品国产国语对白视频| av电影中文网址| 黑人巨大精品欧美一区二区mp4| 亚洲专区中文字幕在线| 欧美黄色片欧美黄色片| 欧美日韩亚洲综合一区二区三区_| 麻豆av在线久日| 精品国产一区二区久久| 国内精品久久久久精免费| 国产成+人综合+亚洲专区| 一级黄色大片毛片| 91成人精品电影| 黄片小视频在线播放| 精品久久久久久久毛片微露脸| 电影成人av| bbb黄色大片| 国产精品 欧美亚洲| 色播在线永久视频| 每晚都被弄得嗷嗷叫到高潮| 宅男免费午夜| 免费在线观看亚洲国产| 九色亚洲精品在线播放| 在线永久观看黄色视频| 久久久国产成人免费| 波多野结衣巨乳人妻| 在线视频色国产色| 久久久久九九精品影院| 亚洲国产日韩欧美精品在线观看 | 俄罗斯特黄特色一大片| 午夜成年电影在线免费观看| 精品国产超薄肉色丝袜足j| 午夜福利免费观看在线| 成人18禁在线播放| 自线自在国产av| 国产伦人伦偷精品视频| 国内精品久久久久精免费| 国产精品影院久久| 一边摸一边抽搐一进一小说| 国产亚洲精品av在线| 男人舔女人下体高潮全视频| 一进一出抽搐动态| 欧美精品亚洲一区二区| 亚洲av电影在线进入| 91麻豆av在线| 日本免费一区二区三区高清不卡 | 亚洲欧美激情在线| 香蕉丝袜av| 高清在线国产一区| 一区二区三区高清视频在线| 狠狠狠狠99中文字幕| 最近最新中文字幕大全电影3 | 亚洲精品一区av在线观看| 国产精品久久久久久人妻精品电影| av天堂久久9| 男人舔女人的私密视频| а√天堂www在线а√下载| 午夜久久久久精精品| 久久人人97超碰香蕉20202| 国产高清有码在线观看视频 | 18禁裸乳无遮挡免费网站照片 | 国产精品乱码一区二三区的特点 | 国产成人精品久久二区二区免费| 日韩精品青青久久久久久| 亚洲av熟女| 黑人欧美特级aaaaaa片| 欧美av亚洲av综合av国产av| 欧美色视频一区免费| 一本大道久久a久久精品| 欧美午夜高清在线| 首页视频小说图片口味搜索| 亚洲电影在线观看av| 久久久久久大精品| 欧美久久黑人一区二区| 亚洲伊人色综图| 免费搜索国产男女视频| 日日夜夜操网爽| 国产精品久久久av美女十八| 91国产中文字幕| 在线观看舔阴道视频| 精品国产美女av久久久久小说| bbb黄色大片| 老熟妇乱子伦视频在线观看| 成在线人永久免费视频| 国产精品一区二区免费欧美| 啦啦啦免费观看视频1| 给我免费播放毛片高清在线观看| 精品高清国产在线一区| 婷婷六月久久综合丁香| 日本撒尿小便嘘嘘汇集6| 亚洲欧美日韩另类电影网站| 国产精品爽爽va在线观看网站 | 看免费av毛片| 一级a爱片免费观看的视频| 高清毛片免费观看视频网站| 欧美精品啪啪一区二区三区| 免费高清在线观看日韩| 50天的宝宝边吃奶边哭怎么回事| 在线观看一区二区三区| 亚洲免费av在线视频| 午夜两性在线视频| 99国产综合亚洲精品| 黄色丝袜av网址大全| 人人妻,人人澡人人爽秒播| 麻豆av在线久日| 欧美日本视频| 久久精品国产清高在天天线| 色av中文字幕| 99国产极品粉嫩在线观看| 久久精品成人免费网站| 757午夜福利合集在线观看| 长腿黑丝高跟| 91大片在线观看| 神马国产精品三级电影在线观看 | 99国产综合亚洲精品| 久久影院123| 亚洲少妇的诱惑av| 69精品国产乱码久久久| 国产视频一区二区在线看| 精品久久久久久久毛片微露脸| 级片在线观看| 男女午夜视频在线观看| 久久九九热精品免费| 国产成人精品久久二区二区免费| www.999成人在线观看| 色av中文字幕| 日韩成人在线观看一区二区三区| 可以在线观看的亚洲视频| 亚洲专区国产一区二区| 日日干狠狠操夜夜爽| 中文字幕av电影在线播放| 男女做爰动态图高潮gif福利片 | 自线自在国产av| 日韩高清综合在线| 午夜激情av网站| 淫秽高清视频在线观看| 窝窝影院91人妻| 久热这里只有精品99| 操美女的视频在线观看| 女人高潮潮喷娇喘18禁视频| 久9热在线精品视频| 亚洲午夜精品一区,二区,三区| 欧美日韩中文字幕国产精品一区二区三区 | 在线十欧美十亚洲十日本专区| 亚洲熟妇熟女久久| 最新美女视频免费是黄的| 免费少妇av软件| 女警被强在线播放| 久久婷婷成人综合色麻豆| 亚洲国产精品成人综合色| 一级毛片高清免费大全| 岛国视频午夜一区免费看| 成熟少妇高潮喷水视频| 亚洲国产毛片av蜜桃av| 桃色一区二区三区在线观看| 午夜两性在线视频| 啪啪无遮挡十八禁网站| 50天的宝宝边吃奶边哭怎么回事| 在线视频色国产色| 亚洲欧美激情综合另类| 999久久久国产精品视频| 日韩av在线大香蕉| 久久久久国产精品人妻aⅴ院| 久久久国产精品麻豆| 精品久久久久久久久久免费视频| 欧美黑人精品巨大| 国产亚洲欧美精品永久| 巨乳人妻的诱惑在线观看| 99久久国产精品久久久| 国产欧美日韩一区二区三区在线| 香蕉国产在线看| 亚洲av五月六月丁香网| 国产精品av久久久久免费| 夜夜躁狠狠躁天天躁| 在线永久观看黄色视频| 国产精品 欧美亚洲| 女人高潮潮喷娇喘18禁视频| 老司机午夜十八禁免费视频| 国产精品综合久久久久久久免费 | 久久久久国产精品人妻aⅴ院| 嫩草影院精品99| 免费在线观看日本一区| 国产成年人精品一区二区| 亚洲国产中文字幕在线视频| 日本欧美视频一区| 精品一区二区三区四区五区乱码| www.自偷自拍.com| 女警被强在线播放| 成人国产一区最新在线观看| 无人区码免费观看不卡| 亚洲全国av大片| 精品欧美国产一区二区三| 亚洲欧美精品综合一区二区三区| cao死你这个sao货| 无限看片的www在线观看| 国产成人精品在线电影| 热re99久久国产66热| 欧美黑人欧美精品刺激| 夜夜躁狠狠躁天天躁| 国产私拍福利视频在线观看| 91大片在线观看| 婷婷六月久久综合丁香| 在线播放国产精品三级| 国产精品久久久人人做人人爽| 精品午夜福利视频在线观看一区| 国产真人三级小视频在线观看| 国产亚洲欧美98| 天天躁夜夜躁狠狠躁躁| 91国产中文字幕| 在线观看免费视频日本深夜| 1024视频免费在线观看| 精品少妇一区二区三区视频日本电影| 免费看十八禁软件| 久热爱精品视频在线9| 日韩av在线大香蕉| 精品福利观看| 日本 欧美在线| 国产免费男女视频| 亚洲欧美一区二区三区黑人| 亚洲一区中文字幕在线| 母亲3免费完整高清在线观看| 少妇熟女aⅴ在线视频| 欧美日韩乱码在线| 在线十欧美十亚洲十日本专区| 香蕉丝袜av| 国产熟女xx| 国产精品自产拍在线观看55亚洲| 国产精品野战在线观看| 90打野战视频偷拍视频| 91在线观看av| 国产亚洲精品久久久久5区| 咕卡用的链子| 久久中文字幕一级| 超碰成人久久| 亚洲黑人精品在线| 麻豆成人av在线观看| 免费搜索国产男女视频| 在线观看66精品国产| 色精品久久人妻99蜜桃| 国产精品98久久久久久宅男小说| 在线观看午夜福利视频| 久久国产精品影院| 嫁个100分男人电影在线观看| 日韩国内少妇激情av| 啦啦啦 在线观看视频| 国产av一区在线观看免费| 一级a爱片免费观看的视频| bbb黄色大片| 麻豆久久精品国产亚洲av| 亚洲黑人精品在线| 中文字幕精品免费在线观看视频| 美女高潮到喷水免费观看| xxx96com| 国产精品久久久人人做人人爽| 国产97色在线日韩免费| 欧美一区二区精品小视频在线| 久久久久国内视频| 精品久久久精品久久久| www.999成人在线观看| 很黄的视频免费| 身体一侧抽搐| 琪琪午夜伦伦电影理论片6080| 午夜久久久久精精品| 日本免费一区二区三区高清不卡 | 97人妻天天添夜夜摸| 日韩欧美免费精品| 一级毛片女人18水好多| 亚洲精品久久成人aⅴ小说| av片东京热男人的天堂| 黑人巨大精品欧美一区二区mp4| 亚洲精品中文字幕一二三四区| 免费观看精品视频网站| 午夜福利欧美成人| 别揉我奶头~嗯~啊~动态视频| 精品福利观看| 露出奶头的视频| 欧美大码av| 国产精品久久久av美女十八| 可以在线观看的亚洲视频| 麻豆成人av在线观看| 91成年电影在线观看| 久久热在线av| 欧美日本亚洲视频在线播放| 欧美人与性动交α欧美精品济南到| 好看av亚洲va欧美ⅴa在| 久久中文看片网| 色综合欧美亚洲国产小说| 午夜福利高清视频| 日韩av在线大香蕉| 91九色精品人成在线观看| 长腿黑丝高跟| www.熟女人妻精品国产| 久久国产精品男人的天堂亚洲| 三级毛片av免费| 午夜免费成人在线视频| 免费不卡黄色视频| 国产又爽黄色视频| 天堂影院成人在线观看| АⅤ资源中文在线天堂| 丁香六月欧美| 午夜亚洲福利在线播放| av免费在线观看网站| 黄片大片在线免费观看| 欧美一区二区精品小视频在线| 精品无人区乱码1区二区| 91成人精品电影| 色av中文字幕| 99热只有精品国产| 99国产精品99久久久久| 一夜夜www| 九色亚洲精品在线播放| 香蕉国产在线看| 亚洲 国产 在线| 操美女的视频在线观看| 精品一品国产午夜福利视频| 久久人妻av系列| 亚洲精品粉嫩美女一区| 国产成+人综合+亚洲专区| 亚洲aⅴ乱码一区二区在线播放 | 丝袜美足系列| 亚洲av第一区精品v没综合| 国产乱人伦免费视频| 伦理电影免费视频| 一二三四社区在线视频社区8| 亚洲精品av麻豆狂野| 免费高清在线观看日韩| 一边摸一边抽搐一进一出视频| 这个男人来自地球电影免费观看| 老熟妇仑乱视频hdxx| 日本vs欧美在线观看视频| 美女大奶头视频| 黄色丝袜av网址大全| 老汉色av国产亚洲站长工具| netflix在线观看网站| 两个人视频免费观看高清| 少妇 在线观看| 好男人在线观看高清免费视频 | 黄色视频,在线免费观看| 亚洲五月天丁香| 可以在线观看毛片的网站| 亚洲九九香蕉| 少妇 在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲自拍偷在线| 丰满人妻熟妇乱又伦精品不卡| 91精品三级在线观看| 色播在线永久视频| av网站免费在线观看视频| 精品国产超薄肉色丝袜足j| 美女 人体艺术 gogo| 日本欧美视频一区| 国产在线精品亚洲第一网站| 国产一区二区激情短视频| 无限看片的www在线观看| 1024视频免费在线观看| 天天躁夜夜躁狠狠躁躁| 色av中文字幕| 国产欧美日韩精品亚洲av| 搡老熟女国产l中国老女人| 母亲3免费完整高清在线观看| 亚洲一区二区三区色噜噜| 97超级碰碰碰精品色视频在线观看| 国产又色又爽无遮挡免费看| 夜夜躁狠狠躁天天躁| av在线天堂中文字幕| 美女国产高潮福利片在线看| 好男人在线观看高清免费视频 | 国产精品av久久久久免费| av免费在线观看网站| 一级作爱视频免费观看| 啦啦啦免费观看视频1| 黑人欧美特级aaaaaa片| 亚洲九九香蕉| 亚洲三区欧美一区| 国内精品久久久久久久电影| 两个人免费观看高清视频| 精品国产乱子伦一区二区三区| 国产精品精品国产色婷婷| 国产精品免费视频内射| bbb黄色大片| 在线观看一区二区三区| 国产激情欧美一区二区| 男女下面插进去视频免费观看| 激情视频va一区二区三区| 亚洲欧美激情综合另类| 一进一出好大好爽视频| 9191精品国产免费久久| 国产精品 国内视频| 黄色 视频免费看| 性欧美人与动物交配| 欧美激情 高清一区二区三区| 精品卡一卡二卡四卡免费| 电影成人av| 999久久久国产精品视频| 校园春色视频在线观看| 久久久水蜜桃国产精品网| 一本大道久久a久久精品| 嫁个100分男人电影在线观看| 久久久久亚洲av毛片大全| √禁漫天堂资源中文www| 亚洲精品粉嫩美女一区| 老熟妇乱子伦视频在线观看| 国产精品美女特级片免费视频播放器 | 后天国语完整版免费观看| 国产野战对白在线观看| 精品第一国产精品| 少妇裸体淫交视频免费看高清 | 最近最新中文字幕大全电影3 | 国产精品久久视频播放| 黑人巨大精品欧美一区二区蜜桃| 亚洲国产精品久久男人天堂| 久久久久久大精品| 亚洲五月色婷婷综合| 真人一进一出gif抽搐免费| 成人三级黄色视频| xxx96com| 亚洲精品中文字幕一二三四区| 亚洲中文字幕一区二区三区有码在线看 | 动漫黄色视频在线观看| 女人被狂操c到高潮| 99热只有精品国产| 老司机深夜福利视频在线观看| 欧美乱妇无乱码| 搡老岳熟女国产| 50天的宝宝边吃奶边哭怎么回事| 黑丝袜美女国产一区| 韩国av一区二区三区四区| 搡老妇女老女人老熟妇| 午夜激情av网站| 真人一进一出gif抽搐免费| 黑人巨大精品欧美一区二区蜜桃| 少妇的丰满在线观看| 一区二区日韩欧美中文字幕| 国产日韩一区二区三区精品不卡| 欧美激情极品国产一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 色播亚洲综合网| 一区二区三区激情视频| 午夜精品久久久久久毛片777| 天天躁夜夜躁狠狠躁躁| 成年女人毛片免费观看观看9| 久久精品aⅴ一区二区三区四区| 久久影院123| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲国产日韩欧美精品在线观看 | 一区二区日韩欧美中文字幕| 国产日韩一区二区三区精品不卡| 欧美日本中文国产一区发布| 国产精品电影一区二区三区| 午夜福利免费观看在线| 欧美 亚洲 国产 日韩一| 日本 欧美在线| 欧美日韩黄片免| 国产成人av教育| 波多野结衣av一区二区av| 亚洲avbb在线观看| 日韩欧美三级三区| 一级毛片高清免费大全| 欧美日韩乱码在线| 国产精品1区2区在线观看.| 香蕉国产在线看| 国产精品影院久久| 欧美日韩亚洲国产一区二区在线观看| 久久精品国产清高在天天线| 日日爽夜夜爽网站| 欧美日韩亚洲综合一区二区三区_| 激情在线观看视频在线高清| 国产精华一区二区三区| 男人舔女人的私密视频| 中出人妻视频一区二区| 久久天堂一区二区三区四区| 欧美最黄视频在线播放免费| 久久天躁狠狠躁夜夜2o2o| 色在线成人网| 成人欧美大片| 久久精品91无色码中文字幕| 村上凉子中文字幕在线| 亚洲色图综合在线观看| 视频在线观看一区二区三区| 波多野结衣av一区二区av| 日日摸夜夜添夜夜添小说| 日韩大码丰满熟妇| 国产真人三级小视频在线观看| 男男h啪啪无遮挡| a在线观看视频网站| 国产一区在线观看成人免费| 丝袜美足系列| 如日韩欧美国产精品一区二区三区| 国产不卡一卡二| 99久久99久久久精品蜜桃| 后天国语完整版免费观看|