• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Microwave-assisted synthesis of oxygen vacancy associated TiO2 for efficient photocatalytic nitrate reduction

    2022-09-16 05:24:38QinLiYunniLiuZheWnHiynCoShoZhngYueZhouXingyuYeXioynLiuDieqingZhng
    Chinese Chemical Letters 2022年8期

    Qin Li, Yunni Liu, Zhe Wn, Hiyn Co, Sho Zhng, Yue Zhou, Xingyu Ye,Xioyn Liu,?, Dieqing Zhng,?

    a The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China

    b School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China

    ABSTRACT The solar-driven photocatalytic technology has shown great potential in nitrate (NO3?) pollutants reduction, however, it has been greatly hindered by the complex preparation and high cost of photocatalysts.Herein, a relatively low-cost photocatalyst, rutile and anatase mixed phase TiO2 was synthesized by a facile microwave-hydrothermal method.Meanwhile, oxygen vacancy is successfully generated, leading to an acidic surface for strong adsorption towards NO3?, which further improved the reduction activity.Compared with the commercial P25, a higher NO3?conversion of ca. 100% and nitrogen (N2) selectivity of 87% were achieved under UV (365 nm) irradiation within 2 h.This research provides a promising strategy for designing efficient noble metal free photocatalyst in the NO3?reduction.

    Keywords:Photocatalysis TiO2 Oxygen vacancy Nitrate reduction

    Nitrogen (N) is an essential nutrient, but when its concentration accumulated to some threshold value, it could be a source of pollution in water or the atmosphere [1].Nitrates (NO3?) as one of the most common N species contaminants in the world, was mainly resulting from the use of nitrogen fertilizers and the dung from large animal farms [2].However, high intake of nitrate would appear a serious threat to human health, such as an increased risk of natural preterm birth and central nervous system cancers (CNC)in children [2–4].Furthermore, the nitrate can be reduced to dangerous chemicals, including nitrite (NO2?), which caused blue baby syndrome [5].Thus, many strategies such as reverse osmosis, electrodialysis and ion exchange have been widely studied for removing nitrate from ground water [6].However, these works highly concentrated on the nitrate conversion into brines instead of removing it to harmless nitrogen (N2) [7,8].

    Photocatalysis as an environment-friendly technology shows great potentials in pollutant removal by directly using solar energy [9–13].As a semiconductor, titanium dioxide (TiO2) has been widely used in photocatalytic nitrogen oxides (NOx) oxidation[10,11,14-17], carbon dioxide (CO2) reduction [18], hydrogen (H2)production [19] and removal of volatile organic pollutants (VOCs),etc.[20], due to its low-cost, nontoxicity and good stability [21,22].However, its application in NO3?conversion has been limited because of the low efficiency of traditional TiO2.Noble metals(e.g., Pd, Au, and Ag) loaded TiO2have been developed for promoted denitrification performance (Table S1 in Supporting information).However, this noble metal involving strategy greatly increased the cost, which is not practical for large-scale application[8,23,24].TiO2with oxygen vacancies has attracted intensive attention in photocatalytic NOxremoval, H2evolution and CO2reduction [25–27] owing to the improved charge separation and reactant molecules adsorption.TiO2materials with oxygen vacancies are traditionally produced by hydrogen reduction or NaBH4reduction, both of which are time and energy consuming [28].

    Herein, the mixed anatase and rutile phase TiO2(TiO2-A-R)with oxygen vacancies and proper acid sites was successfully prepared by a simple microwave hydrothermal method.The obtained TiO2-A-R showed outstanding photocatalytic NO3?conversion ofca.100% and high N2selectivity of 89% under ultraviolet irradiation.This study will provide a novel approach for efficient and low-cost nitrate removal from water.

    The synthetic procedure of TiO2-A-R was illustrated in Scheme 1.In a typical process, potassium titanium oxide oxalate dihydrate and sodium chloride were dispersed in the mixed solution of ethanol and water, keeping stirring for 15 min.Then the as-prepared solution was transferred to the microwave reaction chamber for further microwave treatment under 200 °C for 30 min.As comparison, pure rutile (TiO2-R) and pure anatase (TiO2-A)were prepared.As shown in Fig.1a, the TiO2-A-R shows the typical X-ray diffraction (XRD) peaks of rutile and anatase phases, which are similar to the commercial P25.Besides, according to the peak intensity, the weight fraction of the rutile in TiO2-A-R,WRcan be calculated from the formula (Eq.1) [29,30].And the weight fraction of the anatase in TiO2-A-R,WAcan be calculated from the formula as follows (Eq.2) [31]:

    Scheme 1.Schematic illustration of the synthesis processes of TiO2-A-R.

    Fig.1.(a) The XRD pattern, (b) UV–vis DRS spectra, (c) N2 adsorption-desorption isotherms and (d) pore size distributions of TiO2-A-R, TiO2-A, TiO2-R and P25 samples.

    Scheme 2.Schematic illustration of photocatalytic reduction mechanism of NO3?.

    In formula,AanaandArutrepresented the diffraction peaks intensity of anatase (101) and rutile (110), respectively.Based on the XRD results, the anatase content of TiO2-A-R was estimated to be 84 wt%.The ultraviolet-visible diffuse reflectance spectra (UV–vis DRS) in Fig.1b demonstrated that all samples exhibited spectral absorption at 365 nm, which ensured the photocatalyst could be effectively excited under 365 nm irradiation.In addition, based on the UV–vis results, the band gap energy (Eg) of the TiO2-A-R was calculated as followed (Eq.3):

    whereα,h,v, A andEgrepresented the absorption coefficient, the Planck constant, the light frequency, the constant and band gap,respectively [32].Furthermore,nwas equal to 1/2 or 2 for an indirect or direct band gap semiconductors, respectively.Thus, the estimatedEgof TiO2-A-R is 3.18 eV (Fig.S1 in Supporting information).The calculated flat band potential (EFB) value of TiO2-A-R as shown in Fig.S2 (Supporting information) was –0.95 Vvs.SCE, which is corresponding to ?0.29 Vvs.NHE.Besides, TiO2-A-R as an n-type semiconductor, the conduction band (ECB) was 0.2 V belowEFB[33].Thus,ECBlevel of TiO2-A-R was ?0.49 eV.And the valence band(VB) was 2.69 eV, which was obtained according to the formula Eq.4 [32,34]:

    The nitrogen adsorption-desorption isotherms and pore size distributions were displayed in Figs.1c and d.All the samples showed typical IV isotherms and a pore size distribution ranging from 2 nm to 50 nm, indicating the mesoporous structures.The detailed surfaces areas, pore size and pore volume were listed in Table 1.Compared with other photocatalysts [35–37], TiO2-A-R had the distinguishing features of larger Brunauer-Emmett-Teller (BET)surface area (97.6 m2/g), the greater pore volume (0.3 cm3/g) and the pore diameter (11.4 nm), which might significantly enhance its adsorption ability of reactants and therefore facilitate the targeted reaction [38].

    Table 1 BET properties of TiO2-A-R, TiO2-A, TiO2-R and P25 photocatalysts.

    TEM images in Figs.2a and b suggested that TiO2-A-R was composed of flaky petal-like structure.Moreover, obvious diffraction rings could be observed in Fig.2c (the selected area electron diffraction, SAED), indicating the TiO2-A-R had good crystallinity[39].Meanwhile, the lattice spacing of 0.351 nm and 0.325 nm were also clearly detected in Fig.2d, which corresponded to (101)and (110) plane of anatase and rutile, respectively [40].The element mappings demonstrated the homogeneous distribution of Ti and O in TiO2-A-R (Fig.2e).These results further confirmed the successful synthesis of mixed-phase titanium dioxide.

    In order to probe the surface chemical compositions and the binding configuration of all the samples, X-ray photoelectron spectroscopy (XPS) measurement was performed.P25 and TiO2-R show the peaks located at 458.9 and 464.6 eV corresponding to Ti 2p3/2and Ti 2p1/2(Fig.3a).These peaks of TiO2-A slightly shifted to lower binding energies.Notably, a clearly negative shift was also observed in the TiO2-A-R, indicating the existence of Ti3+[41].Meanwhile, the O 1s XPS spectra of TiO2-A-R presented two peaks centered at ~529.8 and ~531.6 eV (Fig.3b), representing for the lattice oxygen and oxygen vacancy, respectively [7].And the area ratio of oxygen vacancy peak (named O2) to the sum area of the O1 and O2 peaks (named Os) is shown in Table S2 (Supporting information).The O2/Os of TiO2-A-R had the largest percentage(22.7%), which demonstrated that oxygen vacancy rooted more in the TiO2-A-R sample [28].

    Fig.2.(a, b) TEM images, (c) SAED pattern, (d) HRTEM image, (e) SEM image and corresponding elemental mappings of TiO2-A-R sample.

    Fig.3.XPS spectra of (a) Ti 2p and (b) O 1s over TiO2-A-R, TiO2-A, TiO2-R and P25 samples.

    Moreover, the strong electron paramagnetic resonance (EPR)signal (Fig.4a) in TiO2-A-R with a g-value of 2.001 further verified the existence of oxygen vacancy [42], which might play a vital role in promoting the rapid conversion of nitrate as previously reported [28].Furthermore, the catalysts’activities are closely related to their surface properties such as alkaline and acidity properties [43].Moreover, the NO3?presents Lewis base due to its electronegativity, which implies that it is easier to combine with the Lewis acid catalyst surface [44,45].Thus temperature-programmed desorption of ammonia (NH3-TPD) of P25 and TiO2-A-R were performed from 50 °C to 800 °C to find out their surface properties,and the curves were illustrated in Fig.4b [46,47].The desorption peaks of NH3located below 200 °C, 200–400 °C and above 400 °C are considered as indicators of the weak, medium and strong acid sites, respectively [48].P25 exhibited three NH3desorption peaks at 200, 487 and 611 °C, respectively.The former one is assigned to the weak acid sites and the other two peaks are indexed to the strong acid sites.As comparison, there are only medium (suggested by the peaks at 277 and 384 °C) and strong acid sites (suggested by the peaks at 540, 606 and 706 °C) observed, demonstrating its more acidic surface.As displayed in Table S3 (Supporting information), TiO2-A-R shows a larger peak area than that of P25, confirming there are more active sites to possibly absorb and reduce the NO3?[44,49].

    Fig.4.(a) EPR spectra of TiO2-A-R, TiO2-R, TiO2-A and P25 samples.(b) NH3-TPD analysis over TiO2-A-R and P25 sample.

    Normally, NO3?could be reduced to N2, NO2?and ammonium(NH4+), but both NO2?and NH4+are hazardous to the environment.An ideal photocatalyst should have high NO3?conversion and good N2selectivity [24,50].In order to inhibit the rapid recombination of electron-hole pairs, formic acid (FA) was selected as a hole scavenger in this reaction [51].To exclude the catalytic effect of FA on NO3?reduction, we conducted a control experiment (in FA without photocatalyst added) and the results were shown in Fig.S3a (Supporting information).No catalytic activity was observed in the absence of the photocatalyst, and thus we can conclude that FA itself will not react with NO3?and promote NO3?reduction.Then, TiO2-A-R (0.060 g) and various amounts of FA were dispersed into 60 mL nitrate solution (50 mg/L) to evaluate the optimal photocatalytic performance.As shown in Figs.5a-c, the activity sequence involving different amounts of FA were summarized as 5 mL FA ≈4 mL FA>3 mL FA.Meanwhile, almost no NO2?was detected in the reaction process of the three controlled trials.When the reaction progressed to 120 min, the average conversion of NO3?involving 3 mL FA was 98%, the average selectivity of N2and NH4+were 88% and 12%, respectively.The experiments with 4 mL or 5 mL FA showed similar nitrate conversion (almost 100%),N2selectivity (89%) and NH4+selectivity (11%).Therefore, we determined adding 4 mL FA as the optimal hole scavenger amount for this reaction.

    According to the literature, different hole scavengers such as oxalic acid (OC) and methanol may also be favorable for the photocatalytic nitrate reduction [50].Thus, the 4 mL 0.1 mol/L methanol and OC solution was introduced for photocatalytic NO3?(50 mg/L)reduction experiment as shown in Fig.5d.The OC involving system demonstrated the NO3?conversion of 11% and the 78% N2selectivity, which were much lower than that of FA.No NO3?conversions were observed in methanol involving system or hole scavengers absence system, indicating that FA significantly improved the photocatalytic activity [24].Based on the previous study [51],we confirm that carbon dioxide anion radical (CO2??) generated by reacting FA with photogenerated holes of photocatalyst has strong reductive ability for NO3?conversion to N2.Then, EPR test was carried out to probe the production of CO2??in the TiO2-A-R system.As shown in Fig.6, no signals were detected under dark conditions.While under light irradiation, a six-line DMPOCO2??spin adduct signal was formed with hyperfine parameter of magnetic factorg=2.0059 (Fig.S3b in Supporting information), which can be assigned to reductive CO2??species for further promoting NO3?degradation [52–54].These results clearly indicated the important promoted effect of FA in the photocatalytic NO3?reduction reaction using noble-metal free TiO2as photocatalysts.

    Fig.5.Photocatalytic nitrate reduction activity of TiO2-A-R (a-c) with 3–5 mL formic acid and (d) with different hole scavengers.

    Fig.6.DMPO spin-trapping EPR spectra of TiO2-A-R.

    In order to compare the contribution of TiO2-A-R, the performance of TiO2-A, TiO2-R and commercial P25 were evaluated in 4 mL FA and NO3?(50 mg/L) mixture solution system (Figs.7a-c.).The photocatalytic removal rate of these samples followed the order of TiO2-A-R (100%)>TiO2-A (82%)>P25 (61%)>TiO2-R (36%).And the selectivity of N2presented the trend of TiO2-A-R (89%)>TiO2-A (88%)>P25 (87%)>TiO2-R (80%).Obviously, TiO2-A-R showed the enhanced ability of NO3?reduction, which may be attributed to the existence of Ov and acid sites [28].In addition, the cycling durability of TiO2-A-R was conducted and displayed in Fig.7d.After five cycles, the photocatalyst still had 98% NO3?conversion, demonstrating its great stability and big potential for practical application.Moreover, when the concentration of the initial NO3?solution was diluted to 30 mg/L (Fig.8a), the NO3?conversion was achieved 100% after 90 min reaction and the selectivity of N2and NH4+reached 86% and 14%, respectively.Even when the NO3?concentration was increased to 100 mg/L, a high NO3?removal of 77% and N2selectivity of 91% were achieved after 120 min reaction (Fig.8b), implying the excellent activity of TiO2-A-R in a wide NO3?concentrations range.

    Fig.7.Photocatalytic nitrate reduction activity of (a) P25, (b) TiO2-A, and (c) TiO2-R samples.(d) Cycling stability test of TiO2-A-R.

    Fig.8.Photocatalytic nitrate reduction activity over the TiO2-A-R sample involving different NO3?initial concentrations of (a) 30 and (b) 100 mg/L.

    The photocurrent response (Fig.9a) was carried out to evaluate the charge transport properties [10].Compared with commercial P25, TiO2-A-R has a higher photocurrent density, which demonstrates the improved light source usage rate and effective separation of e?and h+excited by photons [55].In addition, the steadystate photoluminescence (PL) spectrum was measured to investigate the electrons and holes recombination (Fig.9b).Notably, a lower emission peak of TiO2-A-R can be obtained, demonstrating the improved charge carrier separation efficiency [56].And TiO2-AR showed the smaller radius under dark and 365 nm UV-LED irradiation (Figs.9c and d), indicating a better conductivity [9].These factors co-contributed the excellent NO3?conversion and good N2selectivity.

    Fig.9.(a) Photocurrent density, (b) PL spectra (ex=290 nm), electrochemical impedance spectra (c) in dark and (d) light irradiation of TiO2-A-R and P25 samples.

    Based on the above discussion, the possible NO3?degradation mechanism is proposed as shown in Scheme 2.Firstly, TiO2-A-R is excited to produce photo-generated electron-hole pairs under the UV-LED irradiation (Eq.5).Then the electrons are consumed by NO3?to generate N2or NH4+(Eqs.6 and 7) [24].Meanwhile,the photo-generated holes are scavenged by FA to produce CO2??species, which further reduces NO3?to N2(Eqs.8 and 9) [8,44,57-59].

    In conclusion, the mixed TiO2photocatalyst with oxygen vacancy was successfully synthesizedviaa facile microwave-assisted method.It has a NO3?conversion up toca.100% under 2 h ultraviolet radiation, which is much high than that of commercial P25(61%).Moreover, the N2selectivity is as high as 89%.This work provides a novel strategy to design noble metal free photocatalysts for cheap, safe and efficient nitrate removal.

    Declaration of competing interest

    The authors declare no competing financial interest.

    Acknowledgments

    This work was supported by the National Key Research and Development Program of China (No.2020YFA0211004), and National Natural Science Foundation of China (Nos.21876112, 21876113,22022608, 92034301), “111” Innovation and Talent Recruitment Base on Photochemical and Energy Materials (No.D18020),Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Engineering Research Center of Green Energy Chemical Engineering (Nos.18DZ2254200)and Shanghai government (Nos.18SG41, 309-AC9103–21–413002,19YF1436600).

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.12.025.

    色哟哟·www| 在线观看美女被高潮喷水网站| 99热网站在线观看| 男人舔女人下体高潮全视频| 国内揄拍国产精品人妻在线| 国产精品无大码| 村上凉子中文字幕在线| 久久99蜜桃精品久久| 国产亚洲5aaaaa淫片| 男女下面进入的视频免费午夜| 亚洲av免费在线观看| 国产国拍精品亚洲av在线观看| 97在线视频观看| 亚洲av一区综合| 美女内射精品一级片tv| 国产精品久久久久久精品电影小说 | 秋霞伦理黄片| 国产免费男女视频| 人妻夜夜爽99麻豆av| 亚洲精品,欧美精品| 亚洲国产精品专区欧美| 色综合站精品国产| 午夜老司机福利剧场| 亚洲国产色片| 亚洲人成网站在线播| 老师上课跳d突然被开到最大视频| 欧美变态另类bdsm刘玥| 国产精品.久久久| 国产成人精品久久久久久| 中文天堂在线官网| 五月伊人婷婷丁香| 天堂√8在线中文| 少妇裸体淫交视频免费看高清| 18禁在线无遮挡免费观看视频| 中文乱码字字幕精品一区二区三区 | 久久久精品欧美日韩精品| 色播亚洲综合网| 91在线精品国自产拍蜜月| 男人和女人高潮做爰伦理| 日本黄色片子视频| 国产 一区 欧美 日韩| 人人妻人人看人人澡| 伦理电影大哥的女人| av在线蜜桃| 精品久久久久久久久亚洲| 久久久久久久久久黄片| 亚洲av熟女| 国产成人aa在线观看| 欧美高清性xxxxhd video| 大又大粗又爽又黄少妇毛片口| 亚洲无线观看免费| 边亲边吃奶的免费视频| 99久久精品热视频| 国产高清国产精品国产三级 | 成人漫画全彩无遮挡| 亚洲婷婷狠狠爱综合网| 亚洲一区高清亚洲精品| 亚洲在线观看片| 欧美+日韩+精品| 插逼视频在线观看| 久久久久久九九精品二区国产| 在线观看一区二区三区| 听说在线观看完整版免费高清| 亚洲五月天丁香| 美女cb高潮喷水在线观看| 日韩一区二区三区影片| 十八禁国产超污无遮挡网站| 亚洲国产精品合色在线| 寂寞人妻少妇视频99o| 亚洲真实伦在线观看| 丰满人妻一区二区三区视频av| 热99在线观看视频| 乱人视频在线观看| 水蜜桃什么品种好| av在线老鸭窝| 亚洲,欧美,日韩| 亚洲中文字幕一区二区三区有码在线看| av国产免费在线观看| 久久人人爽人人爽人人片va| 天天躁日日操中文字幕| 在线免费观看不下载黄p国产| av国产久精品久网站免费入址| 少妇人妻精品综合一区二区| 高清在线视频一区二区三区 | 在线a可以看的网站| 免费看a级黄色片| 欧美精品国产亚洲| 亚洲高清免费不卡视频| 国产视频内射| 国产欧美日韩精品一区二区| 国产成人精品久久久久久| 亚洲欧美成人综合另类久久久 | 18禁动态无遮挡网站| 一级毛片aaaaaa免费看小| 女人久久www免费人成看片 | 欧美成人一区二区免费高清观看| 秋霞在线观看毛片| 亚洲丝袜综合中文字幕| 人妻夜夜爽99麻豆av| 国产精品一及| 男女视频在线观看网站免费| 成人鲁丝片一二三区免费| 成人综合一区亚洲| 亚洲成人av在线免费| 亚洲激情五月婷婷啪啪| 亚洲av成人av| 一区二区三区乱码不卡18| 男女视频在线观看网站免费| 桃色一区二区三区在线观看| 亚洲欧美中文字幕日韩二区| videos熟女内射| 两性午夜刺激爽爽歪歪视频在线观看| 两个人的视频大全免费| 亚洲av男天堂| videossex国产| 亚洲国产精品成人久久小说| 久久精品国产鲁丝片午夜精品| 国产探花极品一区二区| 神马国产精品三级电影在线观看| 国产精品一区二区三区四区久久| 男女视频在线观看网站免费| 成人亚洲精品av一区二区| 在线播放无遮挡| ponron亚洲| 丰满人妻一区二区三区视频av| 国产亚洲午夜精品一区二区久久 | 亚洲,欧美,日韩| 天天躁夜夜躁狠狠久久av| 婷婷色综合大香蕉| 一区二区三区四区激情视频| 成人性生交大片免费视频hd| videos熟女内射| 女人久久www免费人成看片 | 免费观看的影片在线观看| 女人被狂操c到高潮| 波多野结衣巨乳人妻| 日本黄色视频三级网站网址| 久久精品久久久久久噜噜老黄 | 免费看光身美女| 亚洲中文字幕日韩| 亚洲精品成人久久久久久| 久久久久久久午夜电影| 午夜爱爱视频在线播放| 国产精品麻豆人妻色哟哟久久 | 亚洲三级黄色毛片| 欧美日韩一区二区视频在线观看视频在线 | 亚洲四区av| 极品教师在线视频| 人人妻人人看人人澡| 久久国产乱子免费精品| 99久久精品国产国产毛片| 成人综合一区亚洲| 亚洲成人av在线免费| 黄片无遮挡物在线观看| 久久6这里有精品| 国产精品久久久久久久久免| 国产毛片a区久久久久| 九九久久精品国产亚洲av麻豆| 精品免费久久久久久久清纯| 女的被弄到高潮叫床怎么办| 久久精品国产亚洲av涩爱| 日韩av在线免费看完整版不卡| 亚洲18禁久久av| 亚洲va在线va天堂va国产| 久久久久久久国产电影| 在线观看66精品国产| 亚洲欧洲国产日韩| 美女内射精品一级片tv| 国产成人aa在线观看| 色播亚洲综合网| 精品国产露脸久久av麻豆 | 免费av毛片视频| 嫩草影院精品99| 51国产日韩欧美| 成人欧美大片| ponron亚洲| 国产一区二区亚洲精品在线观看| 亚洲欧美中文字幕日韩二区| 午夜精品一区二区三区免费看| 天堂中文最新版在线下载 | 麻豆av噜噜一区二区三区| 18+在线观看网站| 2022亚洲国产成人精品| 日日干狠狠操夜夜爽| 国产精品伦人一区二区| 黄色一级大片看看| 美女国产视频在线观看| 1024手机看黄色片| 亚洲三级黄色毛片| 亚洲精品久久久久久婷婷小说 | 又爽又黄无遮挡网站| 国产伦理片在线播放av一区| 久久99蜜桃精品久久| 视频中文字幕在线观看| 午夜精品国产一区二区电影 | 亚洲精品色激情综合| 国语对白做爰xxxⅹ性视频网站| 亚洲精品乱码久久久v下载方式| 亚洲色图av天堂| 亚洲av男天堂| 国产人妻一区二区三区在| 国产一区有黄有色的免费视频 | 亚洲在线观看片| 精品熟女少妇av免费看| 精品久久久久久久久av| 国产精品国产三级国产专区5o | 亚洲av福利一区| 观看美女的网站| 国产精品人妻久久久久久| 神马国产精品三级电影在线观看| 噜噜噜噜噜久久久久久91| 狂野欧美白嫩少妇大欣赏| 别揉我奶头 嗯啊视频| 国产精品1区2区在线观看.| 日韩制服骚丝袜av| 一边摸一边抽搐一进一小说| 亚洲国产精品久久男人天堂| 国产精品一区二区三区四区免费观看| 97人妻精品一区二区三区麻豆| 成年女人永久免费观看视频| 亚洲国产色片| 18+在线观看网站| 亚洲精品,欧美精品| 超碰av人人做人人爽久久| 亚洲精品456在线播放app| 伊人久久精品亚洲午夜| 国内揄拍国产精品人妻在线| 天美传媒精品一区二区| 如何舔出高潮| 99视频精品全部免费 在线| 亚洲综合色惰| 亚洲av免费高清在线观看| 波多野结衣巨乳人妻| 国产极品天堂在线| 听说在线观看完整版免费高清| 国产精品一区www在线观看| 国产伦精品一区二区三区四那| 91午夜精品亚洲一区二区三区| 久久精品综合一区二区三区| 欧美成人精品欧美一级黄| 成年版毛片免费区| 99热网站在线观看| 丰满少妇做爰视频| 亚洲国产精品国产精品| 国内精品美女久久久久久| 色哟哟·www| 久久人人爽人人片av| 小蜜桃在线观看免费完整版高清| 日韩中字成人| 天天躁日日操中文字幕| 观看免费一级毛片| 男女啪啪激烈高潮av片| 国产精品女同一区二区软件| 亚洲av不卡在线观看| 女人久久www免费人成看片 | 超碰97精品在线观看| 亚洲,欧美,日韩| 少妇被粗大猛烈的视频| 午夜老司机福利剧场| 欧美97在线视频| 亚洲激情五月婷婷啪啪| 欧美性感艳星| 国产69精品久久久久777片| 国内精品一区二区在线观看| 亚洲怡红院男人天堂| 性色avwww在线观看| 国产大屁股一区二区在线视频| 亚洲国产精品合色在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产免费男女视频| 日韩大片免费观看网站 | 中文资源天堂在线| 婷婷六月久久综合丁香| 日韩av在线大香蕉| 十八禁国产超污无遮挡网站| ponron亚洲| 国产高清国产精品国产三级 | a级毛色黄片| 97超碰精品成人国产| 免费看a级黄色片| 亚洲av熟女| 亚洲天堂国产精品一区在线| 神马国产精品三级电影在线观看| 久久午夜福利片| 色尼玛亚洲综合影院| 日本黄大片高清| 欧美性猛交黑人性爽| 麻豆精品久久久久久蜜桃| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲精品乱久久久久久| 最近的中文字幕免费完整| 亚洲在久久综合| 久久久久精品久久久久真实原创| 日本一二三区视频观看| 午夜免费男女啪啪视频观看| 欧美日韩在线观看h| 18禁在线无遮挡免费观看视频| 美女被艹到高潮喷水动态| 亚洲精品久久久久久婷婷小说 | 99在线视频只有这里精品首页| 精品久久久久久久人妻蜜臀av| 91av网一区二区| 国产精品久久视频播放| 久久鲁丝午夜福利片| 男女国产视频网站| 中文字幕av在线有码专区| 国产精品人妻久久久影院| 国产乱人偷精品视频| 看非洲黑人一级黄片| 麻豆乱淫一区二区| 国产免费福利视频在线观看| 国产精品女同一区二区软件| 别揉我奶头 嗯啊视频| 欧美不卡视频在线免费观看| 长腿黑丝高跟| 国产亚洲一区二区精品| 欧美日韩综合久久久久久| 又粗又硬又长又爽又黄的视频| 久久久色成人| 亚洲,欧美,日韩| 99热网站在线观看| 国产麻豆成人av免费视频| 精品少妇黑人巨大在线播放 | 日本爱情动作片www.在线观看| 成人鲁丝片一二三区免费| 人妻制服诱惑在线中文字幕| 亚洲国产欧美在线一区| 国产老妇伦熟女老妇高清| 亚洲成av人片在线播放无| 久久久久精品久久久久真实原创| 人妻少妇偷人精品九色| 久久亚洲国产成人精品v| 亚洲伊人久久精品综合 | 亚洲欧美精品综合久久99| 久久久午夜欧美精品| 成人av在线播放网站| 国产精品一区二区性色av| 大香蕉97超碰在线| 国产av码专区亚洲av| 色综合站精品国产| 久久精品国产亚洲av天美| 中文天堂在线官网| 嫩草影院新地址| 成年版毛片免费区| 久久久精品94久久精品| 久久久久久久久中文| 成年女人永久免费观看视频| 欧美高清性xxxxhd video| 国产精品一区二区在线观看99 | 亚洲成人精品中文字幕电影| 97热精品久久久久久| 亚洲av中文字字幕乱码综合| 男人舔女人下体高潮全视频| 水蜜桃什么品种好| 国产探花极品一区二区| 国产成人福利小说| 国产综合懂色| av在线观看视频网站免费| 亚洲精品影视一区二区三区av| 赤兔流量卡办理| 国产伦精品一区二区三区视频9| 一本一本综合久久| 两性午夜刺激爽爽歪歪视频在线观看| 视频中文字幕在线观看| 国产探花极品一区二区| 免费搜索国产男女视频| 精品国产一区二区三区久久久樱花 | 又爽又黄无遮挡网站| 中文欧美无线码| 午夜激情欧美在线| 永久免费av网站大全| 亚洲国产精品成人久久小说| 午夜日本视频在线| 干丝袜人妻中文字幕| 自拍偷自拍亚洲精品老妇| 日本黄色片子视频| 日产精品乱码卡一卡2卡三| 秋霞在线观看毛片| 深夜a级毛片| 成人鲁丝片一二三区免费| 成人三级黄色视频| 午夜精品国产一区二区电影 | 九九在线视频观看精品| 日本一二三区视频观看| 成人毛片a级毛片在线播放| 欧美色视频一区免费| 纵有疾风起免费观看全集完整版 | 色视频www国产| 免费观看精品视频网站| 美女内射精品一级片tv| 看片在线看免费视频| 国产亚洲精品av在线| 欧美成人一区二区免费高清观看| 精品一区二区免费观看| 成人特级av手机在线观看| 99国产精品一区二区蜜桃av| 长腿黑丝高跟| 日韩精品有码人妻一区| 亚洲在久久综合| 中文字幕av在线有码专区| 啦啦啦观看免费观看视频高清| 97超碰精品成人国产| 亚洲欧美成人精品一区二区| 九九在线视频观看精品| 国产精品国产三级国产av玫瑰| 亚洲熟妇中文字幕五十中出| 国产精品久久视频播放| 国产精品久久视频播放| 亚洲av一区综合| 色噜噜av男人的天堂激情| 日韩av不卡免费在线播放| 久久久久精品久久久久真实原创| 精品久久久久久久久av| 51国产日韩欧美| 国产v大片淫在线免费观看| 亚洲最大成人中文| 九色成人免费人妻av| 99久久精品国产国产毛片| 欧美高清性xxxxhd video| 岛国毛片在线播放| 日韩av在线免费看完整版不卡| 国产一级毛片七仙女欲春2| 精品人妻视频免费看| 欧美成人a在线观看| 少妇的逼水好多| 七月丁香在线播放| 国产91av在线免费观看| 亚洲精品,欧美精品| 午夜精品在线福利| 国产精品99久久久久久久久| 欧美一区二区亚洲| 日韩一区二区视频免费看| 欧美一区二区精品小视频在线| 我的女老师完整版在线观看| 日韩欧美精品免费久久| 亚洲不卡免费看| av.在线天堂| 在线观看66精品国产| 午夜日本视频在线| 亚洲国产欧美人成| 亚洲国产精品国产精品| 欧美日韩在线观看h| 亚洲av电影在线观看一区二区三区 | 色视频www国产| 亚洲精华国产精华液的使用体验| 嫩草影院精品99| 亚洲,欧美,日韩| 女人十人毛片免费观看3o分钟| 国产白丝娇喘喷水9色精品| 99国产精品一区二区蜜桃av| 最近中文字幕2019免费版| 亚洲最大成人手机在线| 国产免费福利视频在线观看| 能在线免费观看的黄片| 只有这里有精品99| 91精品国产九色| 国产不卡一卡二| 级片在线观看| 国产黄a三级三级三级人| 久久久久久久久中文| 超碰av人人做人人爽久久| 精品酒店卫生间| 日韩欧美精品免费久久| 国产女主播在线喷水免费视频网站 | av女优亚洲男人天堂| 国产亚洲5aaaaa淫片| 欧美3d第一页| 欧美日韩精品成人综合77777| 日韩欧美国产在线观看| 亚洲av成人av| 97超碰精品成人国产| 日日摸夜夜添夜夜爱| 精品国产露脸久久av麻豆 | 日本黄色片子视频| 亚洲美女视频黄频| 日本一本二区三区精品| 国产亚洲最大av| 免费看光身美女| 国产精品久久久久久av不卡| 美女脱内裤让男人舔精品视频| 久久久国产成人免费| 黄片无遮挡物在线观看| 欧美成人午夜免费资源| 国产欧美另类精品又又久久亚洲欧美| 免费一级毛片在线播放高清视频| 激情 狠狠 欧美| 黄色配什么色好看| 欧美成人一区二区免费高清观看| 一区二区三区高清视频在线| 建设人人有责人人尽责人人享有的 | 七月丁香在线播放| 看片在线看免费视频| 天美传媒精品一区二区| 夫妻性生交免费视频一级片| 1024手机看黄色片| 人人妻人人澡欧美一区二区| 18禁动态无遮挡网站| 亚洲综合色惰| 秋霞伦理黄片| 天美传媒精品一区二区| 插逼视频在线观看| 亚洲人与动物交配视频| 免费观看性生交大片5| 久久鲁丝午夜福利片| 亚洲综合精品二区| 国内少妇人妻偷人精品xxx网站| 成人鲁丝片一二三区免费| 国产私拍福利视频在线观看| 日韩欧美在线乱码| 欧美激情在线99| 亚洲中文字幕日韩| 热99re8久久精品国产| 成人国产麻豆网| 十八禁国产超污无遮挡网站| 综合色av麻豆| 国产成人freesex在线| 午夜免费激情av| 亚洲av中文av极速乱| 一卡2卡三卡四卡精品乱码亚洲| 亚州av有码| 亚洲欧美成人精品一区二区| 午夜福利在线观看吧| 国产三级中文精品| 亚洲图色成人| 有码 亚洲区| 国产成人freesex在线| 99久国产av精品国产电影| 欧美日韩在线观看h| 国产一区有黄有色的免费视频 | 日日摸夜夜添夜夜爱| 两个人的视频大全免费| 18禁动态无遮挡网站| 99在线人妻在线中文字幕| 熟妇人妻久久中文字幕3abv| 2021少妇久久久久久久久久久| 亚洲成人精品中文字幕电影| videos熟女内射| 99九九线精品视频在线观看视频| 人体艺术视频欧美日本| 精品无人区乱码1区二区| 搡女人真爽免费视频火全软件| 成人美女网站在线观看视频| 舔av片在线| 国产av码专区亚洲av| 久久久久性生活片| 欧美bdsm另类| 精品久久久噜噜| 天美传媒精品一区二区| 精品一区二区三区人妻视频| 国产69精品久久久久777片| 国产精品一及| 欧美日本视频| 最后的刺客免费高清国语| 亚洲精品久久久久久婷婷小说 | 91av网一区二区| 久久久久久久亚洲中文字幕| 超碰av人人做人人爽久久| 日本免费在线观看一区| 在线免费观看不下载黄p国产| 亚洲国产精品sss在线观看| 日本一本二区三区精品| 欧美一区二区亚洲| 国产成人精品久久久久久| 久久草成人影院| 亚洲熟妇中文字幕五十中出| 欧美不卡视频在线免费观看| 免费黄色在线免费观看| 色综合亚洲欧美另类图片| av在线亚洲专区| 国内精品宾馆在线| 看非洲黑人一级黄片| 精品国内亚洲2022精品成人| av在线播放精品| 最近中文字幕2019免费版| 非洲黑人性xxxx精品又粗又长| 日本wwww免费看| 亚洲无线观看免费| 天天躁日日操中文字幕| 天天躁夜夜躁狠狠久久av| 日本三级黄在线观看| a级毛片免费高清观看在线播放| 网址你懂的国产日韩在线| 一级黄片播放器| 久久久成人免费电影| 国产午夜精品一二区理论片| 91久久精品国产一区二区成人| 天天躁夜夜躁狠狠久久av| 天堂影院成人在线观看| 欧美一区二区亚洲| 亚洲中文字幕一区二区三区有码在线看| 免费看av在线观看网站| 国产黄a三级三级三级人| 欧美激情久久久久久爽电影| 麻豆成人午夜福利视频| 国产精品福利在线免费观看| 午夜久久久久精精品| 我要搜黄色片| 熟女电影av网| 嘟嘟电影网在线观看| 国产成人福利小说| 国产精品一区二区在线观看99 | 日本三级黄在线观看| 一级毛片久久久久久久久女| 三级国产精品欧美在线观看| 午夜福利成人在线免费观看| 长腿黑丝高跟| 午夜免费男女啪啪视频观看| 成人漫画全彩无遮挡| 亚洲在久久综合| 日韩av在线大香蕉| 国产老妇女一区| 亚洲av免费高清在线观看| 三级国产精品欧美在线观看| 国产亚洲一区二区精品| 床上黄色一级片|