• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Vertex-distinguishing IE-total Colorings of Cycles and Wheels

    2014-03-03 03:34:56

    (College of Mathematics and Information Science,Northwest Normal University, Lanzhou,730070)

    Vertex-distinguishing IE-total Colorings of Cycles and Wheels

    CHEN XIANG-EN,HE WEN-YU,LI ZE-PENG AND YAO BING

    (College of Mathematics and Information Science,Northwest Normal University, Lanzhou,730070)

    Communicated by Du Xian-kun

    Let G be a simple graph.An IE-total coloring f of G refers to a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. Let C(u)be the set of colors of vertex u and edges incident to u under f.For an IE-total coloring f of G using k colors,if C(u)C(v)for any two di ff erent vertices u and v of V(G),thenfis called a k-vertex-distinguishing IE-total-coloring of G, or a k-VDIET coloring of G for short.The minimum number of colors required for a VDIET coloring of G is denoted by(G),and is called the VDIET chromatic number of G.We get the VDIET chromatic numbers of cycles and wheels,and propose related conjectures in this paper.

    graph,IE-total coloring,vertex-distinguishing IE-total coloring,vertexdistinguishing IE-total chromatic number

    1 Introduction and Preliminaries

    For an edge coloring(proper or not)of a graph G and a vertex v of G,denote by S(v)the set of colors used to color the edges incident to v.

    A proper edge coloring of a graph G is said to be vertex-distinguishing if each pair of vertices is incident to a di ff erent set of colors.In other words,S(u)S(v)whenever uv. A graph G has a vertex-distinguishing proper edge coloring if and only if it has no more than one isolated vertex and no isolated edges.Such a graph is referred to as a vdec-graph. The minimum number of colors required for a vertex-distinguishing proper edge coloringof a vdec-graph G is denoted by(G).The concept of vertex-distinguishing proper edge coloring has been considered in several papers(see[1–7]).

    A general edge coloring(not necessarily proper)of a graph G is called vertex-distinguishing if S(u)≠S(v)is required for any two distinct vertices u and v.The point-distinguishing chromatic index of a vdec-graph G,denoted by χ0(G),refers to the minimum number of colors required for a vertex-distinguishing general edge coloring of G.This parameter was introduced by Harary and Plantholt in[8].In spite of the fact that the structure of complete bipartite graph is simple,it seems that the problem of determining χ0(Km,n)is not easy, especially in the case m=n,as documented by papers of Horˇn′ak and Sot′ak[9–10],Zagaglia Salvi[11–12]and Horˇn′ak and Zagaglia Salvi[13].

    For a total coloring(proper or not)f of G and a vertex v of G,denote by Cf(v),or simply C(v)if no confusion arises,the set of colors used to color the vertex v as well as the edges incident to v.Let(v)be the complementary set of C(v)in the set of all colors we used.Obviously|C(v)|≤dG(v)+1 and the equality holds if the total coloring is proper.

    For a proper total coloring,if C(u)C(v),i.e.,(u)(v)for any two distinct vertices u and v,then the coloring is called vertex-distinguishing(proper)total coloring and the minimum number of colors required for a vertex-distinguishing(proper)total coloring is denoted by χvt(G).This concept has considered in[14–15].In[15],the authors give the following conjecture.

    From[15]we know that the above conjecture is valid for complete graphs,complete bipartite graphs,path and cycle,etc.

    In this paper we propose a kind of vertex-distinguishing general total coloring.The relationship of this coloring and vertex-distinguishing proper total coloring is similar to the relationship of vertex-distinguishing general edge coloring and vertex-distinguishing proper edge coloring.

    When we de fi ne a proper total coloring of a graph G,we need three conditions for a total coloring which are listed as follows∶

    Condition(v)∶No two adjacent vertices receive the same color;

    Condition(e)∶No two adjacent edges receive the same color;

    Condition(i)∶No edge receives the same color as one of its endpoints.

    If we only consider the total coloring of the graph G such that the Condition(v)is satis fi ed,then such a coloring is called an IE-total coloring of the graph G.

    If f is an IE-total coloring of the graph G using k colors and for all u,v∈V(G),uv, we have C(u)C(v),then f is called a k-vertex-distinguishing IE-total coloring,or a k-VDIET coloring.The minimum number k for which G has a k-VDIET coloring is called the vertex-distinguishing IE-total chromatic number(or VDIET chromatic number)of the graph G and is denoted by

    The following proposition is obviously true.

    Proof.For a graph G,let nibe the number of the vertices of degree i,δ≤i≤Δ.Suppose that

    In Section 2 we consider the VDIET colorings for cycles and paths.The discussions of the VDIET colorings for wheels and fans are long,so we put them into the Section 3.In Section 4 we give two conjectures.

    2 Vertex Distinguishing IE-total Chromatic Numbers of Cycle and Path

    Theorem 2.1LetCnbe a cycle of ordern(n≥3).Then

    Proof.When n=3,4,5,6,the results are obviously true.Let Cn=u1u2u3···unu1.In this proof when we want to give a k-VDIET coloring fnof Cnwith all colors 1,2,···,k,we need only to give(fn(ui?1ui),fn(ui),fn(uiui+1))or fn(ui?1ui)fn(ui)fn(uiui+1)for each i=1,2,···,n,i.e.,

    such that

    and

    If n=7,then

    Assume that C7has a 3-VDIET coloring g.Then there are three vertices such that their color sets are{1},{2}and{3},respectively.But no two such vertices are adjacent.So without loss of generality we assume that C(u1)={1},C(u3)={2},C(u5)={3}.As no two adjacent vertices receive the same color,the colors that u2and u4are assigned under g are 3 and 1,respectively.Thereby u2and u4have the same color set,which is a contradiction.So there does not exist a VDIET coloring of C7using 3 colors.

    Obviously,

    If

    i.e.,8≤n≤14,then

    Let

    If

    i.e.,15≤n≤25,then

    Let

    where“+”denotes the concatenation of sequence.Obviously,when 15≤n≤25,fnis a 5-VDIET coloring of Cn,so the result holds.

    We now want to apply the same technique to give fnfor

    To do so,we de fi ne Ckat fi rst.Let

    If l≡0(mod 4),let

    If l≡1(mod 4),let

    If l≡2(mod 4),let

    If l≡3(mod 4),let

    For l=6,7,···,k?2,we do the above work step by step.Finally we obtain.The last term ofis(k?1)1k or k1(k?1).We change the last term(k?1)1k to(k?1)k1 and k1(k?1)to k(k?1)1.And the resulting sequence is denoted by Ck.

    Now we determine fnwhen

    Suppose

    Let

    Theorem 2.2For a pathPnof ordern(≥8),if

    Proof.If

    Actually,based on the k-VDIET coloring fnof Cn=u1u2u3···unu1de fi ned in the above theorem,if we delete the edge which connects two vertices with color sets{4,2}and{4,3}, i.e.,the corresponding terms are 424 and 434,then we can obtain Pnand its k-VDIET coloring when

    3 Vertex Distinguishing IE-total Chromatic Numbers of Wheel and Fan

    Proof.Let

    In this proof,when we want to give a k-VDIET coloring fnof Wn,we always appoint that the colors which we use are 1,2,···,k,the color of u0is k,and then it suffices to give (fn(ui?1ui),fn(u0ui),fn(ui),fn(uiui+1))or fn(ui?1ui)fn(u0ui)fn(ui)fn(uiui+1)for each i=1,2,···,n,equivalently to give

    such that fn(ui)fn(ui+1),i=1,2,···,n,and

    If n=4,then

    Case 1.|C(u0)|=1.Then C(u0)={3},and each C(ui),i=1,2,3,4,is one of{1,2,3}, {2,3},{1,3}.Three subsets can not distinguish 4 vertices.It is a contradiction.

    Case 2.|C(u0)|=2.We may suppose C(u0)={3,2}.Then each C(ui),i=1,2,3,4,is one of{1,2,3},{1,2},{1,3},{2}.Let C(u1)={2}.Then the colors of u2and u4are only 1.Thus{C(u2),C(u4)}={{1,2,3},{1,2}}.So C(u3)={1,3}and the color of u3is 2 for ensuring the vertex coloring proper.This is a contradiction.

    Case 3.|C(u0)|=3.Of course C(u0)={1,2,3}.Then each C(ui),i=1,2,3,4,is one of{1,2},{2,3},{1,3},{1},{2}.

    (a)If{C(u1),C(u2),C(u3),C(u4)}={{1,2},{1,3},{1},{2}},then two vertices which has color sets{1}and{2}are not adjacent.But these two vertices must have the same color.This is a contradiction.

    (b)If{C(u1),C(u2),C(u3),C(u4)}={{1,2},{1,3},{2,3},{1}},without loss of generality,we assume C(u1)={1}.Then 1∈C(u2)∩C(u4).Thus C(u3)={2,3},whichyields g(u3)=2.But g(u1)=1,so the color that u2is assigned under g is one of g(u1), g(u3)and g(u0).This is a contradiction.

    (c)If{C(u1),C(u2),C(u3),C(u4)}={{1,2},{2,3},{1},{2}},then similar to(a)we can get a contradiction.

    (d)If{C(u1),C(u2),C(u3),C(u4)}={{1,2},{1,3},{2,3},{2}},then similar to(b) we can get a contradiction.

    (e)If{C(u1),C(u2),C(u3),C(u4)}={{1,3},{2,3},{1},{2}},then similar to(a)we can get a contradiction.

    Thus there does not exist a VDIET coloring of W4using 3 colors,so≥4.We can prove=4 by giving a 4-VDIET coloring f4of W4(note that f4(u0)=4)as follows∶f4=(1132,2214,4323,3411).

    As the(proper)vertex chromatic number of W5is χ(W5)=4,χievt(W5)≥4.We can show that=4 by giving a 4-VDIET coloring f5of W5as follows∶

    Note that

    Case 1.|C(u0)|=1.Then C(u0)={3},and each C(ui),i=1,2,···,6,is one of {1,2,3},{2,3},{1,3}.This is a contradiction.

    Case 2.|C(u0)|=2.We may suppose C(u0)={3,1}.Then each C(ui),i=1,2,···,6, is one of{1,2,3},{1,2},{2,3},{1}.This is a contradiction.

    Case 3.|C(u0)|=3.Then C(u0)={1,2,3},and each C(ui),i=1,2,···,6,is one of{1,2},{2,3},{1,3},{1},{2}.Five subsets do not distinguish six vertices.This is a contradiction.

    f13=(1132,2112,2222,2114,4224,4114,4334,4223,3333,3113,3223,3431,1111). It is easy to see that fnis a 4-VDIET coloring of Wnand(Wn)=4 when 7≤n≤13.

    Case 1.|C(u0)|=1.Then C(u0)={4},and each C(ui),i=1,2,···,14,is one of {1,4},{2,4},{3,4},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4}.This is a contradiction.

    Case 2.|C(u0)|=2.We may suppose C(u0)={1,4}.Then each C(ui),i=1,2,···,14, is one of{1},{1,2},{1,3},{2,4},{3,4},{1,3,4},{1,2,4},{1,2,3},{2,3,4},{1,2,3,4}. This is a contradiction.

    Case 3.|C(u0)|=3.We may suppose C(u0)={1,2,4}.Then each C(ui),i= 1,2,···,14,is one of{1},{2},{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},{1,2,3},{1,3,4}, {2,3,4},{1,2,3,4}.This is a contradiction.

    Case 4.|C(u0)|=4,that is,C(u0)={1,2,3,4}.Then each C(ui),i=1,2,···,14,is one of{1},{2},{3},{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},{1,2,3},{1,2,4},{1,3,4}, {2,3,4}.This is a contradiction.

    f14=(1132,2112,2222,2114,4444,4224,4114,4334,4223,3333,3113,3223,3431,1111).

    (I)We prove that what wheel has(k?1)-VDIET coloring with colors 1,2,···,k?1 for k≥6.

    Suppose that Wnhas a(k?1)-VDIET coloring g.Let|C(u0)|=i.Denote by mithe number of subsets of{1,2,···,k?1}which can be acted as the color set of some uj(1≤j≤n).Then

    This yields that if

    (II)Next we prove that k colors can color Wn,so that the coloring is IE-total coloring and is vertex distinguishing when

    Assume that we have constructed all fiwith

    such that

    (1)The fi rst term of fiis 1132;

    (2)When

    and fn(u0)=l,the fi rst term abcd and the last term a1b1c1d1of fnsatisfy that d1=a=1, c1?=c and if there are at most 3 di ff erent numbers in{a1,b1,c1,d1}then c1=d1=1;

    (3)fqhas used up all 4-combinations,3-combinations,2-combinations and 1-combination of{1,2,···,k?1}except for 1-combination{k?1}.Under fq,C(u0)={1,2,···,k?1}.

    Let

    and let Cibe the sequence de fi ned in the proof of Theorem 2.1 for i≥7.We change each term abc of Cs,4≤s≤k?1,into akbc,and the resulted sequence is denoted byLetObviously,Dkhasterms.

    (A)Let fq+1be the sequence formed by inserting the term(k?1)(k?1)(k?1)(k?1) into the place between(k?1)33(k?1)and(k?1)22(k?1)from fq.

    (B)Let

    Let

    If the(r?1)-th term of Dkis akb(k?1),then we can obtain fq+r+1by adding the fi rst r?1 terms of Dkto fq+1and then adding(k?1)k(k?2)1.

    If the(r?1)-th term of Dkis(k?1)kab(but not(k?1)k1s,s≤k?2),then we can obtain fq+r+1by adding the fi rst r?1 terms of Dkto fq+1and then adding bk(k?1)1.

    Let

    If the(r?1)-th term of Bkis abbk,then we can obtainby adding the fi rst r?1 terms of Bktoand then adding the term k(k?1)11.

    If the(r?1)-th term of Bkis of the form kaab(≠k11s,i.e.,a≠1),then we can obtainby adding the fi rst r?1 terms of Bktoand then adding the term bk11.

    Theorem 3.2LetFnbe a fan of ordern+1.If3≤ n≤ 4,then(Fn)=3;if5≤n≤13,then

    thenχievt(Fn)=k.

    Proof.Let

    In this proof when we want to give a k-VDIET coloring gnof Fnwith the set of all colors {1,2,···,k},we always appoint that the color of v0is k and then it suffices to give the desired sequence

    Assume that F5has a 3-VDIET coloring h and h(v0)=3.

    If|C(v0)|=1,then 3∈C(vi),i=0,1,···,5.But the number of the subsets of{1,2,3} which contain 3 is 4.This is a contradiction.

    If|C(v0)|≥2,then{3}is not the color set of any vertex.Since the vertex coloring is proper,we may suppose h(v1)=h(v3)=h(v5)=1 and h(v2)=h(v4)=2.As{C(v0), C(v1),···,C(v5)}={{1},{2},{1,2},{1,3},{2,3},{1,2,3}},and C(v3)≠{1},without loss of generality we assume that C(v1)={1}and C(v4)={2}.This yields that 2∈C(vi), i=0,2,3,4,5.This is a contradiction for we just have 4 subsets of{1,2,3}which contain 2.

    Similarly to proving that W6has no 3-VDIET coloring in the proof of Theorem 3.1 we can show that F6has no 3-VDIET coloring.And

    is a 4-VDIET coloring of F6.So=4.

    Similarly to the proof that W14has no 4-VDIET coloring in the proof of Theorem 3.1, we can show that F14have no 4-VDIET coloring.And

    g14=(132,2112,2222,2114,4444,4224,4114,4334,4223,3333,3113,3223,3431,111). So

    If we delete the fi rst number of the fi rst term of fnand also delete the last number of the last term of fn,then the resulting sequence gnis a 4 or 5-VDIET coloring of Fnwhen 7≤n≤13 or 15≤n≤29.Thus=4 if 7≤n≤13,and=5 if 15≤n≤29. Su

    ppose that

    and n≥30.

    (I)We can show that Fnhas no(k?1)-VDIET coloring.The process is the same as(I) in the proof of Theorem 3.1.So≥k.

    (II)If we delete the fi rst number of the fi rst term of fnand also delete the last number of the last term of fn,then the resulting sequence gnis a k-VDIET coloring of Fn.

    and n≥30.

    The proof is completed.

    Theorem 3.3LetKnbe the complete graph of ordern(n≥3),then(Kn)=n.

    Proof.Any two vertices in Knmust receive di ff erent colors under arbitrary VDIET coloring.Therefore(Kn)≥n.Of course,we are able to show that(Kn)=n by giving a VDIET coloring of Knusing n colors 1,2,···,n as follows.Assign colors 1,2,···,n to vertices v1,v2,···,vnof Knrespectively,and then let all edges receive the same color 1. The proof is completed.

    4 Conjectures

    From the results obtained in this paper,we know that for any graph G discussed in this paper but Kn(n≥5),we have χievt(G)=ξ(G)or ξ(G)+1.So we propose the following conjectures.

    Conjecture 4.1For a simple graphG,if(proper vertex coloring)chromatic numberχ(G)≤4,we have=ξ(G)orξ(G)+1.

    Conjecture 4.2For a simple graphG,we have≤max{ξ(G)+1,χ(G)}.

    [1]Balister P N,Bollob′as B,Schelp R H.Vertex distinguishing colorings of graphs with Δ(G)=2. Discrete Math.,2002,252:17–29.

    [2]Balister P N,Riordan O M,Schelp R H.Vertex distinguishing edge colorings of graphs.J. Graph Theory,2003,42:95–109.

    [3]Bazgan C,Harkat-Benhamdine A,Li H,Wo′zniak M.On the vertex-distinguishing proper edge-colorings of graphs.J.Combin.Theory Ser.B,1999,75:288–301.

    [4]Burris A C,Schelp R H.Vertex-distinguishing proper edge-colorings.J.Graph Theory,1997,26(2):73–82.

    [5]ˇCer′ny J,Horˇn′ak M.Observability of a graph.Math.Slovaca,1996,46:21–31.

    [6]Horˇn′ak M,Sot′ak R.Observability of complete multipartite graphs with equipotent parts.Ars Combin.,1995,41:289–301.

    [7]Horˇn′ak M,Sot′ak R.Asymptotic behaviour of the observability of Qn.Discrete Math.,1997,176:139–148.

    [8]Harary F,Plantholt M.The Point-distinguishing Chromatic Index.In:Harary F,Maybee J S.Graphs and Application.New York:Wiley Interscience,1985:147–162.

    [9]Horˇn′ak M,Sot′ak R.The fi fth jump of the point-distinguishing chromatic index of Kn,n.Ars Combin.,1996,42:233–242.

    [10]Horˇn′ak M,Sot′ak R.Localization jumps of the point-distinguishing chromatic index of Kn,n. Discuss.Math.Graph Theory,1997,17:243–251.

    [11]Zagaglia Salvi N.On the point-distinguishing chromatic index of Kn,n.Ars Combin.,1988,25B:93–104.

    [12]Zagaglia Salvi N.On the value of the point-distinguishing chromatic index of Kn,n.Ars Combin.,1990,29B:235–244.

    [13]Horˇn′ak M,Zagaglia Salvi N.On the point-distinguishing chromatic index of complete bipartite graphs.Ars Combin.,2006,80:75–85.

    [14]Chen X E.Asymptotic behaviour of the vertex-distinguishing total chromatic numbers of n-cube(in Chinese).J.Northwest Norm.Univ.(Natur.Sci.),2005,41(5):1–3.

    [15]Zhang Z F,Qiu P X,Xu B G,et al.Vertex-distinguishing total colorings of graphs.Ars Combin.,2008,87:33–45.

    tion:05C15

    A

    1674-5647(2014)03-0222-15

    10.13447/j.1674-5647.2014.03.04

    Received date:Oct.18,2011.

    Foundation item:The NSF(61163037,61163054)of China and the Scienti fi c Research Project(nwnu-kjcxgc-03-61)of Northwest Normal University.

    E-mail address:chenxe@nwnu.edu.cn(Chen X E).

    亚洲精品aⅴ在线观看| 日本av手机在线免费观看| 国语对白做爰xxxⅹ性视频网站| 在线观看www视频免费| 巨乳人妻的诱惑在线观看| 99精国产麻豆久久婷婷| 欧美日韩一级在线毛片| av国产精品久久久久影院| 国产乱来视频区| 秋霞伦理黄片| 亚洲av国产av综合av卡| 午夜福利视频精品| 亚洲国产欧美日韩在线播放| 老汉色av国产亚洲站长工具| 精品国产乱码久久久久久小说| 精品第一国产精品| 国产精品久久久久久久久免| 成年人免费黄色播放视频| 街头女战士在线观看网站| 有码 亚洲区| 亚洲欧美清纯卡通| 精品国产一区二区三区四区第35| 你懂的网址亚洲精品在线观看| 看非洲黑人一级黄片| 人人妻人人添人人爽欧美一区卜| 久久久久久人人人人人| 国产一区二区三区综合在线观看| 人人妻人人澡人人看| 亚洲 欧美一区二区三区| 激情视频va一区二区三区| 午夜免费男女啪啪视频观看| 日本av免费视频播放| 青春草亚洲视频在线观看| 成年人午夜在线观看视频| 国产精品麻豆人妻色哟哟久久| av有码第一页| 精品久久久久久电影网| 99久久综合免费| 免费黄网站久久成人精品| 国产成人精品福利久久| 亚洲综合色惰| 亚洲av免费高清在线观看| 免费黄频网站在线观看国产| 久久精品国产亚洲av高清一级| 最近最新中文字幕免费大全7| 99九九在线精品视频| 韩国精品一区二区三区| 黄频高清免费视频| 国产亚洲午夜精品一区二区久久| 青春草国产在线视频| 亚洲第一青青草原| 精品国产乱码久久久久久小说| av国产精品久久久久影院| 飞空精品影院首页| 黑丝袜美女国产一区| 少妇人妻久久综合中文| 亚洲精品日本国产第一区| 免费黄频网站在线观看国产| 久久久亚洲精品成人影院| 国产亚洲午夜精品一区二区久久| 亚洲av综合色区一区| 国产精品二区激情视频| av免费观看日本| 日韩成人av中文字幕在线观看| 国产无遮挡羞羞视频在线观看| 99国产精品免费福利视频| 国产 一区精品| 精品少妇久久久久久888优播| 另类精品久久| 成人亚洲精品一区在线观看| 视频区图区小说| 午夜日韩欧美国产| 青春草视频在线免费观看| 边亲边吃奶的免费视频| 国产日韩一区二区三区精品不卡| 国产精品一二三区在线看| 熟女av电影| 国产精品一国产av| 一级毛片我不卡| 国产乱人偷精品视频| 久久国产精品大桥未久av| 久久久久久伊人网av| 国产在视频线精品| 男人添女人高潮全过程视频| 久久精品亚洲av国产电影网| 丝袜美足系列| 91成人精品电影| 午夜福利在线观看免费完整高清在| 精品久久蜜臀av无| 我的亚洲天堂| 十八禁高潮呻吟视频| 丝袜美腿诱惑在线| 男女国产视频网站| 在线亚洲精品国产二区图片欧美| 午夜福利在线观看免费完整高清在| 高清av免费在线| 亚洲欧美中文字幕日韩二区| 宅男免费午夜| 少妇人妻久久综合中文| 2021少妇久久久久久久久久久| 亚洲第一av免费看| 母亲3免费完整高清在线观看 | 999精品在线视频| 亚洲在久久综合| 99热国产这里只有精品6| 久久97久久精品| 亚洲美女搞黄在线观看| 国产精品av久久久久免费| 国产精品人妻久久久影院| 中文乱码字字幕精品一区二区三区| 成年动漫av网址| 亚洲精品视频女| 久久人人爽av亚洲精品天堂| 97在线人人人人妻| 亚洲第一区二区三区不卡| 国产男女内射视频| 久久久久久久国产电影| 国产免费福利视频在线观看| 在线观看美女被高潮喷水网站| 亚洲国产成人一精品久久久| 久久99一区二区三区| www.熟女人妻精品国产| 日韩制服丝袜自拍偷拍| 精品福利永久在线观看| 国产综合精华液| 久久久久久人妻| 国产有黄有色有爽视频| 成人漫画全彩无遮挡| 999久久久国产精品视频| 99精国产麻豆久久婷婷| 国产日韩一区二区三区精品不卡| 精品亚洲成a人片在线观看| 国产福利在线免费观看视频| 啦啦啦中文免费视频观看日本| 天天躁夜夜躁狠狠躁躁| 一级片免费观看大全| 欧美日韩视频高清一区二区三区二| 国产欧美日韩一区二区三区在线| 纵有疾风起免费观看全集完整版| 亚洲,一卡二卡三卡| videos熟女内射| 纵有疾风起免费观看全集完整版| 国产1区2区3区精品| 国产野战对白在线观看| 久久免费观看电影| 亚洲精品av麻豆狂野| 国产亚洲av片在线观看秒播厂| 亚洲精品aⅴ在线观看| 精品第一国产精品| 亚洲伊人色综图| 国产成人精品无人区| 国产日韩一区二区三区精品不卡| 极品少妇高潮喷水抽搐| 一区二区三区精品91| 黄色毛片三级朝国网站| 日韩欧美一区视频在线观看| 日韩中字成人| 久久精品夜色国产| 欧美日韩综合久久久久久| 亚洲精品国产一区二区精华液| 亚洲三区欧美一区| 国产成人精品在线电影| 成人影院久久| 黑人巨大精品欧美一区二区蜜桃| 日韩av不卡免费在线播放| 久久99热这里只频精品6学生| 涩涩av久久男人的天堂| 久久99蜜桃精品久久| 精品少妇内射三级| a级片在线免费高清观看视频| 最黄视频免费看| 春色校园在线视频观看| 亚洲精品美女久久av网站| 中国三级夫妇交换| 国产成人欧美| 伊人亚洲综合成人网| 亚洲精品久久午夜乱码| 国产免费又黄又爽又色| 国产欧美日韩综合在线一区二区| 在线 av 中文字幕| 五月开心婷婷网| 777米奇影视久久| 国产无遮挡羞羞视频在线观看| 大陆偷拍与自拍| 伦理电影免费视频| 国产亚洲av片在线观看秒播厂| freevideosex欧美| 日韩免费高清中文字幕av| 午夜免费男女啪啪视频观看| 爱豆传媒免费全集在线观看| 免费看av在线观看网站| 国产女主播在线喷水免费视频网站| 欧美日韩视频高清一区二区三区二| 丁香六月天网| 一区二区三区精品91| 亚洲国产最新在线播放| 另类亚洲欧美激情| 大码成人一级视频| 亚洲国产成人一精品久久久| 亚洲av国产av综合av卡| 超碰成人久久| 看十八女毛片水多多多| 精品第一国产精品| 丝袜喷水一区| 街头女战士在线观看网站| 亚洲精品国产av成人精品| 亚洲人成网站在线观看播放| 精品国产一区二区久久| 国产亚洲一区二区精品| 午夜福利网站1000一区二区三区| 久久午夜福利片| 成人午夜精彩视频在线观看| 一级毛片 在线播放| 国产日韩欧美视频二区| 成人毛片60女人毛片免费| 啦啦啦中文免费视频观看日本| 欧美97在线视频| 欧美日韩精品成人综合77777| 色婷婷久久久亚洲欧美| 色网站视频免费| 久久热在线av| 天天影视国产精品| 免费观看a级毛片全部| 成年人午夜在线观看视频| 欧美激情极品国产一区二区三区| 国产一区二区 视频在线| 国产野战对白在线观看| 99热国产这里只有精品6| 九色亚洲精品在线播放| 日本免费在线观看一区| 色播在线永久视频| 国产一区二区三区综合在线观看| 亚洲欧洲精品一区二区精品久久久 | 日韩成人av中文字幕在线观看| 国产精品麻豆人妻色哟哟久久| 欧美日韩视频精品一区| 欧美日韩av久久| 国产精品一区二区在线观看99| 国产精品一区二区在线不卡| 午夜福利乱码中文字幕| 可以免费在线观看a视频的电影网站 | 国产精品麻豆人妻色哟哟久久| 午夜免费男女啪啪视频观看| av免费在线看不卡| 国产成人欧美| 91国产中文字幕| 超碰成人久久| 99国产综合亚洲精品| 国产一区二区 视频在线| 亚洲国产毛片av蜜桃av| 菩萨蛮人人尽说江南好唐韦庄| 成人午夜精彩视频在线观看| 少妇人妻 视频| 一级黄片播放器| 叶爱在线成人免费视频播放| 两个人看的免费小视频| 国产av一区二区精品久久| 99热网站在线观看| 九九爱精品视频在线观看| 亚洲av中文av极速乱| 久久国内精品自在自线图片| 欧美最新免费一区二区三区| 黄色毛片三级朝国网站| 国产探花极品一区二区| 久久影院123| 在线观看一区二区三区激情| 菩萨蛮人人尽说江南好唐韦庄| 热re99久久精品国产66热6| 亚洲欧美一区二区三区黑人 | 狠狠婷婷综合久久久久久88av| 校园人妻丝袜中文字幕| 午夜福利一区二区在线看| 国产成人91sexporn| 国产精品久久久久久精品古装| 永久网站在线| 一区二区三区乱码不卡18| 99国产精品免费福利视频| 午夜久久久在线观看| 日日啪夜夜爽| 欧美日韩精品成人综合77777| 在线免费观看不下载黄p国产| 欧美日韩一区二区视频在线观看视频在线| 少妇猛男粗大的猛烈进出视频| 两个人免费观看高清视频| 七月丁香在线播放| av线在线观看网站| 久久这里只有精品19| 蜜桃国产av成人99| 在线观看免费日韩欧美大片| 亚洲精品成人av观看孕妇| 在线看a的网站| 嫩草影院入口| 精品人妻熟女毛片av久久网站| 欧美少妇被猛烈插入视频| 国产野战对白在线观看| 又大又黄又爽视频免费| 18禁观看日本| 26uuu在线亚洲综合色| 麻豆精品久久久久久蜜桃| 纵有疾风起免费观看全集完整版| 在线 av 中文字幕| 国产成人精品无人区| 亚洲综合精品二区| 大陆偷拍与自拍| 久久 成人 亚洲| 另类亚洲欧美激情| 亚洲欧洲日产国产| 精品人妻在线不人妻| 日韩中文字幕视频在线看片| 亚洲图色成人| 成人国产麻豆网| 蜜桃国产av成人99| 亚洲天堂av无毛| 黄网站色视频无遮挡免费观看| 精品人妻偷拍中文字幕| 狂野欧美激情性bbbbbb| 精品人妻偷拍中文字幕| 一二三四在线观看免费中文在| 亚洲国产精品一区二区三区在线| 老司机影院成人| 丝袜美腿诱惑在线| 又黄又粗又硬又大视频| av.在线天堂| 久久精品国产综合久久久| 黄色一级大片看看| 高清不卡的av网站| 久久久久久久久久久免费av| xxxhd国产人妻xxx| 不卡视频在线观看欧美| 日本爱情动作片www.在线观看| 1024香蕉在线观看| 久久人人爽av亚洲精品天堂| 91精品三级在线观看| 国产精品一区二区在线不卡| av视频免费观看在线观看| 又粗又硬又长又爽又黄的视频| 天天躁狠狠躁夜夜躁狠狠躁| 日韩中文字幕视频在线看片| 美女午夜性视频免费| 色吧在线观看| 一个人免费看片子| 自拍欧美九色日韩亚洲蝌蚪91| 久久久国产欧美日韩av| 少妇的丰满在线观看| 伊人久久国产一区二区| 菩萨蛮人人尽说江南好唐韦庄| www.自偷自拍.com| 菩萨蛮人人尽说江南好唐韦庄| 日韩制服丝袜自拍偷拍| 亚洲av.av天堂| 九九爱精品视频在线观看| 日韩伦理黄色片| 国产精品蜜桃在线观看| 看非洲黑人一级黄片| 女人被躁到高潮嗷嗷叫费观| 国产国语露脸激情在线看| 三上悠亚av全集在线观看| 波多野结衣一区麻豆| 老汉色∧v一级毛片| 国产 一区精品| 婷婷成人精品国产| 久久精品亚洲av国产电影网| 亚洲精品中文字幕在线视频| 26uuu在线亚洲综合色| 国产欧美日韩一区二区三区在线| 久久这里只有精品19| 老熟女久久久| 亚洲成国产人片在线观看| 精品亚洲成国产av| av又黄又爽大尺度在线免费看| 国产一区有黄有色的免费视频| 爱豆传媒免费全集在线观看| 成年动漫av网址| 色哟哟·www| 精品人妻在线不人妻| 欧美少妇被猛烈插入视频| 另类亚洲欧美激情| 天堂8中文在线网| 国产探花极品一区二区| 男男h啪啪无遮挡| 看十八女毛片水多多多| 国产在视频线精品| 天天操日日干夜夜撸| av女优亚洲男人天堂| 交换朋友夫妻互换小说| 亚洲精品第二区| freevideosex欧美| 999精品在线视频| 99香蕉大伊视频| 在线亚洲精品国产二区图片欧美| 精品一区二区免费观看| 欧美精品高潮呻吟av久久| 精品午夜福利在线看| 久久国产精品男人的天堂亚洲| 又粗又硬又长又爽又黄的视频| 成年女人在线观看亚洲视频| 激情五月婷婷亚洲| 伦精品一区二区三区| 校园人妻丝袜中文字幕| 久久精品人人爽人人爽视色| 中文字幕精品免费在线观看视频| 午夜福利网站1000一区二区三区| 秋霞在线观看毛片| 日本色播在线视频| 国产深夜福利视频在线观看| 亚洲精品乱久久久久久| 久久这里有精品视频免费| 国产人伦9x9x在线观看 | 99九九在线精品视频| 香蕉丝袜av| 免费日韩欧美在线观看| 久久久亚洲精品成人影院| 韩国av在线不卡| 国产精品一国产av| 亚洲伊人色综图| 免费不卡的大黄色大毛片视频在线观看| 免费少妇av软件| 男女边吃奶边做爰视频| 欧美+日韩+精品| 国产av国产精品国产| 色94色欧美一区二区| av国产久精品久网站免费入址| 香蕉丝袜av| 国产片特级美女逼逼视频| a级毛片在线看网站| 国产精品国产三级国产专区5o| 男人操女人黄网站| 日日啪夜夜爽| 国产精品免费大片| 人人妻人人爽人人添夜夜欢视频| 国产精品久久久久久av不卡| 成年美女黄网站色视频大全免费| 免费黄色在线免费观看| 美女主播在线视频| 国产亚洲精品第一综合不卡| 国产精品欧美亚洲77777| 免费在线观看完整版高清| 日日爽夜夜爽网站| 精品人妻在线不人妻| 成人18禁高潮啪啪吃奶动态图| 国产在线视频一区二区| av电影中文网址| 男女免费视频国产| 日韩中文字幕欧美一区二区 | 欧美日韩成人在线一区二区| 成年av动漫网址| 亚洲成国产人片在线观看| 久久这里有精品视频免费| 黑人欧美特级aaaaaa片| 国产成人精品在线电影| av女优亚洲男人天堂| 欧美日韩成人在线一区二区| 国产一级毛片在线| 欧美精品一区二区免费开放| 亚洲精品成人av观看孕妇| 亚洲激情五月婷婷啪啪| 少妇人妻 视频| 少妇 在线观看| 亚洲第一区二区三区不卡| 热99国产精品久久久久久7| 女性生殖器流出的白浆| 国产成人a∨麻豆精品| 看免费成人av毛片| 欧美中文综合在线视频| 青春草视频在线免费观看| 国产激情久久老熟女| 妹子高潮喷水视频| 精品福利永久在线观看| 国产在视频线精品| 色94色欧美一区二区| 一二三四中文在线观看免费高清| 久久狼人影院| 国产97色在线日韩免费| 午夜精品国产一区二区电影| 汤姆久久久久久久影院中文字幕| 免费观看无遮挡的男女| 在线天堂中文资源库| 欧美精品国产亚洲| www.自偷自拍.com| 国产一区二区三区av在线| 成年人午夜在线观看视频| 国产精品av久久久久免费| 国产成人免费无遮挡视频| 看免费成人av毛片| 欧美精品av麻豆av| 宅男免费午夜| 在线观看国产h片| 伦精品一区二区三区| 9191精品国产免费久久| 男女啪啪激烈高潮av片| 中文字幕亚洲精品专区| 久久久久国产一级毛片高清牌| 18禁国产床啪视频网站| 国产免费一区二区三区四区乱码| 日韩人妻精品一区2区三区| 飞空精品影院首页| 777米奇影视久久| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产精品久久久久久精品古装| av片东京热男人的天堂| 国产精品国产av在线观看| 高清不卡的av网站| 天天操日日干夜夜撸| 黄色 视频免费看| 中文字幕色久视频| 亚洲,欧美,日韩| 日韩免费高清中文字幕av| freevideosex欧美| 亚洲少妇的诱惑av| 中文字幕最新亚洲高清| 亚洲人成77777在线视频| 亚洲欧美中文字幕日韩二区| 少妇被粗大猛烈的视频| 天天影视国产精品| 日本爱情动作片www.在线观看| 免费女性裸体啪啪无遮挡网站| 建设人人有责人人尽责人人享有的| 少妇人妻 视频| 久热这里只有精品99| 国产成人免费无遮挡视频| 边亲边吃奶的免费视频| 中文字幕制服av| 亚洲综合色网址| 国产在线视频一区二区| 国产片特级美女逼逼视频| 国产熟女午夜一区二区三区| 国产成人精品一,二区| 国产一区二区 视频在线| 丝袜美腿诱惑在线| 亚洲精品在线美女| 中国三级夫妇交换| 亚洲久久久国产精品| 欧美 亚洲 国产 日韩一| 久久精品亚洲av国产电影网| 亚洲国产毛片av蜜桃av| 久久久久久久精品精品| 国产免费福利视频在线观看| 亚洲国产欧美日韩在线播放| 国产男人的电影天堂91| 九草在线视频观看| 欧美日韩精品网址| 亚洲欧美成人综合另类久久久| 久热这里只有精品99| 亚洲成人手机| 亚洲人成电影观看| 女人高潮潮喷娇喘18禁视频| 亚洲国产精品一区三区| 免费观看av网站的网址| 久热久热在线精品观看| 免费久久久久久久精品成人欧美视频| 大香蕉久久网| 免费黄色在线免费观看| 国产97色在线日韩免费| 亚洲,欧美,日韩| 国产精品嫩草影院av在线观看| 69精品国产乱码久久久| 久久这里有精品视频免费| 嫩草影院入口| 久久99精品国语久久久| 亚洲国产毛片av蜜桃av| 亚洲 欧美一区二区三区| 亚洲av欧美aⅴ国产| 成年av动漫网址| 精品一区在线观看国产| 一级毛片黄色毛片免费观看视频| 老汉色∧v一级毛片| 亚洲精品国产一区二区精华液| 国产白丝娇喘喷水9色精品| 少妇 在线观看| 女人精品久久久久毛片| 久久精品国产亚洲av涩爱| 久久久久网色| 亚洲欧美成人综合另类久久久| 蜜桃在线观看..| 人妻人人澡人人爽人人| 男人操女人黄网站| 一区二区日韩欧美中文字幕| 亚洲婷婷狠狠爱综合网| 国产精品成人在线| 日本91视频免费播放| 91在线精品国自产拍蜜月| av网站免费在线观看视频| 亚洲国产精品国产精品| 欧美日韩视频高清一区二区三区二| 最近最新中文字幕大全免费视频 | 天堂俺去俺来也www色官网| 成人国语在线视频| 久久久久国产网址| 侵犯人妻中文字幕一二三四区| 亚洲一级一片aⅴ在线观看| 欧美日本中文国产一区发布| 最近的中文字幕免费完整| 中国三级夫妇交换| 黄色配什么色好看| 少妇熟女欧美另类| 国产精品人妻久久久影院| 女性生殖器流出的白浆| 日韩中文字幕欧美一区二区 | 久久久久久伊人网av| 99国产精品免费福利视频| 水蜜桃什么品种好| 日韩大片免费观看网站| 黄色一级大片看看| 麻豆精品久久久久久蜜桃| 欧美精品国产亚洲| 欧美最新免费一区二区三区| 国产无遮挡羞羞视频在线观看| 色哟哟·www| 夫妻性生交免费视频一级片| 亚洲av综合色区一区| 国产精品 欧美亚洲| 国产精品av久久久久免费| 中文字幕制服av| 一边亲一边摸免费视频| 精品人妻熟女毛片av久久网站|