• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Grid-Based Localization Mechanism with Mobile Reference Node in Wireless Sensor Networks

    2014-03-02 01:10:42KuoFengHuangPoJuChenandEmeryJou

    Kuo-Feng Huang, Po-Ju Chen, and Emery Jou

    Grid-Based Localization Mechanism with Mobile Reference Node in Wireless Sensor Networks

    Kuo-Feng Huang, Po-Ju Chen, and Emery Jou

    —Wireless sensor networks (WSNs) are based on monitoring or managing the sensing area by using the location information with sensor nodes. Most sensor nodes require hardware support or receive packets with location information to estimate their locations, which needs lots of time or costs. In this paper we proposed a localization mechanism using a mobile reference node (MRN) and trilateration in WSNs to reduce the energy consumption and location error. The simulation results demonstrate that the proposed mechanism can obtain more unknown nodes locations by the mobile reference node moving scheme and will decreases the energy consumption and average location error.

    Index Terms—Localization, mobile sensor node, received signal strength indicator, wireless sensor networks.

    1. Introduction

    Recently wireless sensor networks (WSNs)[1]-[3]are getting more and more convenient, and both applications and researches are becoming skillful. WSNs will deploy sensor nodes in the target area for monitoring and sensing the environmental information. Awareness of the accurate positions of the sensor nodes could improve the data transmission rate. Meanwhile, the deployment of sensor nodes in WSNs can be categorized into two cases which are random deployment and uniform deployment. In the random distribution case, we usually need other hardware or time costs to estimate the unknown sensor’s position. Furthermore, the costs will affect the accuracy of position estimated and induce the location error to be serious. Hence, the localization mechanism reducing the localization error is an important issue in WSNs[4],[5].

    The localization mechanisms can be classified as range-based and range-free approaches. Range-free approaches do not assume the availability or validity of distance information and only rely on the connectivity measurements of undetermined sensors to a number of seeds[1]. Having lower requirements on hardware, the accuracy and precision of range-free approaches are easily affected by the node densities and network conditions, which are often unacceptable for many WSN applications that demand precise localization. Range-based approaches calculate node distances based on some measured quantity[6], whereas they usually require extra hardware support; thus, they are expensive in terms of manufacturing costs and energy consumption. And how to reduce the extra costs becomes an important task to find out. When the sensor node position is estimated, the data transfer speed and other parameters needed to be optimized will have significant improvements.

    In this paper we proposed a mechanism using a mobile reference node (MRN) with the received signal strength indicator[7](RSSI) and trilateration in WSNs localization to reduce energy consumption and the location error. The rest of this paper is arranged as follows. Section 2 reviews some range-based and range-free approaches. The proposed MRN mechanism is described in Section 3. Section 4 presents the simulation results. Finally, the conclusions are drawn in Section 5.

    2. Related Work

    The mechanisms proposed to estimate sensor node positions in literature fall into two categories: range-free and range-based approaches.

    2.1 Range-Free Approaches

    In an approximate point-in-triangulation test (APIT)[6], some sensor nodes transmit signals with the global position system (GPS) in a high frequency or in other ways to obtain sensor nodes locations, which are called beacon. Each node estimates whether it resides inside or outside several triangular regions bounded by the beacons which are also called seeds, and hears and refines the computed location by overlapping such regions which are usually triangles. As an alternate solution, DV-Hop[8]only makes use of a constant number of seeds. Instead of single-hop broadcasting, seeds flood their locations throughout the network, maintaining a running hop count at each node along the path. Nodes calculate their positions based on the received seed locations, and the hop counts from the corresponding anchors and the average distance per hop through the trilateration method.

    2.2 Range-Based Approaches

    The time of arrival method (TOA) obtains the range information through signal propagation time[9], and the time-difference-of-arrival method (TDOA) estimates the node locations by utilizing the time differences among signals that are received from multiple senders[9]. As an extension of TOA and TDOA, the angle of arrival method (AOA) allows nodes to estimate the relative directions between neighbors by setting an antenna array for each node[10]. However, all those approaches require expensive hardware costs. RSSI is utilized to estimate the distance between two nodes with ordinary hardware[7]. Various theoretical or empirical models of radio signal propagation have been constructed to map absolute RSSI values into estimated distances. Recently, mobile-assisted localization approaches have been proposed to improve the efficiency of range-based approaches. The location of a sensor node can be calculated with the range measurements from the mobile node to itself.

    With the RSSI values from the mobile node to an unknown node in an ideal sense, the distance between other unknown nodes should be calculated according to the log-normal shadowing model in (1), which is widely used in the range-based localization approaches[7]:

    whereTPis the transmission power,is the path loss for a reference distance of0d,dis the actual distance between two nodes, and α is the path-loss exponent. The random variation in RSSI is expressed as a Gaussian random variableXσ=N(0,2σ). All values of power are given in decibels relative to 1 mW, and all distances are given in meters. α is set between 2 and 5. σ is set between 4 and 10, depending on the specific environment[7].

    3. Localization Mechanism with Mobile Reference Node

    The proposed mechanism can be divided into two phases: the node localization phase and mobile reference node moving direction decision phase. We assume that each unknown sensor node (USN) has its unique node ID and mark the upper left corner as the initial position of the mobile reference node. The trilateration[11]is used in this paper to calculate the unknown node location. The sink knows the length (defined asL) and width (defined asM) of the entire environment after the deployment of the sensor nodes. The length of each grid is defined as the transmission radiusRof the mobile reference node (MRN). Moreover, there are two parameters,kandp, which will be used to make the following decisions: 1) divide each virtual grid and tag an grid ID on each virtual grid; 2) determine the mobile reference node’s start position; 3) help MRN to set the first direction needed to turn. Andkandpare

    3.1 Node Localization Algorithm

    In this section, we present a node localization algorithm which contains two phases: a) MRN broadcast algorithm and b) sensor node localization algorithm.

    A. MRN Broadcast Algorithm

    As shown in Fig. 1, at first, MRN broadcasts a Wake_up beacon to wake up the USNs in the virtual grid. After that, MRN broadcasts an Initial_start signal and moves R/2. It will broadcast an Initial_stop signal and a Wake_up beacon again to wake up some USNs who have not woke in the first broadcast. Meanwhile, it will broadcast a Middle_start signal and start to move to the end point of a virtual grid’s length. When MRN moves to the end point, it will broadcast a Middle_stop signal which means that MRN has finished moving the length of the grid side. As shown in Fig. 2, it is a single virtual square broadcast. The Initial_stop signal and Middle_stop signal are used to notify the unknown sensor nodes that have already calculated coordinates to return the location coordinates to MRN. The start signal packet contains two fields: the Start_signal_flag and mobile node coordinate. The Start_signal_flag is used to indicate what kind of the signal type is.

    Fig. 1. MRN broadcast algorithm.

    Fig. 2. Single virtual square broadcast.

    However, USN may locate at the special regionxas shown in Fig. 3. The special region is determined by whether the value ofkis an odd value. The USN, located at the position ofx, can receive the start signal when MRNcome to (1) as shown in Fig. 3. USN makes a count on the number of received signals for executing the localization algorithm after receiving the first signal. Meanwhile, the sleeping control strategy is triggered when the USN does not receive any signal more than the threshold of time duration. When MRN moves to (2), it broadcasts the Wake_up beacon to ensure the USN can receive the Middle_start signal. Otherwise, if MRN moves to (3) and (4), it will broadcast an Exception_start signal for USN located at the special region, which can receive the third signal.

    Fig. 3. Special regions: (a) one edge situation (1), (b) one edge situation (2), (c) two edges situation, and (d) no edge situation

    B. Sensor Node Localization Algorithm

    As shown in Fig. 4, we give USNs a threshold time period to wait, defined as R_time which is greater than the moving time. We will make USNs wait for R_time before the USNs get into the sleep state until the Wake_up beacon is accepted in the next action. USNs will estimate its own location through the trilateration after it receives three signals and one end signal. When USN receives three signals, it will keep in the awaking state for receiving the end signal.

    Fig. 4. Sensor node localization algorithm.

    3.2 MRN Moving Direction Scheme

    We propose an MRN moving direction algorithm to determine the moving direction of MRN as shown in Fig. 5, which is divided into two cases: i)kis even and ii)kis odd. There are several variables is used to determine the moving direction here.Sis the special grid number which is equal to the biggest grid number of the next-to-last row. MD_cnt is the number of the rotation. N_cnt is the number of straight moving times.Nis used to determine whether MRN has to change the direction or not. Andtis used to set the direction of rotating (true: left turn, false: right turn).

    Fig. 5. MRN moving direction algorithm.

    A. When k Is Even

    Whenkis even, the MRN moving direction is determined according to the following procedures. Firstly,Swill be set as 1 if the value ofpis even. MRN will determine whether it has moved into the special grid or not through the value ofS. It will utilize MD_cnt and N_cnt to decide the moving direction as shown in Fig. 6.

    Fig. 6. MRN moving direction procedure when k is even.

    B. When k Is Odd

    Whenkis odd, the MRN moving direction is determined according to the following procedures. Firstly,Swill be set as 1 if the value ofpis even. MRN will determine whether it has moved into the special grid or not through the value ofS. It will utilize MD_cnt and N_cnt to decide the moving direction as shown in Fig. 7.

    Fig. 7. MRN moving direction procedure when k is odd.

    4. Simulation and Analysis

    In this section, we use NS2 vision 2.29 as the simulator to analyze the proposed localization mechanism. The simulation parameters are shown in Table 1[12]. We discuss the result in two aspects: i) average location error and ii) energy consumption. Four other RSSI-based localization approaches are compared, which are a range-based approach of trilateration (TRL)[7]and three mobile-assisted localization approaches that are PI[12](perpendicular intersection: locating wireless sensors with mobile beacon), BI[12](localization of WSNs with a mobile beacon), and MBBGC[13](localization with a mobile beacon based on geometric constraints in WSNs).

    Table 1: Parameter setting

    4.1 Average Location Error Analysis

    Six different environment sizes and the corresponding sensor nodes number are shown in Table 2.

    As shown in Fig. 8, PI has the similar performance with the proposed MRN method by continuously finding the strongest signal strength and using the triangulation method to achieve the lowest error rate. For the MBBGC, the error rate will increase when the environment size is increasing. The accuracy of MBBGC decreases due to the USNs located at the boundary of intersection or the random move of the mobile node.

    Table 2: Sensor nodes number

    Fig. 8. Average location error.

    4.2 Energy Consumption Analysis

    As shown in Fig. 9, the proposed MRN method has lower energy consumption than the others. PI needs to continuously broadcast to find the strongest signal strength for increasing the localization accuracy. The proposed method just needs to broadcast three signals for each edge of the reference node’s route. The proposed method can save significant energy consumption for signaling in this strategy than PI. Otherwise, the energy consumption is increasing due to the random moves of the mobile node when the environment size is increasing. The difference in energy consumption between MBBGC and MRN is 130000 mW when the environment size is 600 m2.

    As shown in Fig. 10, The proposed MRN method could save more energy consumption than the others when the environment size increases. The sleeping control mechanism of MRN could avoid the USNs wasting energy with a setting waiting threshold. Sensor nodes have to keep awaking before the mobile node receiving the coordinate information in both PI and MBBGC. The difference in energy consumption between MRN and PI is approximately 43000 mW and the difference between MRN and MBBGC is approximately 59000 mW when the size is 600 m2.

    Fig. 9. Mobile node energy consumption.

    Fig. 10. Unknown sensor nodes energy consumption.

    5. Conclusions and Future Work

    In WSNs, the throughput will be high when we can handle all sensor nodes’ locations in the whole environment. Nowadays, there are a lot of localization technologies restricted by the cost or the natural environment. Therefore, in some cases the location error can not be avoided. To reduce the location error we need to find other paths to make the breakthrough.

    In this paper, we propose a localization mechanism by using MRN with the RSSI method to estimate distances. Then we use the trilateration method to ensure the location more accuracy. The simulation results show that the mechanism we propose have smaller location errors compared with other methods. And in the energy consumption comparison, the proposed mechanism has a very significant reduction, whether in the mobile node or unknown nodes.

    In the future, we will improve our mechanism in the three-dimensional size of the environment, and overcome the obstacles in the moving path to make sure the moving algorithm can cover the whole environment.

    [1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey on sensor networks,” IEEE Communications Magazine, vol. 40, no. 8, pp. 102-114, 2002.

    [2] A. Panwar and S. A. Kumar, “Localization schemes in wireless sensor networks,” in Proc. of Int. Conf. on Advanced Computing & Communication Technologies, Rohtak, 2012, pp. 443-449.

    [3] U. Nazir, M. A. Arshad, N. Shahid, and S. H. Raza,“Classification of localization algorithms for wireless sensor networks: A survey,” in Proc. of Int. Conf. on Open Source Systems and Technologies, Lohore, 2012, pp. 1-5.

    [4] R. Garg, A. L. Varna, and M. Wu, “An efficient gradient descent approach to secure localization in resource constrained wireless sensor networks,” IEEE Trans. on Information Forensics and Security, vol. 7, no. 2, pp. 717-730, 2013.

    [5] H. Chenji and R. Stoleru, “Toward accurate mobile sensor network localization in noisy environments,” IEEE Trans. on Mobile Computing, vol. 12, no. 6, pp. 1094-1106, 2013.

    [6] T. He, C. Huang, B. M. Blum, J. A. Stankovic, and T. F. Abdelzaher, “Range-free localization schemes for large scale sensor networks,” ACM Trans. on Embedded Computing System, vol. 4, no. 4, pp. 877-906, 2005.

    [7] J. Hightower, G. Borriello, and R. Want, “SpotON: An indoor 3D location sensing technology based on RF signal strength,” M.S. thesis, Department of Computer Science and Engineering, University of Washington, Seattle, USA, 2000.

    [8] D. Niculescu and B. Nath, “DV-based positioning in ad hoc networks,” Kluwer J. Telecommunications System, vol. 22, no. 1, pp. 267-280, Jan. 2003.

    [9] K. D. Frampton, “Acoustic self-localization in a distributed sensor network,” IEEE Sensors Journal, vol. 6, no. 1, pp. 166-172, Feb. 2006.

    [10] F. Dai and J. Wu, “Efficient broadcasting in ad hoc wireless networks using directional antennas,” IEEE Trans. on Parallel and Distributed Systems, vol. 17, no. 4, pp. 335-347, Apr. 2006.

    [11] J. Sun, J. Yu, L. Zhu, D. Wu, and Y. Cao, “Construction of generalized ricci flow based virtual coordinates for wireless sensors network,” IEEE Sensors Journal, vol. 12, no. 6, pp. 2109-2112, Jan. 2012.

    [12] Z.-W. Guo, Y. Guo, F. Hong, Z.-K. Jin, Y. He, Y. Feng, and Y.-H. Liu, “Perpendicular intersection: locating wireless sensors with mobile beacon,” IEEE Trans. on Vehicular Technology, vol. 59, no. 7, pp. 3501-3509, Sep. 2010.

    [13] S. Lee, E. Kim, C. Kim, and K. Kim, “Localization with a mobile beacon based on geometric constraints in wireless sensor networks,” IEEE Trans. on Wireless Communications, vol. 8, no. 12, pp. 5801-5805, Dec. 2009.

    Kuo-Feng Huangwas born in Hsinchu in 1979. He received the M.S. and Ph.D. degrees from the Department of Computer Science and Information Engineering, Tamkang University, Taipei in 2007 and 2011, respectively. Presently, he is working at the Institute for Information Industry (III) as a section manager, Taipei. His major research interest is wireless networks.

    Po-Ju Chenwas born in Taichung in 1979. She received her M.S. degree from the Department of Computer Science and Information Engineering, National Cheng Kung University, Tainan in 2003. She is currently an engineer at the Institute for Information Industry (III), Taipei. Her research interests include wireless networks and embedded systems.

    Emery Jouwas born in Taoyuan in 1950. He received his B.S degree in physics from Tsing Hua University, Hsinchu, his M.S. degree in computer science from University of Texas at Austin, USA, and his Ph.D degree in computer science from University of Maryland at College Park, USA. Dr. Jou had been working at Wall Street, USA over 12 years (Morgan Stanley and JPMorganChase). He had also been working with Thales nCipher at Cambridge UK. In 2009, Dr. Jou was a visiting professor at College of Computer Science, Chiao Tung University, Hsinchu. He was also a consultant with the Industrial Technology Research Institute (ITRI). Dr. Jou is currently a research scientist at the Institute for Information Industry (III), Taipei. His research interests include wireless networks and in-memory computing.

    Manuscript received December 3, 2013; revised March 13, 2014.

    K.-F. Huang is with the Institute for Information Industry, Taipei 10622 (Corresponding author e-mail: sailerhuang@iii.org.tw).

    P.-J. Chen and E. Jou are with the Institute for Information Industry, Taipei 10622 (e-mail: cpoju@iii.org.tw; emeryjou@iii.org.tw).

    Color versions of one or more of the figures in this paper are available online at http://www.journal.uestc.edu.cn.

    Digital Object Identifier: 10.3969/j.issn.1674-862X.2014.03.008

    欧美老熟妇乱子伦牲交| 日本vs欧美在线观看视频| 国产片内射在线| videossex国产| 亚洲av综合色区一区| 一级爰片在线观看| 大香蕉久久网| 日韩av在线免费看完整版不卡| 国产精品人妻久久久影院| 一区二区三区四区激情视频| 777久久人妻少妇嫩草av网站| 极品少妇高潮喷水抽搐| 性高湖久久久久久久久免费观看| 亚洲国产精品一区二区三区在线| 日本vs欧美在线观看视频| 卡戴珊不雅视频在线播放| 成年人午夜在线观看视频| 午夜福利视频在线观看免费| 看十八女毛片水多多多| 91aial.com中文字幕在线观看| 黑人猛操日本美女一级片| a级毛片黄视频| 亚洲美女搞黄在线观看| 赤兔流量卡办理| 亚洲在久久综合| 国产一区二区三区综合在线观看| 欧美激情高清一区二区三区 | 国产午夜精品一二区理论片| 精品国产一区二区三区四区第35| 国产精品国产av在线观看| 伦精品一区二区三区| 亚洲成人av在线免费| 午夜福利网站1000一区二区三区| 老鸭窝网址在线观看| 免费高清在线观看视频在线观看| 69精品国产乱码久久久| 各种免费的搞黄视频| av一本久久久久| 亚洲,一卡二卡三卡| 99九九在线精品视频| 97精品久久久久久久久久精品| 性色av一级| av在线app专区| 日韩熟女老妇一区二区性免费视频| 亚洲色图 男人天堂 中文字幕| 搡老乐熟女国产| 777久久人妻少妇嫩草av网站| 久久狼人影院| 黄频高清免费视频| 日韩三级伦理在线观看| 99久久综合免费| 亚洲成人一二三区av| 亚洲第一青青草原| 只有这里有精品99| 两个人看的免费小视频| 99热全是精品| 18禁国产床啪视频网站| 国产精品国产三级专区第一集| 2018国产大陆天天弄谢| 欧美 亚洲 国产 日韩一| av在线app专区| 国产av码专区亚洲av| 日韩精品有码人妻一区| 久久国产亚洲av麻豆专区| 天天躁夜夜躁狠狠躁躁| 五月开心婷婷网| 国产极品粉嫩免费观看在线| 人人妻人人添人人爽欧美一区卜| 飞空精品影院首页| 十八禁网站网址无遮挡| 欧美日韩视频精品一区| 激情五月婷婷亚洲| 精品少妇一区二区三区视频日本电影 | 最近中文字幕高清免费大全6| 少妇 在线观看| 大香蕉久久网| 欧美亚洲 丝袜 人妻 在线| 欧美精品国产亚洲| 亚洲一区中文字幕在线| 精品人妻在线不人妻| 天天操日日干夜夜撸| 国产成人精品婷婷| 欧美日韩av久久| 在线观看免费视频网站a站| 国产免费福利视频在线观看| 亚洲欧洲日产国产| 国产精品国产三级国产专区5o| 国产又色又爽无遮挡免| 国产黄频视频在线观看| 久久久久久久久免费视频了| 美女视频免费永久观看网站| 岛国毛片在线播放| 菩萨蛮人人尽说江南好唐韦庄| 99九九在线精品视频| 午夜福利视频在线观看免费| 成人毛片60女人毛片免费| 大片电影免费在线观看免费| 欧美日韩精品网址| 久久毛片免费看一区二区三区| 男女边摸边吃奶| av天堂久久9| 国产无遮挡羞羞视频在线观看| 中文字幕人妻丝袜一区二区 | 一二三四中文在线观看免费高清| 18禁观看日本| 色网站视频免费| 国产97色在线日韩免费| 曰老女人黄片| 1024香蕉在线观看| 午夜av观看不卡| 日韩成人av中文字幕在线观看| 久久久久久久大尺度免费视频| 久久鲁丝午夜福利片| 26uuu在线亚洲综合色| 中文字幕av电影在线播放| 亚洲国产成人一精品久久久| 色网站视频免费| xxx大片免费视频| 亚洲欧美一区二区三区国产| 国产伦理片在线播放av一区| 69精品国产乱码久久久| av电影中文网址| 国产又爽黄色视频| 1024视频免费在线观看| 在线观看国产h片| 超碰成人久久| 免费少妇av软件| 交换朋友夫妻互换小说| 久久人人爽av亚洲精品天堂| 国产欧美日韩一区二区三区在线| 丝袜美腿诱惑在线| 欧美日韩亚洲国产一区二区在线观看 | 日产精品乱码卡一卡2卡三| 9色porny在线观看| 国产无遮挡羞羞视频在线观看| 性高湖久久久久久久久免费观看| 久久久久国产一级毛片高清牌| 欧美日韩av久久| 免费在线观看完整版高清| 波多野结衣一区麻豆| 高清不卡的av网站| 女人高潮潮喷娇喘18禁视频| 免费观看av网站的网址| 男女高潮啪啪啪动态图| 性色av一级| 色94色欧美一区二区| 十分钟在线观看高清视频www| 777久久人妻少妇嫩草av网站| 国产成人一区二区在线| 亚洲av成人精品一二三区| 夜夜骑夜夜射夜夜干| 国产xxxxx性猛交| 2022亚洲国产成人精品| 啦啦啦视频在线资源免费观看| 国产在线一区二区三区精| 永久网站在线| 久久久久人妻精品一区果冻| 在线亚洲精品国产二区图片欧美| 亚洲第一区二区三区不卡| 国产激情久久老熟女| 麻豆乱淫一区二区| 国产成人精品福利久久| av又黄又爽大尺度在线免费看| 久久久久精品性色| 精品少妇黑人巨大在线播放| 亚洲av.av天堂| 国产精品久久久久久精品电影小说| 人人妻人人爽人人添夜夜欢视频| 亚洲国产av影院在线观看| 老司机影院成人| 18禁国产床啪视频网站| 日本vs欧美在线观看视频| 国产精品99久久99久久久不卡 | 香蕉国产在线看| 王馨瑶露胸无遮挡在线观看| 精品人妻在线不人妻| av福利片在线| 99久国产av精品国产电影| 亚洲精品一二三| 免费播放大片免费观看视频在线观看| 久久午夜福利片| 国产精品香港三级国产av潘金莲 | 欧美精品一区二区大全| 青青草视频在线视频观看| 精品人妻一区二区三区麻豆| 精品人妻偷拍中文字幕| 日韩成人av中文字幕在线观看| 老女人水多毛片| 国产女主播在线喷水免费视频网站| 人人妻人人添人人爽欧美一区卜| 天天躁狠狠躁夜夜躁狠狠躁| 国产极品天堂在线| 国产成人免费无遮挡视频| 久久狼人影院| 最黄视频免费看| 久久国内精品自在自线图片| 国产成人一区二区在线| 各种免费的搞黄视频| 建设人人有责人人尽责人人享有的| 日韩熟女老妇一区二区性免费视频| 欧美日韩亚洲国产一区二区在线观看 | av片东京热男人的天堂| 97精品久久久久久久久久精品| 成人免费观看视频高清| 国产男女内射视频| 欧美 日韩 精品 国产| av.在线天堂| 成人18禁高潮啪啪吃奶动态图| 亚洲美女搞黄在线观看| 日韩一本色道免费dvd| 18禁观看日本| 成人毛片a级毛片在线播放| 校园人妻丝袜中文字幕| 成年女人在线观看亚洲视频| 中文字幕人妻熟女乱码| 亚洲国产色片| 国产白丝娇喘喷水9色精品| 久久久国产一区二区| 纯流量卡能插随身wifi吗| 亚洲av日韩在线播放| 91在线精品国自产拍蜜月| 亚洲三级黄色毛片| 婷婷色综合大香蕉| 欧美日韩av久久| 亚洲经典国产精华液单| 久久影院123| 91成人精品电影| 香蕉国产在线看| www日本在线高清视频| 99国产精品免费福利视频| 日韩三级伦理在线观看| 久久久久久久大尺度免费视频| 人成视频在线观看免费观看| 91精品国产国语对白视频| 成年女人在线观看亚洲视频| 精品久久久久久电影网| 啦啦啦啦在线视频资源| 大话2 男鬼变身卡| 高清不卡的av网站| 1024香蕉在线观看| 中文精品一卡2卡3卡4更新| 中文字幕亚洲精品专区| 视频在线观看一区二区三区| 天天躁日日躁夜夜躁夜夜| 国产精品不卡视频一区二区| 可以免费在线观看a视频的电影网站 | 国产乱人偷精品视频| 久久99精品国语久久久| 中文字幕精品免费在线观看视频| 不卡视频在线观看欧美| 多毛熟女@视频| 十八禁高潮呻吟视频| 国产精品成人在线| 国产 精品1| videosex国产| 丰满迷人的少妇在线观看| 国产精品麻豆人妻色哟哟久久| 婷婷色综合大香蕉| 人妻系列 视频| 国产成人精品久久久久久| 久久青草综合色| 久久婷婷青草| 18禁裸乳无遮挡动漫免费视频| 久热久热在线精品观看| 寂寞人妻少妇视频99o| 免费观看性生交大片5| 久久久精品免费免费高清| 亚洲国产av新网站| 婷婷成人精品国产| 这个男人来自地球电影免费观看 | 欧美精品高潮呻吟av久久| 看非洲黑人一级黄片| 韩国av在线不卡| 午夜福利在线观看免费完整高清在| 日韩成人av中文字幕在线观看| 成年女人在线观看亚洲视频| 桃花免费在线播放| 久久久久久人妻| 青草久久国产| 亚洲精品成人av观看孕妇| 久久人妻熟女aⅴ| 久久国产亚洲av麻豆专区| a级片在线免费高清观看视频| 日韩中文字幕视频在线看片| 亚洲国产成人一精品久久久| 成人手机av| 97人妻天天添夜夜摸| 国产有黄有色有爽视频| 嫩草影院入口| 亚洲精品美女久久久久99蜜臀 | 亚洲国产欧美在线一区| 韩国精品一区二区三区| 国产熟女午夜一区二区三区| 黄网站色视频无遮挡免费观看| 亚洲国产精品一区二区三区在线| 国语对白做爰xxxⅹ性视频网站| www.av在线官网国产| 久久久久人妻精品一区果冻| 日韩欧美一区视频在线观看| 午夜激情久久久久久久| 一个人免费看片子| 亚洲国产av新网站| 精品99又大又爽又粗少妇毛片| 久久精品亚洲av国产电影网| 女性被躁到高潮视频| 久久鲁丝午夜福利片| 搡老乐熟女国产| 亚洲精品久久成人aⅴ小说| 国产成人91sexporn| 热re99久久精品国产66热6| av网站免费在线观看视频| 人妻人人澡人人爽人人| 女性生殖器流出的白浆| 精品少妇久久久久久888优播| 蜜桃在线观看..| 欧美精品国产亚洲| 国产一区有黄有色的免费视频| 久久这里只有精品19| 国产精品久久久久久精品古装| 这个男人来自地球电影免费观看 | 午夜福利一区二区在线看| 日韩三级伦理在线观看| 一个人免费看片子| 最近最新中文字幕免费大全7| 天天躁夜夜躁狠狠躁躁| 少妇被粗大猛烈的视频| 女人被躁到高潮嗷嗷叫费观| 亚洲天堂av无毛| 九色亚洲精品在线播放| 成人亚洲精品一区在线观看| 啦啦啦在线免费观看视频4| 宅男免费午夜| 中文字幕最新亚洲高清| 精品国产一区二区三区四区第35| 少妇的丰满在线观看| 老熟女久久久| 久久精品久久久久久噜噜老黄| 婷婷成人精品国产| 男人操女人黄网站| 在线观看www视频免费| 亚洲精品久久久久久婷婷小说| 色婷婷久久久亚洲欧美| 亚洲av日韩在线播放| 高清欧美精品videossex| 国产av精品麻豆| 卡戴珊不雅视频在线播放| 看免费成人av毛片| 中文精品一卡2卡3卡4更新| 一个人免费看片子| 中文字幕色久视频| 日本91视频免费播放| 日本wwww免费看| 久久久久久人人人人人| 国产欧美日韩综合在线一区二区| 晚上一个人看的免费电影| 一区二区三区精品91| 麻豆乱淫一区二区| 青草久久国产| 热re99久久精品国产66热6| 超色免费av| 少妇熟女欧美另类| 免费高清在线观看视频在线观看| 国产精品一二三区在线看| 午夜日本视频在线| 黄网站色视频无遮挡免费观看| 国产精品国产三级专区第一集| 亚洲精品成人av观看孕妇| 亚洲精品日韩在线中文字幕| 免费黄色在线免费观看| 只有这里有精品99| 99香蕉大伊视频| 亚洲国产精品一区二区三区在线| 天堂8中文在线网| 亚洲三级黄色毛片| 国产精品欧美亚洲77777| 亚洲欧美色中文字幕在线| 女人精品久久久久毛片| 久久久国产欧美日韩av| 中文精品一卡2卡3卡4更新| 国产免费又黄又爽又色| √禁漫天堂资源中文www| 日韩欧美一区视频在线观看| 国产高清国产精品国产三级| 人妻一区二区av| 观看美女的网站| 亚洲在久久综合| 人人妻人人添人人爽欧美一区卜| 黄色一级大片看看| 久久午夜福利片| 99国产综合亚洲精品| 夜夜骑夜夜射夜夜干| 成年美女黄网站色视频大全免费| 下体分泌物呈黄色| 国产极品天堂在线| 丝袜在线中文字幕| 观看av在线不卡| 免费黄网站久久成人精品| 亚洲欧美成人综合另类久久久| 中文字幕制服av| 视频区图区小说| 免费黄网站久久成人精品| 亚洲国产av影院在线观看| 精品亚洲成a人片在线观看| 亚洲成国产人片在线观看| 免费少妇av软件| 欧美日韩亚洲国产一区二区在线观看 | 免费在线观看黄色视频的| 九九爱精品视频在线观看| 日本wwww免费看| 国产亚洲精品第一综合不卡| 国产亚洲欧美精品永久| 午夜福利一区二区在线看| 亚洲av电影在线观看一区二区三区| 国产精品国产av在线观看| 丰满乱子伦码专区| 久久av网站| 国产成人av激情在线播放| 亚洲久久久国产精品| 日日爽夜夜爽网站| 精品国产乱码久久久久久男人| 中文字幕精品免费在线观看视频| 精品人妻偷拍中文字幕| 亚洲成人一二三区av| 99热国产这里只有精品6| 国产在线一区二区三区精| 成人国语在线视频| 男女无遮挡免费网站观看| av一本久久久久| 欧美人与善性xxx| 啦啦啦视频在线资源免费观看| 国产精品一区二区在线观看99| 天天躁日日躁夜夜躁夜夜| 大话2 男鬼变身卡| 麻豆乱淫一区二区| 国产欧美日韩综合在线一区二区| tube8黄色片| 国产亚洲午夜精品一区二区久久| 亚洲在久久综合| 天美传媒精品一区二区| 久久久久久久久久人人人人人人| 亚洲一区中文字幕在线| 久久精品亚洲av国产电影网| 久久精品国产亚洲av天美| 亚洲国产av影院在线观看| 午夜影院在线不卡| 黑人猛操日本美女一级片| 亚洲,欧美,日韩| av国产精品久久久久影院| 久久久国产精品麻豆| 久久精品国产综合久久久| 男女免费视频国产| 天堂俺去俺来也www色官网| 欧美日韩精品成人综合77777| 亚洲少妇的诱惑av| 中文字幕人妻熟女乱码| 热re99久久精品国产66热6| 免费高清在线观看视频在线观看| 九色亚洲精品在线播放| 欧美精品人与动牲交sv欧美| 国产精品嫩草影院av在线观看| 黄频高清免费视频| 一边摸一边做爽爽视频免费| 五月伊人婷婷丁香| 久久久国产欧美日韩av| 久久ye,这里只有精品| 久久鲁丝午夜福利片| 一本久久精品| 18在线观看网站| 狠狠精品人妻久久久久久综合| 日本wwww免费看| 美女午夜性视频免费| 日韩av免费高清视频| 伦精品一区二区三区| 精品卡一卡二卡四卡免费| 亚洲欧美精品自产自拍| 亚洲欧美日韩另类电影网站| 免费播放大片免费观看视频在线观看| 日韩视频在线欧美| 在线观看国产h片| 性高湖久久久久久久久免费观看| 国产片特级美女逼逼视频| 午夜日本视频在线| 日韩制服丝袜自拍偷拍| 中文精品一卡2卡3卡4更新| 亚洲,欧美精品.| 国产1区2区3区精品| 亚洲欧美精品自产自拍| 啦啦啦啦在线视频资源| 色吧在线观看| 久久亚洲国产成人精品v| 高清不卡的av网站| 国产成人精品无人区| 国产无遮挡羞羞视频在线观看| 99热网站在线观看| 人妻 亚洲 视频| 啦啦啦在线免费观看视频4| 成年美女黄网站色视频大全免费| 日韩一区二区三区影片| 免费播放大片免费观看视频在线观看| 男人添女人高潮全过程视频| 日本av手机在线免费观看| 成人亚洲欧美一区二区av| a级毛片黄视频| 亚洲天堂av无毛| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲国产精品一区三区| 国产有黄有色有爽视频| 一区二区三区激情视频| 成人国产av品久久久| 精品酒店卫生间| 女性被躁到高潮视频| 亚洲色图 男人天堂 中文字幕| 久久久国产欧美日韩av| 9色porny在线观看| 欧美日韩一区二区视频在线观看视频在线| 日韩中文字幕欧美一区二区 | 婷婷色综合大香蕉| 精品一区二区三卡| 亚洲av电影在线观看一区二区三区| 亚洲人成77777在线视频| 狂野欧美激情性bbbbbb| 又大又黄又爽视频免费| 国产精品麻豆人妻色哟哟久久| 两个人看的免费小视频| 中文字幕另类日韩欧美亚洲嫩草| 麻豆精品久久久久久蜜桃| 国产精品秋霞免费鲁丝片| 两个人免费观看高清视频| 91精品伊人久久大香线蕉| 一级片免费观看大全| 国产精品蜜桃在线观看| 2018国产大陆天天弄谢| av有码第一页| 国产 精品1| 成人国产麻豆网| 欧美在线黄色| 高清不卡的av网站| 一级片免费观看大全| 久久人人97超碰香蕉20202| 亚洲精品国产一区二区精华液| 黄色配什么色好看| 黄色视频在线播放观看不卡| 精品国产乱码久久久久久小说| 一区福利在线观看| 91精品伊人久久大香线蕉| 日韩av在线免费看完整版不卡| 亚洲伊人色综图| 一级片'在线观看视频| 欧美日本中文国产一区发布| 热99国产精品久久久久久7| 91aial.com中文字幕在线观看| 一级爰片在线观看| 亚洲 欧美一区二区三区| 亚洲av日韩在线播放| 久久久久久人人人人人| 欧美国产精品一级二级三级| av有码第一页| 秋霞在线观看毛片| 亚洲一级一片aⅴ在线观看| 99re6热这里在线精品视频| 夜夜骑夜夜射夜夜干| 亚洲熟女精品中文字幕| 日韩精品免费视频一区二区三区| 国精品久久久久久国模美| 满18在线观看网站| 丝袜在线中文字幕| 午夜久久久在线观看| 久久久国产精品麻豆| 韩国av在线不卡| 一本色道久久久久久精品综合| 久久精品国产亚洲av涩爱| 亚洲一区中文字幕在线| 久久久精品国产亚洲av高清涩受| a级片在线免费高清观看视频| 欧美人与性动交α欧美软件| 国产精品一国产av| 精品一品国产午夜福利视频| 午夜福利视频精品| 18在线观看网站| 国产一区有黄有色的免费视频| 免费观看性生交大片5| 一级片免费观看大全| 新久久久久国产一级毛片| 青青草视频在线视频观看| 永久免费av网站大全| 18禁观看日本| 久久久久人妻精品一区果冻| 亚洲欧美精品自产自拍| 成年av动漫网址| 91久久精品国产一区二区三区| 大陆偷拍与自拍| 国产成人欧美| 日本黄色日本黄色录像| 啦啦啦视频在线资源免费观看| 在线天堂最新版资源| 一区二区三区激情视频| 久久久国产一区二区| 欧美最新免费一区二区三区| 麻豆精品久久久久久蜜桃| 欧美精品国产亚洲| 久久精品人人爽人人爽视色| 国产精品一二三区在线看| 午夜激情久久久久久久| 亚洲av电影在线进入| 国产无遮挡羞羞视频在线观看| 午夜久久久在线观看| 丝袜美腿诱惑在线| 女的被弄到高潮叫床怎么办| 国产人伦9x9x在线观看 | 三级国产精品片| 中文字幕色久视频| 久久精品人人爽人人爽视色| 丰满饥渴人妻一区二区三| 日本猛色少妇xxxxx猛交久久| 精品国产露脸久久av麻豆|