• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High Power, Room Temperature Terahertz Emitters Based on Dopant Transitions in 6H-Silicon Carbide

    2014-03-02 01:10:35JamesKolodzeyGuangChiXuanPengChengLvNathanSustersicandXinMa

    James Kolodzey, Guang-Chi Xuan, Peng-Cheng Lv, Nathan Sustersic, and Xin Ma

    High Power, Room Temperature Terahertz Emitters Based on Dopant Transitions in 6H-Silicon Carbide

    James Kolodzey, Guang-Chi Xuan, Peng-Cheng Lv, Nathan Sustersic, and Xin Ma

    —Electrically pumped high power terahertz (THz) emitters that operated above room temperature in a pulse mode were fabricated from nitrogen-doped n-type 6H-SiC. The emission spectra had peaks centered on 5THz and 12THz (20meV and 50meV) that were attributed to radiative transitions of excitons bound to nitrogen donor impurities. Due to the relatively deep binding energies of the nitrogen donors, above 100meV, and the high thermal conductivity of the SiC substrates, the THz output power and operating temperature were significantly higher than previous dopant based emitters. With peak applied currents of a few amperes, and a top surface area of 1mm2, the device emitted up to 0.5mW at liquid nitrogen temperature (77K), and tens of microwatts up to 333K. This result is the highest temperature of THz emission reported from impuritybased emitters.

    Index Terms—Intracenter radiative transitions, semiconductor devices, silicon carbide, terahertz emitting devices, wide band gap semiconductors.

    1. Introduction

    In recent years, new applications in terahertz (THz) communication, imaging, medicine, remote sensing, and spectroscopy have initiated huge research interests in THz devices[1]-[3]. There are few sources, however, which emit in the THz frequency range (1 THz-10 THz) and are suitable for compact, portable, and low cost applications. Powerful terahertz sources were desired, especially with higher operating temperatures that could, in principle, operate without cryogenics. There has been considerable interest in THz emitters based on doped semiconductors, such as impurity-doped Si[4]-[7], impurity-doped Ge[8]-[10], and impurity-doped SiC[11]-[13]. These impurity-based devices emit THz frequencies by a mechanism of intracenter radiative transitions in hydrogenic dopant states[14]. The operating temperatures of such devices were limited, however, by the relatively low ionization energies of the dopants compared with the thermal energykBT[14]. For example, boron in Si has an ionization energy of 45 meV, and at temperatures above 130 K, most of the holes would be excited into the valence band and unavailable for radiative transitions. For Si-based impurity emitters with boron dopants, the highest reported operating temperature was 118 K[7]. Alternative elements with deeper binding energies, however, may be able to achieve higher operating temperatures. For example, Lvet al.[12]reported THz emission at 150 K from a nitrogen-doped 4H-SiC device. The nitrogen donor in 4H-SiC has ionization energies of 52.1 meV for theh-site (hexagonal) and 91.8 meV for thek-site (cubic)[15]. Nitrogen in 6H-SiC, as described here, has deeper ionization energies of 81 meV for theh-site, 137.6 meV for thek1-site, and 142.4 meV for thek2-site[16]. In addition, the high thermal conductivity of silicon carbide enables it to sustain high drive currents with less heating, which would depopulate the excited states, as explained elsewhere[14]. In this report, we describe THz emission from nitrogen doped 6H-SiC devices that operate at much higher temperature than previous SiC THz emitters.

    2. Experiment

    The THz devices were fabricated from a 625 μm thick double-sided polished n-type 6H-SiC wafer of 0.1 Ohm resistivity (at room temperature), which was predominantly doped with 1018cm-3Nitrogen donors. Compensating dopants included 1016cm-3Boron and 1015cm-3Aluminum, as indicated in the Secondary Ion Mass Spectrometry (SIMS) profile shown in Fig. 1 (a), measured by the Evans Analytical Group. For device fabrication, wafer pieces were RCA cleaned, followed by contact photolithography to define a mesh-shaped metal contact pattern in the photoresist with 80 μm lines and spaces, for a 50% shading factor, as shown in Fig. 1 (b). The metal contacts weredeposited by the e-beam evaporation of Ti/Au (10 nm/300 nm), on both the front and back of the samples. After photoresist lift-off, the samples were cut into 1×1 mm2and 2×2 mm2dices, and then mounted onto a copper block heat sink using low temperature epoxy with high electrical and thermal conductivity. Fig. 1 (b) shows a close-up photo of two devices fabricated on a die, with one device wire-bonded to a soldering pad. The copper heat sink was attached to the cold finger of a liquid nitrogen-cooled cryostat (forT≥77 K) with a high density polyethylene (HDPE) optical window, transparent to wavelengths longer than about 17 μm. The device temperatures reported here were of the heat sink measured with a platinum resistor. During the current pulses, the temperature of the active portion of the actual device could be as much as 50 K higher than the heat sink, according to our calculations and to reports by Kumaret al.[17]. The emission spectra were measured using a Thermo Nicolet Nexus 870 Fourier transform infra-red (FTIR) spectrometer operated in the step scan mode, and equipped with a liquid helium-cooled silicon bolometer detector made by IRLabs. An Agilent electrical pulse generator was used to drive the samples with sub-microsecond pulse trains. The applied current on the device was measured using an inductive current probe and an oscilloscope. An EG&G Princeton Applied Research Model 5209 lock-in amplifier was used to synchronously detect the signals from the bolometer.

    Fig. 1. Wafer dopant concentrations and device configuration: (a) SIMS depth profile of dopant concentrations for the 6H-SiC wafer used in this paper and (b) photomicrograph of a typical 1×2 mm2SiC die with two 1×1 mm2devices fabricated on it. One of the devices was wire-bonded to a gold contact pad (at bottom).

    3. Results and Discussion

    Intense electroluminescence (EL) was observed over the spectral range from 2 THz to 13 THz, which increased in intensity with a peak pumping current as shown in Fig. 2 (a). Two families of spectral peaks were centered around 4.7 THz and 12 THz, with internal fine structures that were resolved at higher currents. Fig. 2 (b) shows the emission spectra over a temperature range from 77 K to 333 K, at the same pumping current of 3 A. As the heat sink temperature increased from 90 K to 150 K, the two emission features around 4.7 THz and 12 THz broadened and merged, and additional peaks appeared at intermediate frequencies. The devices continued to emit in the pulse mode at temperatures up to 333 K (60°C), which is the highest emission temperature reported for any dopant based terahertz emitter of which we are aware.

    Fig. 2. Electroluminescent spectra under different pumping conditions: (a) emitted spectra from N-doped 6H-SiC device with indicated current pulse heights at 77 K, and (b) emission from the THz device at different temperatures with fixed peak pumping current of 3 A. The vertical scale has been varied and offset to help identify the emission features.

    Terahertz emission from dopant based devices is typically associated with hydrogenic transitions, for example from 2p→1sstates. The THz emission energies from the 6H-SiC devices were observed to be around 20 meV and 46 meV, however, and were unlikely to be from transitions between nitrogen states because the minimum energy separation betweenp-states ands-states is 59 meV from theh-site 2p0→1stransition[16]. This observation suggests that the THz emission might not originate from hydrogenic radiative transitions among impurity states. On the other hand, the THz emission peaks matched very well with the spectral peaks obtained from low-temperature photoluminescence excitation (PLE) spectroscopy[18]on 6H-SiC materials with similar nitrogen doping, which wereassociated with nitrogen-bound excitons. Thus it was reasonable to attribute the observed THz emission to intra-excitonic transitions.

    Fig. 3 shows the emitted power versus temperature from 77 K to 333 K for applied current pulses with a 3 A peak value. The emitted power dropped steeply from 526 μW at 77 K to 249 μW at 90 K, and then more gradually decreased to 49 μW at 333 K, implying that two thermal activation energies were involved. The inset to Fig. 3 shows the calculated percentage of neutral (freeze-out) nitrogen donors versus temperature. Below ~90 K, most of the nitrogen donors were occupied by electrons. The reason for the reduction in emitted power above 77 K is uncertain, but is attributed to donor ionization. Due to thermal ionization as the temperature increased, fewer excitons were bound to the donor states, which reduced the output power of the device, and the emitted power tended to follow the carrier occupation as shown in the inset to Fig. 3.

    Fig. 3. Emitted power versus temperature at uniform 3 A peak pumping current. The inset shows the calculated neutral (freeze-out) nitrogen donor percentage versus temperature. Above 100 K, the trend of decease in emitted power versus temperature followed the dependence of donor occupation with temperature.

    Although the applied current pulse duty cycle was intentionally kept low (<0.1%) to reduce local heating, the broad spectra above 150 K may contain contributions from blackbody radiation. To determine if the spectra were from electrically pumped dopant based transitions, a series of current and temperature dependent measurements was performed. Fig. 3 shows that the THz emission intensity was observed to decrease with increasing temperatures with fixed 3 A current pulses, whereas the blackbody emission should increase proportionally toT4(Tis the blackbody temperature). In addition, if the emitted power was due to thermal heating, it should increase roughly withI2(Iis the pumping current). As shown in Fig. 4 of the emitted power versus pumping current, however, at 210 K the power exhibited weakI2components (curve bending slightly upwards), which meant that there may be thermal blackbody components. Finally, the total radiated power in the range from 1 THz to 15 THz for a blackbody of the size of our device at 333 K was calculated to be less than 8 μW, whereas our device emitted about 50 μW at 333 K, confirming that the emission peaks were associated with the applied current pulses and not to steady state residual heat from the device. Thus the emission spectra presented in this paper were attributed primarily to dopant-based transitions. It may be however, that the peak current modulated the device temperature, which contributed slightly to blackbody emission.

    Fig. 4. Emitted power integrated over the THz spectral range from 2 THz to 15 THz versus peak applied pumping current at the indicated device heat sink temperatures of 77 K, 90 K, and 210 K.

    The spectral response of the FTIR was calibrated with an external variable-temperature, recessed-cone blackbody radiator. Fig. 4 shows the emitted power versus pumping current at three different temperatures. At 77 K, the emitted power first increased with the current but then decreased when the current was above 4 A. This trend with the current was similar to that observed for the THz emission from 4H-SiC[12]. It may be that the combined higher applied field, current, and heating increased the probability for the bound carriers to be freed from the impurities, thus reducing the bound exciton population, and hence reducing the emission intensity.

    4. Conclusion

    In summary, a powerful THz emitter that operated above room temperature in the pulsed mode was fabricated from nitrogen doped n-type 6H-SiC. The emission spectra had peaks in the range from 2 THz to 13 THz, which were attributed to radiative bound exciton transitions associated with the nitrogen donor impurities. A 1×1×0.6 mm3size device was capable of emitting more than 500 μW of power at 77 K, and 49 μW at 333 K. This result is the highest recorded power and highest operating temperature among impurity-based THz emitters. The power density at 77 K corresponded to 50 mW·cm-2, which is suitable for a wide range of THz device applications.

    Acknowledgment

    Special thanks to Alex Andrianov, James Choyke, R. Chris Clark, Matthew Coppinger, Gregory DeSalvo, Joseph Gigante, Keith Goossen, Tanya Paskova, Dimitris Pavlidis, Adrian Powell, Steven Saddow, John Zavada, and John Zolper for useful discussions and important contributions.

    [1] T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, and M. Koch, “Audio signal transmission over THz communication channel using semiconductor modulator,” Electron. Lett., vol. 40, no. 2, pp. 124-126, Jan. 2004.

    [2] T. L?ffler, T. May, C. am Weg, A. Alcin, B. Hils, and H. G. Roskos, “Continuous-wave terahertz imaging with a hybrid system,” Appl. Phys. Lett., vol. 90, no. 9, pp. 091111, Mar. 2007.

    [3] E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D. Appl. Phys., vol. 39, no. 17, pp. 301-310, Sep. 2006.

    [4] T. N. Adam, R. T. Troeger, S. K. Ray, P.-C. Lv, and J. Kolodzey, “Terahertz electroluminescence from borondoped silicon devices,” Appl. Phys. Lett., vol. 83, no. 9, pp. 1713, Aug. 2003.

    [5] P.-C. Lv, R. T. Troeger, T. N. Adam, S. Kim, J. Kolodzey, I. N. Yassievich, M. A. Odnoblyudov, and M. S. Kagan,“Electroluminescence at 7 terahertz from phosphorus donors in silicon,” Appl. Phys. Lett., vol. 85, no. 1, pp. 22, Jun. 2004.

    [6] P.-C. Lv, R. T. Troeger, S. Kim, S. K. Ray, K. W. Goossen, J. Kolodzey, I. N. Yassievich, M. A. Odnoblyudov, and M. S. Kagan, “Terahertz emission from electrically pumped gallium doped silicon devices,” Appl. Phys. Lett., vol. 85, no. 17, pp. 3660, Oct. 2004.

    [7] G. Xuan, S. Kim, M. Coppinger, N. Sustersic, J. Kolodzey, and P.-C. Lv, “Increasing the operating temperature ofboron doped silicon terahertz electroluminescence devices,” Appl. Phys. Lett., vol. 91, no. 6, pp. 061109, Aug. 2007.

    [8] S. Salomon and H. Fan, “Far-infrared recombination emission in n-Ge and p-InSb,” Phys. Rev. B, vol. 1, no. 2, pp. 662-671, Jan. 1970.

    [9] S. Thomas and H. Fan, “Far-infrared recombination radiation from n-type Ge and GaAs,” Phys. Rev. B, vol. 9, no. 10, pp. 4295-4305, May 1974.

    [10] A. V. Andrianov, A. O. Zakhar’in, I. N. Yassievich, and N. N. Zinov’ev, “Terahertz electroluminescence under conditions of shallow acceptor breakdown in germanium,” J. Exp. Theor. Phys. Lett., vol. 79, no. 8, pp. 365-367, Apr. 2004.

    [11] A. V. Andrianov, J. P. Gupta, J. Kolodzey, V. I. Sankin, A. O. Zakhar’in, and Y. B. Vasilyev, “Current injection induced terahertz emission from 4H-SiC p-n junctions,”Appl. Phys. Lett., vol. 103, no. 22, pp. 221101, Nov. 2013.

    [12] P.-C. Lv, X. Zhang, J. Kolodzey, and A. Powell, “Compact electrically pumped nitrogen-doped 4H-SiC terahertz emitters operating up to 150 K,” Appl. Phys. Lett., vol. 87, no. 24, pp. 241114, Dec. 2005.

    [13] G. Xuan, P.-C. Lv, X. Zhang, J. Kolodzey, G. DeSalvo, and A. Powell, “Silicon carbide terahertz emitting devices,” J. Electron. Mater., vol. 37, no. 5, pp. 726-729, Jan. 2008.

    [14] J. Kolodzey and J. P. Gupta, “Terahertz emitters based on intracenter transitions in semiconductors,” in SPIE Optical Engineering + Applications, San Diego, 2013, pp. 88460E.

    [15] W. G?tz, A. Sch?ner, G. Pensl, W. Suttrop, W. J. Choyke, R. Stein, and S. Leibenzeder, “Nitrogen donors in 4H-silicon carbide,” J. Appl. Phys., vol. 73, no. 7, pp. 3332, Apr. 1993.

    [16] W. Suttrop, G. Pensl, W. J. Choyke, R. Stein, and S. Leibenzeder, “Hall effect and infrared absorption measurements on nitrogen donors in 6H-silicon carbide,” J. Appl. Phys., vol. 72, no. 8, pp. 3708, Oct. 1992.

    [17] S. Kumar, B. S. Williams, S. Kohen, Q. Hu, and J. L. Reno,“Continuous-wave operation of terahertz quantum-cascade lasers above liquid-nitrogen temperature,” Appl. Phys. Lett., vol. 84, no. 14, pp. 2494, Apr. 2004.

    [18] T. Egilsson, I. G. Ivanov, A. Henry, and E. Janzén,“Excitation spectra of nitrogen bound excitons in 4H- and 6H-SiC,” J. Appl. Phys., vol. 91, no. 4, pp. 2028, Feb. 2002.

    James Kolodzeywas born in Philadelphia, Pennsylvania in the USA in 1950. He received the Ph.D. degree in electrical engineering from Princeton University in Princeton, New Jersey in 1986 for research on silicon germanium alloys.

    From 1986 to 1990, he was an assistant professor of electrical engineering at the University of Illinois at Urbana-Champaign where he established laboratories for the cryogenic studies of high frequency devices and the fabrication of devices by molecular beam epitaxy. Since 1991, he has been in the Department of Electrical and Computer Engineering at the University of Delaware, in Newark, Delaware in the USA, where he is currently the Charles Black Evans Professor of Electrical Engineering. He has over 130 publications in refereed journals and over 100 conference publications. His research interests include: the fabrication and characterization of high frequency optical and electronic devices; the properties of terahertz sources and detectors; silicon-germanium-tin-carbon materials for infrared optoelectronics; quantum dot devices; spintronic devices, alternative gate dielectrics for CMOS; and interfaces between biological materials and semiconductors.

    Prof. Kolodzey is a Senior Member of the Institute of Electrical and Electronic Engineers, has several patents, served as chair of conferences, and received awards for research contributions.

    Guang-Chi Xuanwas born in Guangdong, China in 1977. He received the B.S. degree from Tsinghua University, Beijing in 2000 and the Ph.D. degree from the University of Delaware, Newark, DE in 2007, both in electrical engineering. He is currently with the Silicon Systems Group at Applied Materials Inc. in Santa Clara, CA working on Etch products.

    Peng-Cheng Lvwas born in Hubei, China in 1977. He received the B.S. degree in materials science&engineering from South China University of Technology in 1999, the M.S. degree in advanced materials for micro-&nano-systems from the Singapore-M.I.T. Alliance in 2001, and the Ph.D. degree in electrical engineering from the University of Delaware, USA in 2005. His research interests include novel optoelectronic materials, devices, and sensors.

    Nathan Sustersicwas born in Cleveland, Ohio, USA in 1981. He received the B.E.E (2003), M.S. (2005), and Ph.D. (2009) degrees in electrical engineering from the University of Delaware, Newark. He is currently a Process Technology Development Engineer at Intel Corporation, in Hillsboro, Oregon, focusing on the research and development of CVD and ALD thin films for future generation microprocessor fabrication technology. His other areas of expertise include Group IV Molecular Beam Epitaxy for the fabrication of optoelectronic devices as well as low bandgap solar cell structures for multijunction solar cells.

    Xin Mawas born in Hebei, China. She received the Ph.D. degree in electrical and computer engineering from the University of Delaware, Newark, DE in 2014 for research of solution processed organic and nano-material based novel light emitting devices. She is currently working as a postdoc researcher at University of Delaware, focusing on germanium-tin optoelectronic device fabrication and characterization. Her research interests include novel semiconductor materials, quantum dot devices, organic electronics, and material characterization.

    Dr. Ma has served as a committee member for Women in Engineering at University of Delaware, and received several awards including Graduate Dissertation Fellowship, Graduate Faculty Award, and etc.

    Manuscript received September 15 2014; revised September 16, 2014. This work was supported by the NSF Award No. DMR-0601920, and by ONR Contract No. N0001-4-00-1-0834.

    J. Kolodzey is with Electrical & Computer Engineering Department, University of Delaware, Newark, DE 19716, USA (Corresponding author e-mail:kolodzey@udel.edu).

    G.-C. Xuan is with Applied Materials Inc., Santa Clara, CA 95054, USA (e-mail: gc.xuan@gmail.com).

    P.-C. Lv is with AlphaSense, Inc., Wilmington, DE 19809, USA (e-mail: pengcheng@alphasense.net).

    N. Sustersic is with Intel Corporation, Hillsboro, OR 97214, USA (e-mail: natrons@gmail.com).

    X. Ma is with Electrical & Computer Engineering Department, University of Delaware, Newark, DE 19716, USA (e-mail: xinma@udel.edu).

    Digital Object Identifier: 10.3969/j.issn.1674-862X.2014.03.002

    精品一区二区三区av网在线观看| 亚洲精品美女久久av网站| 国产亚洲欧美在线一区二区| 1024手机看黄色片| 免费看日本二区| 午夜久久久久精精品| 亚洲专区字幕在线| 国产一级毛片七仙女欲春2| 嫩草影视91久久| 亚洲av美国av| 国产亚洲av嫩草精品影院| 99热这里只有精品一区 | bbb黄色大片| 国产在线精品亚洲第一网站| 亚洲 欧美 日韩 在线 免费| 精品国产美女av久久久久小说| 99热只有精品国产| 在线免费观看的www视频| 特级一级黄色大片| 久久 成人 亚洲| 国产成人精品久久二区二区免费| 久久久精品大字幕| 亚洲av片天天在线观看| 亚洲av成人精品一区久久| 亚洲欧洲精品一区二区精品久久久| 久久草成人影院| 女警被强在线播放| 亚洲成av人片免费观看| 久久久久久久精品吃奶| 欧美黑人巨大hd| 麻豆av在线久日| 俺也久久电影网| 啪啪无遮挡十八禁网站| 亚洲黑人精品在线| 最近在线观看免费完整版| 女警被强在线播放| www.精华液| 啦啦啦韩国在线观看视频| 亚洲欧美日韩高清在线视频| 老司机午夜福利在线观看视频| 两人在一起打扑克的视频| 国产熟女午夜一区二区三区| 女警被强在线播放| 制服诱惑二区| 最近在线观看免费完整版| 一本一本综合久久| 天天添夜夜摸| 九九热线精品视视频播放| 欧美日韩中文字幕国产精品一区二区三区| 久久中文看片网| 老汉色av国产亚洲站长工具| 性色av乱码一区二区三区2| 麻豆国产av国片精品| 男女那种视频在线观看| 国产视频一区二区在线看| 久久精品aⅴ一区二区三区四区| 听说在线观看完整版免费高清| 亚洲人成77777在线视频| 精品久久久久久久人妻蜜臀av| 国产av麻豆久久久久久久| 天堂av国产一区二区熟女人妻 | 99热这里只有是精品50| 午夜久久久久精精品| 成人一区二区视频在线观看| 色av中文字幕| 国产视频内射| 琪琪午夜伦伦电影理论片6080| 最近视频中文字幕2019在线8| 成在线人永久免费视频| 国产精品自产拍在线观看55亚洲| 99久久精品热视频| 男女下面进入的视频免费午夜| 亚洲熟女毛片儿| 久久精品91蜜桃| 免费在线观看影片大全网站| 99国产极品粉嫩在线观看| 国产精品久久久av美女十八| 国产av不卡久久| 欧美人与性动交α欧美精品济南到| 国产激情久久老熟女| 国产精品一区二区三区四区免费观看 | 亚洲av中文字字幕乱码综合| 在线视频色国产色| 国产成人影院久久av| 特大巨黑吊av在线直播| 久久国产精品影院| 亚洲激情在线av| 国产精品久久久久久人妻精品电影| 日韩欧美在线二视频| 女同久久另类99精品国产91| 国产精品,欧美在线| 18禁裸乳无遮挡免费网站照片| 国产人伦9x9x在线观看| 老熟妇仑乱视频hdxx| 久久精品综合一区二区三区| 老司机午夜福利在线观看视频| 国产精品国产高清国产av| 美女免费视频网站| 又大又爽又粗| 亚洲在线自拍视频| 精品电影一区二区在线| 一个人免费在线观看的高清视频| 老司机午夜福利在线观看视频| 成年版毛片免费区| 国产成年人精品一区二区| 99精品久久久久人妻精品| 亚洲精品av麻豆狂野| 精品电影一区二区在线| 俄罗斯特黄特色一大片| 日本在线视频免费播放| 999久久久精品免费观看国产| 免费高清视频大片| 在线看三级毛片| 亚洲专区字幕在线| 黄片小视频在线播放| 一本一本综合久久| 国产免费男女视频| 91麻豆精品激情在线观看国产| 精品欧美国产一区二区三| 看免费av毛片| 少妇人妻一区二区三区视频| 日韩欧美免费精品| 亚洲天堂国产精品一区在线| 国内少妇人妻偷人精品xxx网站 | 午夜福利成人在线免费观看| 夜夜看夜夜爽夜夜摸| 亚洲精品美女久久久久99蜜臀| bbb黄色大片| 无限看片的www在线观看| 99re在线观看精品视频| 欧美乱妇无乱码| 国产激情偷乱视频一区二区| 亚洲精品久久成人aⅴ小说| 日韩大码丰满熟妇| 亚洲av成人一区二区三| 久久这里只有精品中国| 在线观看免费午夜福利视频| 国产熟女xx| 中文字幕人成人乱码亚洲影| 亚洲精品久久国产高清桃花| 国产成人精品久久二区二区免费| 国产高清激情床上av| 久久午夜亚洲精品久久| 日韩国内少妇激情av| 精品国产美女av久久久久小说| 久久久国产成人免费| 亚洲一区二区三区不卡视频| 在线永久观看黄色视频| 国产视频内射| 动漫黄色视频在线观看| 淫秽高清视频在线观看| 日本三级黄在线观看| 亚洲中文字幕一区二区三区有码在线看 | 欧美性猛交╳xxx乱大交人| 中出人妻视频一区二区| 国产一区二区三区视频了| 九九热线精品视视频播放| 成人三级做爰电影| 亚洲 国产 在线| 国产成人精品久久二区二区91| 级片在线观看| 欧美+亚洲+日韩+国产| 日本a在线网址| 成人18禁高潮啪啪吃奶动态图| 亚洲 国产 在线| 欧美成人性av电影在线观看| 久久人妻av系列| 99国产极品粉嫩在线观看| 日本 欧美在线| 国内精品久久久久精免费| 人人妻,人人澡人人爽秒播| 欧美成人性av电影在线观看| 丁香六月欧美| 99久久精品热视频| 欧美黄色淫秽网站| 亚洲国产高清在线一区二区三| 亚洲国产欧洲综合997久久,| 少妇的丰满在线观看| 国语自产精品视频在线第100页| 中文字幕人妻丝袜一区二区| 色综合欧美亚洲国产小说| 午夜两性在线视频| 亚洲狠狠婷婷综合久久图片| 日本在线视频免费播放| 日韩欧美国产一区二区入口| 国产黄色小视频在线观看| 欧美国产日韩亚洲一区| 日韩免费av在线播放| 国产精品精品国产色婷婷| 欧洲精品卡2卡3卡4卡5卡区| 欧美又色又爽又黄视频| 男插女下体视频免费在线播放| 精品高清国产在线一区| 一进一出好大好爽视频| 性欧美人与动物交配| 日本黄色视频三级网站网址| 人成视频在线观看免费观看| 男男h啪啪无遮挡| 男人舔女人下体高潮全视频| 99在线视频只有这里精品首页| 久久久久免费精品人妻一区二区| 久久精品国产亚洲av香蕉五月| 一进一出抽搐动态| 窝窝影院91人妻| 国产又色又爽无遮挡免费看| 精品无人区乱码1区二区| av福利片在线观看| 亚洲无线在线观看| 欧美久久黑人一区二区| 中文字幕人成人乱码亚洲影| 亚洲成a人片在线一区二区| 一边摸一边做爽爽视频免费| 极品教师在线免费播放| 国产av麻豆久久久久久久| 国内揄拍国产精品人妻在线| 午夜老司机福利片| 动漫黄色视频在线观看| 亚洲精华国产精华精| 亚洲av中文字字幕乱码综合| 99精品欧美一区二区三区四区| 国产区一区二久久| 日韩免费av在线播放| 老鸭窝网址在线观看| 黄色毛片三级朝国网站| 一a级毛片在线观看| 久久香蕉激情| 欧美精品啪啪一区二区三区| av有码第一页| 午夜成年电影在线免费观看| 日本五十路高清| 欧美成人一区二区免费高清观看 | av天堂在线播放| 国产精品久久视频播放| 老司机深夜福利视频在线观看| 波多野结衣高清作品| 亚洲av电影不卡..在线观看| 日本五十路高清| 日本一二三区视频观看| 亚洲av五月六月丁香网| 久久人妻福利社区极品人妻图片| 两个人看的免费小视频| 欧美黑人精品巨大| 国产精品亚洲av一区麻豆| 精品一区二区三区视频在线观看免费| 夜夜爽天天搞| 两性午夜刺激爽爽歪歪视频在线观看 | 国产单亲对白刺激| 动漫黄色视频在线观看| 人成视频在线观看免费观看| 女人爽到高潮嗷嗷叫在线视频| 亚洲,欧美精品.| 欧美一级毛片孕妇| 99国产极品粉嫩在线观看| 日本 欧美在线| 好看av亚洲va欧美ⅴa在| www.999成人在线观看| 久久久久国产一级毛片高清牌| 黄色 视频免费看| 日韩av在线大香蕉| 欧美高清成人免费视频www| 亚洲精品色激情综合| 欧美一级毛片孕妇| 日韩欧美精品v在线| 禁无遮挡网站| 欧美绝顶高潮抽搐喷水| 国产精品av久久久久免费| 脱女人内裤的视频| av在线播放免费不卡| 无人区码免费观看不卡| 亚洲专区国产一区二区| 国产精品精品国产色婷婷| 国产又黄又爽又无遮挡在线| 久久99热这里只有精品18| 成年免费大片在线观看| 欧美一区二区精品小视频在线| 一级片免费观看大全| 亚洲国产日韩欧美精品在线观看 | 国产三级在线视频| 制服诱惑二区| 亚洲精品在线美女| 这个男人来自地球电影免费观看| 国产精品1区2区在线观看.| 天天添夜夜摸| 中文字幕高清在线视频| www.999成人在线观看| www.熟女人妻精品国产| 男女下面进入的视频免费午夜| av片东京热男人的天堂| 日本五十路高清| 久久久国产成人免费| 黑人巨大精品欧美一区二区mp4| 亚洲av第一区精品v没综合| 欧美高清成人免费视频www| 老汉色av国产亚洲站长工具| 午夜精品一区二区三区免费看| 午夜a级毛片| 久久久国产成人精品二区| 国内少妇人妻偷人精品xxx网站 | 亚洲 欧美一区二区三区| 久久这里只有精品中国| 国产成人啪精品午夜网站| 亚洲国产精品999在线| 国产麻豆成人av免费视频| 亚洲中文字幕一区二区三区有码在线看 | 亚洲欧美日韩高清专用| 精品不卡国产一区二区三区| a级毛片在线看网站| 无限看片的www在线观看| 九九热线精品视视频播放| 免费观看精品视频网站| 国产高清视频在线观看网站| 50天的宝宝边吃奶边哭怎么回事| 美女黄网站色视频| 一本精品99久久精品77| 国产精品久久久人人做人人爽| 色av中文字幕| 国内揄拍国产精品人妻在线| 欧洲精品卡2卡3卡4卡5卡区| av欧美777| 欧美色欧美亚洲另类二区| 亚洲全国av大片| 毛片女人毛片| 国产一区二区三区视频了| 日韩高清综合在线| 国产黄片美女视频| 成人午夜高清在线视频| 少妇熟女aⅴ在线视频| 香蕉丝袜av| 在线国产一区二区在线| 天堂动漫精品| 夜夜躁狠狠躁天天躁| 久久中文看片网| 黄色丝袜av网址大全| 99re在线观看精品视频| 美女扒开内裤让男人捅视频| 国产又色又爽无遮挡免费看| 蜜桃久久精品国产亚洲av| 午夜影院日韩av| 老司机午夜十八禁免费视频| 99国产极品粉嫩在线观看| 国产成人av教育| 日韩免费av在线播放| 久9热在线精品视频| 一区二区三区激情视频| 男插女下体视频免费在线播放| 精品不卡国产一区二区三区| 禁无遮挡网站| 亚洲中文字幕日韩| 在线观看免费日韩欧美大片| 精品国产亚洲在线| 99在线视频只有这里精品首页| 不卡一级毛片| 久久久国产成人免费| 麻豆久久精品国产亚洲av| 成年人黄色毛片网站| 亚洲熟女毛片儿| a在线观看视频网站| 小说图片视频综合网站| 91国产中文字幕| 国产亚洲av高清不卡| 亚洲五月天丁香| 国产精品98久久久久久宅男小说| 18禁裸乳无遮挡免费网站照片| 日本成人三级电影网站| 99riav亚洲国产免费| 欧美成人午夜精品| 欧美乱妇无乱码| 亚洲一区二区三区色噜噜| 一本久久中文字幕| 人妻夜夜爽99麻豆av| 一本一本综合久久| 日韩免费av在线播放| 国产成人aa在线观看| 少妇粗大呻吟视频| 久久这里只有精品19| 成人国产一区最新在线观看| 夜夜夜夜夜久久久久| 无遮挡黄片免费观看| e午夜精品久久久久久久| 岛国在线免费视频观看| 日韩欧美在线乱码| av在线天堂中文字幕| 韩国av一区二区三区四区| 国内毛片毛片毛片毛片毛片| 日韩精品中文字幕看吧| 亚洲国产欧美一区二区综合| 小说图片视频综合网站| 精品欧美国产一区二区三| 每晚都被弄得嗷嗷叫到高潮| x7x7x7水蜜桃| 国产成人系列免费观看| 国产久久久一区二区三区| 国产精品av视频在线免费观看| 高清在线国产一区| www.999成人在线观看| 国产精品电影一区二区三区| 中文字幕熟女人妻在线| 少妇熟女aⅴ在线视频| 亚洲av第一区精品v没综合| 成人国产综合亚洲| 性色av乱码一区二区三区2| 亚洲国产精品合色在线| www.www免费av| 亚洲 欧美 日韩 在线 免费| 可以在线观看的亚洲视频| 波多野结衣高清无吗| 99热6这里只有精品| 亚洲乱码一区二区免费版| 精品欧美一区二区三区在线| 一a级毛片在线观看| 亚洲第一电影网av| 岛国视频午夜一区免费看| 脱女人内裤的视频| 黄色视频,在线免费观看| 日韩国内少妇激情av| 色播亚洲综合网| 麻豆成人av在线观看| 午夜免费激情av| 精品国产超薄肉色丝袜足j| 一级作爱视频免费观看| 国产精品影院久久| 欧美黄色淫秽网站| 国产精品av视频在线免费观看| 国产aⅴ精品一区二区三区波| 中文字幕人妻丝袜一区二区| 亚洲av成人一区二区三| 国产成人精品久久二区二区91| 在线观看66精品国产| 成年人黄色毛片网站| 免费在线观看影片大全网站| 两人在一起打扑克的视频| 国产真人三级小视频在线观看| 精品久久久久久成人av| 国产精品,欧美在线| 99精品在免费线老司机午夜| 国产精品自产拍在线观看55亚洲| 国产精品乱码一区二三区的特点| 日韩高清综合在线| 天天躁夜夜躁狠狠躁躁| 亚洲第一欧美日韩一区二区三区| 久久精品国产亚洲av香蕉五月| 久久热在线av| av有码第一页| 在线十欧美十亚洲十日本专区| 夜夜爽天天搞| 又大又爽又粗| 999久久久精品免费观看国产| 日本一区二区免费在线视频| 午夜福利18| 熟女少妇亚洲综合色aaa.| 亚洲成人国产一区在线观看| 国产激情欧美一区二区| 日本免费a在线| 黄色成人免费大全| 麻豆成人午夜福利视频| 日韩欧美精品v在线| 亚洲国产精品久久男人天堂| 国产av不卡久久| 好看av亚洲va欧美ⅴa在| 亚洲国产精品成人综合色| 久久香蕉精品热| 欧美日韩福利视频一区二区| 午夜福利18| 欧美国产日韩亚洲一区| 19禁男女啪啪无遮挡网站| 香蕉久久夜色| 日本 欧美在线| 麻豆久久精品国产亚洲av| 国产日本99.免费观看| 美女免费视频网站| 国产在线精品亚洲第一网站| 天天添夜夜摸| 亚洲专区国产一区二区| 亚洲成人久久爱视频| 国产亚洲精品第一综合不卡| www.熟女人妻精品国产| av有码第一页| 欧美乱色亚洲激情| 欧美成人一区二区免费高清观看 | 国产一区二区在线av高清观看| 欧美乱色亚洲激情| 十八禁人妻一区二区| 少妇粗大呻吟视频| 亚洲第一欧美日韩一区二区三区| 在线免费观看的www视频| 国产成人精品久久二区二区免费| 夜夜爽天天搞| 午夜福利高清视频| 国产区一区二久久| 久久精品国产清高在天天线| 国产精品野战在线观看| 欧美zozozo另类| 国产一级毛片七仙女欲春2| 99久久精品国产亚洲精品| 久久这里只有精品中国| 黄色毛片三级朝国网站| 69av精品久久久久久| 色哟哟哟哟哟哟| xxxwww97欧美| 黄色女人牲交| 国产1区2区3区精品| 亚洲一码二码三码区别大吗| 国产99白浆流出| 亚洲免费av在线视频| 亚洲精品久久成人aⅴ小说| 国产99久久九九免费精品| 香蕉丝袜av| 中文亚洲av片在线观看爽| 亚洲成人久久爱视频| 国产不卡一卡二| 91老司机精品| 亚洲九九香蕉| 在线观看www视频免费| 国产97色在线日韩免费| 亚洲,欧美精品.| 国产熟女xx| a在线观看视频网站| av天堂在线播放| 亚洲欧洲精品一区二区精品久久久| 视频区欧美日本亚洲| 欧美日韩瑟瑟在线播放| 一级作爱视频免费观看| 在线观看一区二区三区| 丁香六月欧美| 亚洲国产欧美一区二区综合| 嫩草影视91久久| 欧美国产日韩亚洲一区| 一个人免费在线观看的高清视频| 在线a可以看的网站| 非洲黑人性xxxx精品又粗又长| 国产高清激情床上av| 天堂av国产一区二区熟女人妻 | 又黄又粗又硬又大视频| 欧美成狂野欧美在线观看| 午夜影院日韩av| 精品第一国产精品| 亚洲九九香蕉| 妹子高潮喷水视频| 女人被狂操c到高潮| 国产成年人精品一区二区| 特级一级黄色大片| 精品欧美国产一区二区三| 18禁黄网站禁片免费观看直播| 中文字幕久久专区| 亚洲七黄色美女视频| 亚洲一区二区三区色噜噜| 99久久综合精品五月天人人| 国产黄a三级三级三级人| 亚洲va日本ⅴa欧美va伊人久久| 1024手机看黄色片| 在线观看一区二区三区| 亚洲中文日韩欧美视频| 这个男人来自地球电影免费观看| 男女午夜视频在线观看| 91老司机精品| 久久久久久久精品吃奶| 伊人久久大香线蕉亚洲五| 高清在线国产一区| 亚洲九九香蕉| 麻豆久久精品国产亚洲av| 欧美另类亚洲清纯唯美| 午夜福利免费观看在线| 一级黄色大片毛片| 最新在线观看一区二区三区| 十八禁网站免费在线| 久久久久国产精品人妻aⅴ院| 久久久国产成人免费| 日本 av在线| 麻豆一二三区av精品| 丝袜人妻中文字幕| 日韩欧美精品v在线| 精品国内亚洲2022精品成人| 老鸭窝网址在线观看| av天堂在线播放| 亚洲av成人精品一区久久| 成人午夜高清在线视频| www.自偷自拍.com| 精品第一国产精品| 岛国在线免费视频观看| 日韩精品青青久久久久久| 最新美女视频免费是黄的| 18禁美女被吸乳视频| 亚洲专区中文字幕在线| 丰满人妻熟妇乱又伦精品不卡| 叶爱在线成人免费视频播放| 人妻夜夜爽99麻豆av| 亚洲国产精品久久男人天堂| 俄罗斯特黄特色一大片| 人妻夜夜爽99麻豆av| 欧美国产日韩亚洲一区| 我要搜黄色片| 午夜视频精品福利| 国产高清videossex| 国产精品av久久久久免费| 黄色 视频免费看| 色尼玛亚洲综合影院| 91av网站免费观看| 欧美一区二区精品小视频在线| 国产高清videossex| 一夜夜www| 欧美一区二区精品小视频在线| 亚洲欧洲精品一区二区精品久久久| 国产伦人伦偷精品视频| 91字幕亚洲| 亚洲天堂国产精品一区在线| 两个人视频免费观看高清| 大型黄色视频在线免费观看| 亚洲欧洲精品一区二区精品久久久| 国产亚洲精品久久久久5区| 午夜福利高清视频| 国产aⅴ精品一区二区三区波| av视频在线观看入口| 97碰自拍视频| 50天的宝宝边吃奶边哭怎么回事| 国产精品 国内视频|