• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    GOES成像儀資料簡介

    2014-03-02 05:25:10達成鄒曉蕾
    關(guān)鍵詞:亮溫成像儀視場

    達成鄒曉蕾,

    (1 佛羅里達州立大學地球海洋大氣科學系,美國;2 南京信息工程大學資料同化研究與應(yīng)用中心,南京 210044)

    GOES成像儀資料簡介

    達成1鄒曉蕾1,2

    (1 佛羅里達州立大學地球海洋大氣科學系,美國;2 南京信息工程大學資料同化研究與應(yīng)用中心,南京 210044)

    “衛(wèi)星資料應(yīng)用” 專題系列

    對地同步(geosynchronous)衛(wèi)星以地球自轉(zhuǎn)角速度圍繞地軸轉(zhuǎn)動。如果衛(wèi)星星下點(sub-satellite point)保持在地球表面同一位置,這樣的對地同步衛(wèi)星又被稱為對地靜止(geostationary)衛(wèi)星。在圓環(huán)軌道的假設(shè)下,根據(jù)對地靜止衛(wèi)星運行的向心力和萬有引力大小相等,可算出對地靜止衛(wèi)星與地心距離約為42164km。與一天提供兩次全球資料的極軌衛(wèi)星不同,靜止衛(wèi)星在其觀測范圍內(nèi)可提供時間連續(xù)的高水平分辨率資料,可用來追蹤快變天氣變量,如云、水汽和風。因此,越來越多的國家都相繼發(fā)射覆蓋自己領(lǐng)土的對地靜止衛(wèi)星。表1列出了目前在軌運行的對地靜止氣象衛(wèi)星太空位置、名稱、發(fā)射時間、衛(wèi)星狀態(tài)及所屬機構(gòu)。

    可見光紅外成像儀是搭載于對地靜止衛(wèi)星上的一類重要儀器。這類儀器包括美國GOES系列(圖1)上的成像儀(Imager),中國FY-2系列的可見光紅外自旋掃描輻射儀(S-VISSR)及歐洲Meteosat系列的自旋增強可見光紅外成像儀(SEVIRI)。下面以美國的GOES成像儀為例,討論靜止衛(wèi)星資料的一些主要特點。GOES成像儀擁有1個可見光通道和4個紅外通道。表2列舉了GOES成像儀各通道中心波長、星下點水平分辨率及各通道的主要應(yīng)用目的。在晴空條件下,考慮熱放射項、忽略散射項,成像儀測得的輻射量主要由兩部分構(gòu)成。一部分為由地表發(fā)射、穿透大氣到達成像儀的輻射。另一部分為各層大氣發(fā)射、穿透上層大氣到達成像儀的輻射。GOES成像儀紅外通道2的中心頻率約為3.9μm,靠近二氧化碳4.3μm強轉(zhuǎn)動振動帶[1],屬于短紅外通道。除了上述兩項,

    通道2還包含有反射的太陽輻射的貢獻,這是GOES成像儀通道2不同于其他紅外通道的特點。GOES成像儀通道3(6.5或6.7μm)靠近水汽在6.3μm的轉(zhuǎn)動振動帶[1],主要吸收氣體為水汽。該通道亮溫水平分布圖常用來觀察對流層中高層水汽的水平輸送。除了中心波長的細微移動,GOES-12后的通道3的波長范圍(5.8~7.3μm)大于GOES-11通道3的波長范圍(6.5~7.00μm)[2]。由于GOES-12通道3的星下點水平分辨率(4km)高于GOES-11的通道3(8km),擴大波長范圍有助于抑制由于水平分辨率提升而增加的噪音,提高信噪比[3]。GOES成像儀通道4(10.7μm)屬于窗區(qū)通道,大氣中吸收氣體對該波長的輻射吸收強度較小。因此在晴空條件下,該通道測得的輻射量主要來自透過大氣層的地表輻射。又因為位于10.7μm的干陸地裸土的地表發(fā)射率接近1,因此地表皮溫可用來估計地表發(fā)出的輻射量 (skin temperature)[4]。GOES成像儀通道5(12.0μm)被稱為臟窗(dirty window)。與10.7μm通道相比,該通道對大氣中的水汽更敏感。這是由于位于12.0μm的水汽的折射指數(shù)虛部大于水汽位于10.7μm的折射指數(shù)虛部,而折射指數(shù)虛部與吸收系數(shù)成正比。因此,在濕空氣條件下,12.0μm通道測得的亮溫將低于10.7μm的觀測亮溫。12.0μm通道也常被用于冰云檢測。大致原理為,位于12.0μm的冰的折射指數(shù)虛部大于位于12.0μm的水的折射指數(shù)虛部,因此,通道5在有冰云條件下的觀測亮溫比在水云條件下的觀測亮溫小[5]。從GOES-12開始,12.0μm通道被13.3μm通道替換。13.3μm位于CO2吸收帶邊緣[6]。添加的通道6結(jié)合其他已有的通道可以精確地反演云頂氣壓、有效云量及云頂溫度[3]。

    表1 在軌對地靜止氣象衛(wèi)星太空位置、名稱、發(fā)射時間、衛(wèi)星狀態(tài)及所屬機構(gòu) Table 1 The longitude, name, launch date, operational status and operation agencies of current geostationary meteorological satellite

    圖1 美國GOES系列衛(wèi)星 (a)GOES 1-3,(b)GOES 4-7,(c)GOES 8-12,(d)GOES 13-15(圖片來自http://www.goes-r.gov.) Fig. 1 Images of (a) GOES 1-3, (b) GOES 4-7, (c) GOES 8-12 and (d) GOES 13-15

    GOES成像儀的垂直分辨率由各個通道的權(quán)重函數(shù)反映出來。圖2是根據(jù)美國標準大氣利用通用輻射傳輸模式[7]計算得到的GOES-11/12的權(quán)重函數(shù)的垂直分布圖。權(quán)重函數(shù)最大值所在高度的大氣對該通道的觀測輻射量貢獻最大。由圖2可知,通道2,4,6的觀測輻射量主要來自地表輻射。通道3的觀測輻射主要來自500~300hPa之間大氣的貢獻。此外,圖2還包含3個值得注意的特征。第一,GOES-11成像儀通道3(6.7μm)的權(quán)重函數(shù)峰值所在氣壓面略高于GOES-12成像儀通道3(6.5μm)權(quán)重函數(shù)峰值所在氣壓面。這是由GOES-11成像儀通道3的波長范圍小

    于GOES-12成像儀通道3造成的[3]。相比于GOES-11,GOES-12成像儀通道3測得的輻射來自更下層的大氣,因此在晴空條件下的觀測亮溫將高于GOES-11通道3的觀測亮溫。第二,GOES成像儀通道4權(quán)重函數(shù)值在300hPa以上與通道5的權(quán)重函數(shù)接近,在300hPa以下大于通道5的權(quán)重函數(shù)值。這是因為通道5的水汽吸收系數(shù)大于通道4的吸收系數(shù),在300hPa以下的任意等壓面,通道5的大氣光學厚度受水汽影響大于通道4,所以大氣對通道5波長的吸收大于通道4。因此,通道5對低層水汽比通道4更敏感。第三,GOES-12成像儀通道6位于20hPa以下的權(quán)重函數(shù)寬度大于GOES-11成像儀通道5。這反映了13.3μm通道測得的輻射量中,來自大氣的貢獻比 GOES-11成像儀通道5的大。這是由于13.3μm通道靠近CO2吸收帶,大氣中的CO2對該波長輻射產(chǎn)生影響。CO2在大氣中可認為是垂直均勻混合的,而水汽主要集中在對流層中低層大氣,因此對高層大氣,在同一氣壓面上,通道6的光學厚度將大于通道5的光學厚度,繼而大氣對通道6波長的吸收大于通道5 。

    表2 GOES成像儀通道波長,水平分辨率,所在衛(wèi)星及通道用途 Table 2 The central wavelength, horizontal resolution, satellites, and the general usage of GOES imager channels

    圖2 通過通用輻射傳輸模式計算的基于美國標準大氣的GOES-11(GOES-12)的3.9μm(紅),6.7(6.5)μm(藍),10.7μm(綠),12.0 (13.3)μm(黑)通道的權(quán)重函數(shù) Fig.2 Weighting functions of GOES-11 (top panel) and GOES-12 (bottom panel) 3.9μm (red), 6.7μm (blue), 10.7μm (green), 12.0μm (13.3μm) channels calculated by using CRTM with the U.S. standard atmosphere as the input

    GOES成像儀的水平分辨率由各通道探頭的瞬時幾何視場(Instantaneous Geometry Field Of View,IGFOV)決定。對于GOES-12成像儀來說,中心波長為0.65μm通道的瞬時幾何視場為28μrad,中心波長在3.9,6.5,10.7μm的通道的瞬時幾何視場為112μrad,中心波長在13.3μm的通道的瞬時幾何視場為224μrad。這些瞬時幾何場轉(zhuǎn)換成對應(yīng)的星下點水平分辨率(即視場直徑)分別為1,4和8km。視場面積隨掃描角增大而增大,所以水平分辨率隨著掃描角的增大而降低。換句話說,掃描角大的單個視場測得的輻射量來自地表較大的面積。

    用來描述任意視場面積與星下點視場面積的比例的一個常用參數(shù)是一維像素扭曲指數(shù)(K,pixel distortion index)[8]。一維像素扭曲指數(shù)(K)的計算公式如下:

    其中

    公式(2)中,λ為任意視場的經(jīng)度(緯度),λsub為星下點的經(jīng)度(緯度)。公式(1)中的a為衛(wèi)星與距離地心之間的距離,h為衛(wèi)星軌道距離地面的距離。對于GOES-12來說,h約等于35790km。α0為GOES成像儀可覆蓋的最大地球表面理論范圍,為81.3°。圖3為像素扭曲指數(shù)隨經(jīng)度(緯度)差絕對值α變化圖。在經(jīng)度(緯度)差絕對值α0等于60.38°時,像素扭曲指數(shù)K等于3。這意味著在一維扭曲的假設(shè)下,此時視場面積是星下點視場面積的3倍。由于一維像素扭曲指數(shù)假設(shè)視場只經(jīng)歷經(jīng)向扭曲或緯向扭曲,其只對衛(wèi)星所在經(jīng)圈及赤道緯圈的視場面積與星下點視場面積的比率有較精確的估計。地球表面其他經(jīng)緯度的視場同時經(jīng)歷緯度扭曲及經(jīng)度扭曲,所以真實的視場面積與星下點面積的比率大于一維像素扭曲指數(shù)得到的結(jié)果。

    任意地球表面目標點視場軌跡可由目標點的緯度、經(jīng)度,衛(wèi)星天頂角、衛(wèi)星方位角、衛(wèi)星距離地球目標點的距離、成像儀探頭的瞬時幾何視場值,及地球為橢球體的假設(shè)計算得出(計算公式見附錄)。圖4展示了2008年5月22日18:15 UTC與18:21 UTC之間GOES-12成像儀對星下點所在經(jīng)圈(75?W)、赤道圈及其他經(jīng)緯度的觀測視場軌跡。由圖可見,星下點的視場類似正方形。衛(wèi)星所在經(jīng)圈的視場隨緯度變化經(jīng)歷南北向的扭曲,因此視場為長方形,緯向邊長小于經(jīng)向邊長。赤道圈的視場呈緯向邊長大于經(jīng)向邊長的長方形。其他經(jīng)緯度的視場由于同時經(jīng)歷經(jīng)向扭曲和緯向扭曲,視場類似于平行四邊形。圖4還有兩點值得強調(diào)的地方:第一,GOES成像儀的星下點視場為正方形,這是由于GOES成像儀的方形探頭造成的[2];第二,GOES成像儀的觀測視場南北方向重疊小,東西方向重疊大。這意味著通過重采樣可以得到高于標定瞬時幾何視場的分辨率。Menzel等[9]指出通過重采樣可以得到的通道4的星下點分辨率為2.3km×4km。高緯度的視場由于像素扭曲率過大,這些地區(qū)的觀測輻射觀測值及其反演產(chǎn)品不再可信,因此不屬于有效觀測區(qū)域(即像素扭曲指數(shù)小于3時的觀測范圍)。例如K?pken[10]進行的水汽通道晴空輻亮度同化試驗剔除了掃描角較大的觀測點。圖5展示了目前全球主要對地靜止衛(wèi)星上成像儀的最大理論觀測范圍及像素扭曲指數(shù)小于3時的觀測范圍。由圖5可見,對地靜止衛(wèi)

    星上成像儀對全球赤道和±50?緯度的區(qū)域有很好的資料覆蓋。

    圖3 經(jīng)度(緯度)差絕對值α與像素扭曲率的關(guān)系 Fig. 3 Variation of the pixel distortion index K with respect to the absolute value of latitude (longitude) difference α

    圖4 2008年5月22日18:15—18:21 UTC間GOES-12成像儀位于星下點(a)、衛(wèi)星所在經(jīng)圈(b)、赤道圈(c)及其他(d)經(jīng)緯度的視場軌跡(同一掃描線上相鄰的兩個視場由灰色塊與紅框表示,另一跟掃描線上相鄰的兩個視場由藍色塊及藍框表示,GOES-12位于75°W) Fig. 4 The IGFOVs of the GOES-12 imager channel 4 near (a) sub-satellite point, (b) the longitude same as the subsatellite point, (c) the equator, and (d) other locations during 1815 UTC - 1821UTC on May 22, 2008. GOES-12 is located as 75°W. The footprints of two adjacent IGFOVs are indicated in gray shaded and red lines, respectively, along the odd-numbered scan lines, and the two adjacent IGFOVs are indicated in light blue shaded and dark blue lines along even-numbered scan lines

    圖5 現(xiàn)有主要對地靜止衛(wèi)星紅外成像儀最大理論覆蓋范圍(虛線)及像素扭曲指數(shù)≤3的覆蓋范圍(實線) Fig. 5 The theoretical maximum coverage (dashed), and areas with pixel distortion index being less than three (solid) of eight major geostationary satellites currently in operation: Meosat-7, -9 and -10, FY-2D and -2E, Himawari-7, FOES-13 and -15

    如果要將靜止衛(wèi)星成像儀的紅外通道資料用于資料同化,首先需要知道成像儀的測量精度,這一參數(shù)可由等效噪音溫差表示(Noise Equivalent delta Temperature,NEdT)。等效噪音溫差是觀測亮溫及中心波長的函數(shù)。表3[11-13]列出了GOES-12—GOES-15成像儀通道2,4,6在300K和通道3在230K時的等效噪音溫差。

    關(guān)于GOES成像儀還有一些補充信息。GOES成像儀的掃描方式類似于跨軌掃描輻射計。成像儀的掃描鏡旋轉(zhuǎn)操作由兩個發(fā)動機控制??刂茤|西向的發(fā)動機首先帶動掃描鏡完成一條由西向東的掃描線??刂颇媳毕虻陌l(fā)動機向北旋轉(zhuǎn)掃描鏡??刂茤|西向的發(fā)動機再次帶動掃描鏡完成一條由東向西的掃描線,如此完成目標區(qū)域的掃描[2]。成像儀的紅外探頭掃描速率為5460/s。GOES成像儀有4種業(yè)務(wù)成像方式①:(1)常規(guī)業(yè)務(wù)(Routine Operations);(2)全盤掃描業(yè)務(wù)(Full Disk Operations);(3)快速掃描業(yè)務(wù)(Rapid Scan Operations, RSO);(4)超快速掃描業(yè)務(wù)(Super Rapid Scan Operations, SRSO)。表4及表5

    分別列舉了GOES東西星常規(guī)業(yè)務(wù)包含的框架名稱、地理范圍、掃描用時及掃描起始時刻①②③。對于GOES東星來說,全盤掃描業(yè)務(wù)④包含每小時1次的全盤掃描及1次簡略全盤掃描??焖賿呙铇I(yè)務(wù)⑤在30分鐘里進行4次美國大陸掃描,1次北半球掃描及1次南美部分掃描。超快掃描業(yè)務(wù)則在30分鐘內(nèi)對面積為1000km2的指定區(qū)域進行10次耗時1分鐘的掃描。剩余的時間則用于北半球掃描及美國大陸掃描。

    與微波探測儀相比,紅外成像儀探測通道的波長較短。因此,紅外輻射在云中衰減更快。對于光學厚度大的云,成像儀測得的輻射主要來自于云頂輻射。圖6、7展示了云對觀測亮溫的影響。其中A處于晴空區(qū),B處于云區(qū)。B由于云的影響,通道2,3,4,6的亮溫均低于A。圖7b為各通道的觀測亮溫減模擬的晴空亮溫??梢园l(fā)現(xiàn),晴空(有云)條件下,兩者差值很?。ê艽螅?。第二,通道3的差值的絕對值小于通道2,4,6。這是因為通道2,4,6都是地面通道,而通道3觀測的為300~500hPa的亮溫。云所在高度離影響通道3觀測的大氣層高度更近,因此溫差小。

    表3 GOES-12, -13和-15成像儀通道2,4,6在300K,通道3在230K時的等效噪音溫差(單位:K) Table 3 The NEdT of imager channels 2, 4 and 6 at 300 K and channel 3 at 230 K of GOES-12, -13 and -15 (unit: K)

    表4 GOES東星常規(guī)業(yè)務(wù)包含的框架名稱、掃描范圍、掃描用時及掃描起始時間Table 4 The frame name, coverage, scan duration and scan starting time for GOES East routine operations

    表5 GOES西星常規(guī)業(yè)務(wù)包含的框架名稱、掃描范圍、掃描用時及掃描起始時間 Table 5 Same as Table 4 except for GOES West

    圖 6 2008年5月22日17:47—17:50 UTC GOES-12成像儀通道4的觀測亮溫(K)(A點位于 32.16°N,88.72°W;B點 位于32.02°N,84.06°W) Fig. 6 Spatial distribution of brightness temperature observations of GOES-12 imager channel 4 during 1747-1750 UTC on May 22, 2008. A is located as 32.16°N, 88.72°W, and B is located at 32.02°N, 84.06°W

    圖 7 圖6中A,B點通道2(藍),3(綠),4(黃),6(紅)的觀測亮溫(a)及觀測亮溫減模擬的晴空亮溫(b) Fig.7 (a) Brightness temperature observations and (b) O-B differences of imager channels 2, 3, 4 and 6 at points A (solid bars) and B (dashed bars) shown in Fig.7

    針對目前GOES成像儀通道較少的問題,美國下一代對地靜止衛(wèi)星GOES-R搭載的高級基線成像儀(Advanced Baseline Imager,ABI)則配有16個通道⑥,其中包含2個可見光通道,4個近紅外通道,10個紅外通道。紅外通道的星下點水平分辨率提高到2km。高級基線成像儀可以在1小時內(nèi)進行4次全盤掃描

    或12次大陸掃描。高級基線成像儀增添了中尺度業(yè)務(wù)模式。它可以以30s一次的頻率對1000km×1000km的區(qū)域進行觀測。GOES-R衛(wèi)星計劃將于2015年發(fā)射⑦。中國計劃發(fā)射的風云4號(FY-4)靜止衛(wèi)星將搭載高級對地靜止輻射成像儀(Advanced Geostationary Radiation Imager,AGRI)和對地靜止干涉紅外探測儀(Geostationary Interferometric Infrared Sounder,GIIRS)。AGRI與ABI相似,將搭載包含可見光、近紅外、短波紅外、中波紅外及熱紅外的14個通道⑧。GIIRS是包含913個通道的對地靜止干涉紅外探測儀⑨。GIIRS類似于目前美國Aqua衛(wèi)星上的大氣紅外探測儀(AIRS)。現(xiàn)有的高光譜探測儀均放置在極軌衛(wèi)星上。FY-4將是首顆搭載高光譜成像儀的對地靜止衛(wèi)星。在氣象應(yīng)用中,同化AIRS的觀測資料可以顯著提高數(shù)值預報水平。氣候應(yīng)用中,AIRS觀測資料可用來反演CO2等溫室氣體含量。因此,GIIRS的觀測將對數(shù)值天氣預報及氣候研究發(fā)揮重要作用。

    Serial of Applications of Satellite Observations

    Geosynchronous satellites rotate around the Earth’s axis at the same angular velocity as the Earth does. If the sub-satellite point stays at the same location relative to the Earth surface, a geosynchronous satellite is called geostationary. The altitude of a geostationary satellite can thus be determined by a balance between the centripetal force and the gravitational force. Under the assumption of circular orbit, the altitude of the geostationary satellite is approximately 35787.6 kilometers above the Earth’s surface. Unlike a sun-synchronous polar-orbiting satellite that provides global observations twice daily, a geostationary satellite provides temporally continuous observations within a limited area centered at the subsatellite point. The horizontal resolution of geostationary satellite imager data is also high. The temporal and spatial continuity of the geostationary satellite data is extremely important for capturing rapid variations of atmospheric variables such as cloud, atmospheric water vapor and wind. Therefore, more and more geostationary meteorological satellites have been launched by different countries to cover their own territories. Table 1 lists all current operational meteorological geostationary satellites, along with their longitudes, names, launch dates, operational status and operation agencies.

    The visible and infrared imager sensors onboard geostationary satellites include the Geostationary Operational Environmental Satellites (GOES) imager onboard United States GOES series (Figure 1), the Stretched Visible and Infrared Spin Scan Radiometer (S-VISSR) onboard Chinese Fengyun-2 (FY-2) series, and the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard European Meteosat series. In the following, we discuss some main characteristics of observations from GOES imager. GOES imager has one visible and four infrared channels. Table 2 provides the central wavelength, spatial resolution at the sub-satellite point, and the general usage of each channel. Under clearsky conditions, the scattering effect can be neglected and the thermal emission is the only source term. The infrared radiance received by the GOES imager mainly consists of the radiance emitted by the surface and transmitted throughout the entire atmosphere as well as the radiance that is emitted by a particular atmospheric layer and is transmitted throughout the atmosphere above that layer. For examples, the GOES channel 2 is a shortwave infrared channel with its central wavelength located at 3.9 micrometers (μm). This wavelength is close to the 4.3μm strong CO2rotation-vibration band[1]. The reflected solar radiance also contributes to the measured radiance of this channel, which is a unique characteristic that is different from other three GOES infrared channels. GOES imager channel 3 (central wavelength of 6.5μm or 6.7μm) is close to the 6.3μm vibration-rotation band[1]. The major absorber of this channel is water vapor, thus

    the distributions of channel 3 brightness temperatures are usually utilized to observe the horizontal transport of water vapors in the middle and high troposphere. Besides the minor shift of central wavelength, the bandwidth of channel 3 onboard GOES-12, -13 and -15 (5.8μm–7.3μm) is wider than that of channel 3 onboard GOES-11 (6.5μm–7.0μm)[2]. Considering the higher spatial resolution (4 km) of GOES-12 channel 3 than that of GOES-11 channel 3 (8 km), enlarging the wavelength bandwidth suppresses the increased noise due to improved spatial resolution, thus improving signal-to-noise ratio[3]. Channel 4 is a window channel whose central wavelength is located at 10.7μm. The gas molecules in the atmosphere have weak absorption on the radiance at this wavelength. In addition, the emissivity of the dry ground is close to one, therefore the radiance emitted by the surface can be approximated by skin temperature[4]. The central wavelength of of channel 5 is 12.0 μm and is called a dirty window channel. Due to a stronger continuum absorption from water vapor, channel 5 is more sensitive to water vapor than channel 4. The observed brightness temperature of channel 5 will be lower than that of channel 4 when the air is moist. Channel 5 can be utilized to detect ice clouds as well. The imagery part of the refraction index at 12.0 μm is larger than that at 10.7 μm. The presence of ice clouds also leads to a lower brightness temperature of channel 5 than channel 4[5]. Since the launch of GOES-12, the 12.0 μm channel 5 is replaced with a 13.3 μm channel 6. Channel 6 is located in the wing of the CO2band[6]. With channel 6 measurements, the cloud top pressure, effective cloud amount, and cloud top temperature can be accurately retrieved[3].

    The vertical resolution of GOES imager is reflected by the weighting function of each channel. Figure 2 shows the weighting function of GOES-11/12 imager channels calculated by the Community Radiative Transfer Model (CRTM)[7]with the U.S. standard atmosphere profile as the input. The largest contribution of observed radiance comes from the layer at which the weighting weight is the largest. It can be concluded from Fig. 2 that the observed radiance mainly comes from the surface emission for GOES imager channel 2, 4, 6 while the major contribution to channel 3 radiance comes from the layer between 500 and 300 hPa. Three additional features are worth mentioning based on Fig. 3. Firstly, the level where the weighting peak resides for GOES-11 imager channel 3 (6.7 μm) is slightly higher than that for GOES-12 imager channel 3 (6.5 μm). This results from a narrower bandwidth of GOES-11 channel 3 than that of GOES-12 channel 3[3]. Compared to GOES-11, the observed radiance of channel 3 by GOES-12 comes from the lower troposphere. Therefore, the brightness temperatures of channel 3 observed by GOES-12 imager are anticipated to be higher than those by GOES-11. Secondly, the weighting functions of channels 4 and 5 have similar vertical distributions above 300 hPa, but are different below 300 hPa. The weighting function of channel 4 is smaller than the weighting function of channel 5 below 300 hPa. This is because the absorption coefficient by water vapor of channel 5 is larger than that of channel 4. For any arbitrary level below 300 hPa, the optical depth of channel 5 is larger than that of channel 4 due to a stronger water vapor absorption. In other words, channel 5 is more sensitive to the water vapor in the lower troposphere than channel 4. Thirdly, channel 6 of GOES-12 imager has larger weighting functions than those of channel 5 of GOES-11 below 20hPa. This reflects that the contribution from the atmosphere is larger in the observed 13.3 μm radiance than GOES-11 channel 5. The mixing ratio of CO2is nearly constant throughout the atmosphere while water vapor mainly resides at the middle and lower troposphere. At high levels, the optical depth of channel 6 is larger than the optical depth of Channel 5, resulting a stronger absorption at the wavelength of channel 6 than at that of channel 5.

    The horizontal resolution of GOES imager is determined by the instantaneous geometry field of view (IGFOV) of each channel. For GOES-12 imager, the IGFOV is 28 μrad for channel 1, 112 μrad for channels 2, 3 and 4, and 224 μrad for channel 6. The corresponding sub-satellite point resolution of these IGFOV is 1 km, 4 km, and 8 km, respectively. The area covered by IGFOV increases as the scan angle increases, so the horizontal resolution decreases as the scan angle increases. In other words, the observed radiation for a single IGFOV comes from a large area if the scan angle is larger.

    The ratio of the area covered by an arbitrary field of view to the area covered by the field of view at sub-satellite point is defined as the pixel distortion indices (K)[8]. The equation for calculating the pixel distortion indices can be written as

    where

    In equation (1) and (2), λ is the longitude or the latitude of an arbitrary observation, λsubis the longitude of the sub-satellite point, ais the distance between the satellite and the earth center, and h is the altitude of satellite orbit above the earth surface. For GOES-12, h is approximately 35790 km. α0(=81.3°) is the maximum value of α and indicates the furthest location in longitude and latitude from the sub-satellite point of a GOES imager coverage. Figure 3 illustrates the relationship between the pixel distortion index K and the absolute value of the longitude (or latitude) difference α. When the absolute value of longitude (or latitude) difference, α, is equal to 60.38°, the pixel distortion index equals three. This means that under the assumption of the onedimensional distortion, the area covered by a IGFOV is three times as large as the IGFOV area at the sub-satellite point. It is reminded that the pixel distortion index in equation (1) assume that the area covered by an IGFOV experiences either a zonal distortion or a meridional distortion, it is accurate only for the pixel distortion at the equator, or at the longitude where satellite resides. Pixels located at other regions experience distortions in both the zonal and meridional directions. Therefore, the ratio of the actual area covered by a single IGFOV to that at the sub-satellite point will be larger than the pixel distortion index in (1).

    The footprint of any arbitrary IGFOV can be calculated given the latitude and longitude of a target IGFOV, satellite zenith angle, satellite azimuth angle, the distance between satellite and the targeted IGFOV under the assumption that the Earth’s surface is an ellipsoid. Figure 4 illustrates the footprint covered by the IGFOV near the sub-satellite point (Fig. 4a), the 75?W longitude (Fig. 4b), the equator (Fig. 4c), and other locations (Fig. 4d) of GOES-12 imager from 1815 UTC to 1821 UTC on May 22, 2008. The IGFOVs at the sub-satellite point are squares, which is expected because GOES imagers use square detectors[2]. Pixels near the longitude of the sub-satellite point experience a meridional distortion and are of rectangular shape. The meridional length is longer than the zonal length for the IGFOVs near the longitude of the sub-satellite point. The IGFOVs near the equator are rectangles with their zonal lengths being larger than their meridional lengths. The IGFOVs at other locations experience both zonal and meridional distortions and thus have parallelogram shapes. A significant overlapping between two adjacent pixels is noticed in the zonal direction, which is greater than in the meridional direction. Through a resampling process, higher resolution observations can be achieved from overlapping GOES imager radiances. Menzel et al.[9]pointed out the sub-point resolution of channel 4 after resampling can be as high as 2.3 km × 4 km. Since the pixels at high latitudes have larger pixel distortion, the observed radiances and their retrieval products are not as reliable as in low latitudes. In the data assimilation experiment conducted by K?pken[10], observations with large scan angles are removed. Figure 5 shows the theoretical maximum coverage and area with pixel distortion index being less than three of several operational geostationary satellites. It can be seen that the global region within 50? is fully covered by the geostationary satellites.

    The measurement precision of infrared imagers, which is a required input for data assimilation of GOES imager infrared radiance, is quantified by the Noise Equivalent differential Temperature (NEdT). NEdT is a function of observed brightness temperature and central wavelength. Table 3[11-13]lists the NEdT of imager channels 2, 4 and 6 at 300 K and channel 3 at 230 K from GOES-12, -13 and -15.

    The scan operation of GOES Imager is similar to a cross-track sensor. Two motors control the rotation operation of the scan mirror. The motor controlling westeast operation fi rstly fi nishes one scan line from west to east. Then the motor controlling north-south operation rotates the scan mirror towards the south. An east to west scan is then performed by the west-east operation motor. The scan speed for each detector of infrared channel is 5460 observations per second. There are four operation modes for GOES imager①: (1) routine operation, (2) full disk operation, (3) rapid scan operation (RSO), and (4) super rapid scan operations (SRSO). Tables 4 and 5 list the name of the frame, observation coverage, scan duration and scan starting time of GOES-11 (e.g., GOES East) and GOES-12 (e.g., GOES West)①②③. For GOES East, the full disk operations④includes one full-disk scan and one abbreviated full-disk scan in each hour. The RSO⑤performs four U.S. continental scans, one Northern-

    Hemisphere scan, and Southern-Hemisphere partial-frame scan in each 30 minutes. The SRSO is able to perform a total of 26 1-minute scans, covering an area of 1000 km2in 30 minutes.

    Compared with satellite microwave sensors, the channel wavelengths of the infrared imager channels are shorter. This leads to stronger infrared absorption in clouds. For clouds with large optical depth, the radiance observed by the imager mainly comes from the cloud top. Figures 6 and 7 illustrate the influence of clouds in observed brightness temperatures. Point A is under a clear-sky condition while point B is located within clouds. In the presence of cloud, the brightness temperature of channels 2, 3, 4 and 6 (point B) is lower than that in a clear-sky condition (point A). Figure 6b shows the differences between the observed brightness temperature (O), and simulated brightness temperature under clearsky conditions (B), i.e., O?B. Under clear-sky (cloudy) conditions, the absolute value of O?B is small (large). Furthermore, the absolute value of (O?B) of channel 3, |O?B|, is smaller than those of channels 2, 4 and 6. This is because channels 2, 4 and 6 are window channels while channel 3 is an atmospheric sounding channel between 300 hPa and 500 hPa. The level where clouds exist is closer to the observed layer of channel 3, resulting a smaller absolute value of O?B of channel 3 than those of other channels.

    The United States next generation geostationary satellite, GOES-R, will be equipped with the Advanced Baseline Imager (ABI) with 16 channels⑥. Among these 16 channels, two are visible channels, four are near-infrared channels, and 10 are infrared channels. The observation resolution at the sub-satellite point for infrared channel increases to 2 km. The ABI is able to perform four fulldisk scans or 12 continentals scans in one hour. The ABI has added an additional mesoscale mode. In this mode, the ABI can scan an area of 1000 km2every 30 seconds. GOES-R satellite is scheduled to be launched in 2015⑦. The next generation Chinese geostationary satellite FY-4 will be equipped with the Advanced Geostationary Radiation Imager (AGRI) and the Geostationary Interferometric Infrared Sounder (GIIRS). Similar to the ABI, the AGRI will have 14 channels that cover visible, near-infrared, shortwave infrared, midwave infrared and thermal infrared bands⑧. The GIIRS onboard FY-4 is an interferometric infrared sounder with 913 channels⑨. The GIIRS is similar to the Atmospheric Infrared Sounder (AIRS) onboard Aqua polar-orbiting satellite. Currently all hyperspectral sounders are onboard polar-orbiting satellites. FY-4 will be the first geostationary satellites with hyperspectral sounders onboard. Given the facts that assimilation of AIRS observations signif i cantly improves the forecast skill in numerical weather prediction (NWP) and AIRS retrieval products of greenhouse gases such as CO2provide insights into climate change, observations from GIIRS will play an important role in both NWP and climate studies.

    注釋

    ① http://www.ospo.noaa.gov/Operations/GOES/schedules.html

    ② http://www.ospo.noaa.gov/Operations/GOES/west/imager-routine.html

    ③ http://www.class.ncdc.noaa.gov/release/data_available/goes/index.html

    ④ http://www.ospo.noaa.gov/Operations/GOES/east/fd.html

    ⑤ http://www.ospo.noaa.gov/Operations/GOES/east/rso.html

    ⑥ http://www.goer-r.gov/spacesegment/abi.html

    ⑦ http://www.nesdis.noaa.gov/flyout_schedules.html

    ⑧ http://www.wmo-sat.info/oscar/instruments/view/275

    ⑨ http://www.wmo-sat.info/oscar/instruments/view/214

    [1]Petty G W. A First Course in Atmospheric Radiation. Madison, Wisconsin: Sundog Publishing, 2006.

    [2]Space Systems/Loral. GOES I-M Data Book, Greenbelt, Maryland:NASA/GSFC, 1996.

    [3]Schmit T J, Elaine M P, Anthony J S, et al. Introducing the GOES-M imager. National Weather Digest 25, 2002(3/4): 28-37.

    [4]Kidder S Q, Haar T H V. Satellite Meteorology: An Introduction. Vol. 466. San Diego: Academic Press, 1995: 466.

    [5]Strabala K I, Ackerman S A, Menzel W P. Cloud properties inferred from 8-12μm Data. J Appl Meteor, 1994, 33: 212-229.

    [6]Wu X, Schmit T, Galvin R, et al. Investigation of GOES imager 13.3μm channel cold bias. EUMETSAT Meteorological Satellite Conference, 2008: 1-12.

    [7]Weng F. Advances in radiative transfer modeling in support of satellite data assimilation. J Atmos Sci, 2007, 64: 3799-3807.

    [8]Capderou M. Satellites: Orbits and Missions. France: Springer-Verlag, 2005: 544.

    [9]Menzel W P, James F W P. Introducing GOES-I: The fi rst of a new generation of geostationary operational environmental satellites. Bull Amer Meteor Soc, 1994, 75: 757-781.

    [10]K?pken C, Kelly G, Thépaut J-N. Assimilation of Meteosat radiance data within the 4D-Var system at ECMWF: Assimilation experiments and forecast impact. Q J Roy Meteor Soc, 2004, 130: 2277-2292.

    [11]Hillger W D, Timothy J S. NOAA Technical Report NESDIS 125: The GOES-13 Science Test: Imager and Sounder Radiance and Product Validations. United States National Environmental Satellite, Data, and Information Service, 2007.

    [12]Hillger W D, Timothy J S. NOAA Technical Report NESDIS 131: The GOES-14 Science Test: Imager and Sounder Radiance and Product Validations. United States National Environmental Satellite, Data, and Information Service, 2010.

    [13]Hillger W D, Timothy J S. NOAA Technical Report NESDIS 141: The GOES-15 Science Test: Imager and Sounder Radiance and Product Validations. United States National Environmental Satellite, Data, and Information Service, 2011.

    An introduction to GOES Imager Data

    Da Cheng1Zou Xiaolei1,2
    (1 Department of Earth, Ocean and Atmospheric Science, Florida State University, USA 2 Center of Data Assimilation for Research and Application, Nanjing University of Information and Science & Technology, Nanjing 210044)

    10.3969/j.issn.2095-1973.2014.04.008

    2013年12月12日;

    2014年7月18日

    達成,Email: cd10k@my.fsu.edu

    資助信息:科技部全球變化研究國家重大科學研究計劃(2010CB951600)

    猜你喜歡
    亮溫成像儀視場
    霰譜分布特征對強對流云高頻微波亮溫影響的模擬研究
    星模擬器光學系統(tǒng)視場拼接方法的研究
    中國光學(2021年6期)2021-11-25 07:48:32
    基于恒星的電離層成像儀在軌幾何定標
    基于南太平洋的AMSR2 L1R亮溫數(shù)據(jù)質(zhì)量評估
    海洋通報(2020年2期)2020-09-04 09:22:34
    醫(yī)用內(nèi)窺鏡矩形視場下入瞳視場角的測試方法研究
    2014年2月12日新疆于田MS7.3地震熱紅外亮溫異常分析
    中國地震(2015年1期)2015-11-08 11:11:32
    改進 C-V 分割算法在多光譜成像儀中的應(yīng)用
    中國光學(2015年1期)2015-06-06 18:30:20
    輕小型面陣擺掃熱紅外成像系統(tǒng)研究
    磁共振成像儀主磁場計量性能指標的選擇
    SF6氣體泄漏成像儀校驗技術(shù)研究
    成熟少妇高潮喷水视频| 叶爱在线成人免费视频播放| 精品高清国产在线一区| 美女高潮喷水抽搐中文字幕| 伦理电影免费视频| 国产蜜桃级精品一区二区三区| 午夜91福利影院| 两个人免费观看高清视频| 亚洲专区国产一区二区| 国产精品久久电影中文字幕| 国产精品日韩av在线免费观看 | 在线国产一区二区在线| 母亲3免费完整高清在线观看| 国产蜜桃级精品一区二区三区| 欧美日韩黄片免| 日日爽夜夜爽网站| 久久精品成人免费网站| 亚洲成人免费电影在线观看| 很黄的视频免费| 国产成人系列免费观看| 欧美日韩瑟瑟在线播放| 日韩三级视频一区二区三区| 精品一品国产午夜福利视频| 12—13女人毛片做爰片一| e午夜精品久久久久久久| 在线免费观看的www视频| 人人妻人人添人人爽欧美一区卜| 丝袜美腿诱惑在线| 欧美日韩亚洲高清精品| 黑人猛操日本美女一级片| 国产xxxxx性猛交| 香蕉久久夜色| e午夜精品久久久久久久| 午夜免费成人在线视频| 黄色a级毛片大全视频| 精品高清国产在线一区| 丝袜在线中文字幕| 精品第一国产精品| 欧美中文综合在线视频| 男女午夜视频在线观看| 欧美成人午夜精品| 精品人妻在线不人妻| 国产单亲对白刺激| 国产一卡二卡三卡精品| 桃红色精品国产亚洲av| 高清欧美精品videossex| 亚洲人成77777在线视频| 曰老女人黄片| 一个人观看的视频www高清免费观看 | 人人妻人人澡人人看| 波多野结衣av一区二区av| 久久热在线av| 深夜精品福利| 日日摸夜夜添夜夜添小说| 在线看a的网站| 丝袜美足系列| cao死你这个sao货| www.999成人在线观看| 男女午夜视频在线观看| 老熟妇仑乱视频hdxx| 亚洲精品国产一区二区精华液| 这个男人来自地球电影免费观看| 国产精品香港三级国产av潘金莲| 亚洲avbb在线观看| 一级片免费观看大全| 999久久久精品免费观看国产| 亚洲精品国产一区二区精华液| av在线天堂中文字幕 | 热99re8久久精品国产| 亚洲成av片中文字幕在线观看| 桃色一区二区三区在线观看| 女人高潮潮喷娇喘18禁视频| 国产亚洲欧美98| 国产高清视频在线播放一区| 母亲3免费完整高清在线观看| 搡老岳熟女国产| 欧美 亚洲 国产 日韩一| 久久精品亚洲av国产电影网| 亚洲成人精品中文字幕电影 | 国产亚洲精品久久久久久毛片| 最近最新中文字幕大全电影3 | 视频区欧美日本亚洲| 欧美激情久久久久久爽电影 | 成人特级黄色片久久久久久久| 国产精品秋霞免费鲁丝片| 久久香蕉激情| 免费高清在线观看日韩| 国产一卡二卡三卡精品| ponron亚洲| 午夜视频精品福利| 一二三四在线观看免费中文在| 法律面前人人平等表现在哪些方面| 老司机午夜十八禁免费视频| 国产成人精品久久二区二区91| 亚洲精品中文字幕一二三四区| 欧美激情 高清一区二区三区| 高清欧美精品videossex| 国产亚洲欧美精品永久| 久9热在线精品视频| 极品教师在线免费播放| 亚洲精品一二三| 亚洲国产看品久久| 色哟哟哟哟哟哟| 手机成人av网站| 级片在线观看| 中文字幕最新亚洲高清| 91老司机精品| 欧美久久黑人一区二区| 精品国产乱子伦一区二区三区| 真人做人爱边吃奶动态| 一级黄色大片毛片| 亚洲国产毛片av蜜桃av| 久久久久久久午夜电影 | 亚洲av第一区精品v没综合| 老鸭窝网址在线观看| 国产精品九九99| 天天影视国产精品| 午夜视频精品福利| 色婷婷久久久亚洲欧美| 一级毛片女人18水好多| 国产精品秋霞免费鲁丝片| 国产精品自产拍在线观看55亚洲| 在线观看一区二区三区| 精品少妇一区二区三区视频日本电影| 99香蕉大伊视频| videosex国产| 巨乳人妻的诱惑在线观看| 亚洲美女黄片视频| 最近最新中文字幕大全电影3 | 天天影视国产精品| 久久国产亚洲av麻豆专区| 国产精品野战在线观看 | 高潮久久久久久久久久久不卡| www国产在线视频色| 久久这里只有精品19| 这个男人来自地球电影免费观看| 天堂动漫精品| 亚洲激情在线av| 老司机靠b影院| 国产熟女xx| 久久这里只有精品19| 啪啪无遮挡十八禁网站| 日本黄色日本黄色录像| 一进一出好大好爽视频| 美女大奶头视频| 999久久久精品免费观看国产| 亚洲自偷自拍图片 自拍| 50天的宝宝边吃奶边哭怎么回事| 99久久国产精品久久久| 久久久久国内视频| 久久狼人影院| 12—13女人毛片做爰片一| 最新美女视频免费是黄的| 少妇的丰满在线观看| 日本免费a在线| 日本欧美视频一区| 超碰成人久久| 欧美成人免费av一区二区三区| 久久精品国产亚洲av高清一级| 日本五十路高清| 欧美另类亚洲清纯唯美| 男女下面插进去视频免费观看| 99re在线观看精品视频| 又黄又粗又硬又大视频| 伦理电影免费视频| 日韩高清综合在线| 宅男免费午夜| 日韩精品免费视频一区二区三区| 国产欧美日韩一区二区精品| 亚洲欧美一区二区三区黑人| 欧美在线黄色| 成人av一区二区三区在线看| 在线观看免费高清a一片| 久久久国产一区二区| 男女之事视频高清在线观看| 人人澡人人妻人| 淫秽高清视频在线观看| 亚洲少妇的诱惑av| 超碰97精品在线观看| 欧美久久黑人一区二区| x7x7x7水蜜桃| 亚洲精华国产精华精| 久久久国产精品麻豆| 男人舔女人下体高潮全视频| 亚洲精品国产色婷婷电影| 久久精品人人爽人人爽视色| 最好的美女福利视频网| 国产一区二区三区视频了| 欧美人与性动交α欧美软件| 亚洲男人的天堂狠狠| 丝袜人妻中文字幕| 成人免费观看视频高清| 国产av一区二区精品久久| 动漫黄色视频在线观看| 一边摸一边抽搐一进一出视频| 黄色丝袜av网址大全| 精品福利永久在线观看| 欧美激情极品国产一区二区三区| 精品国产美女av久久久久小说| 国产成人系列免费观看| 变态另类成人亚洲欧美熟女 | 成人特级黄色片久久久久久久| 91九色精品人成在线观看| 母亲3免费完整高清在线观看| 国产1区2区3区精品| 国产高清videossex| 99久久国产精品久久久| 国产91精品成人一区二区三区| 纯流量卡能插随身wifi吗| 每晚都被弄得嗷嗷叫到高潮| 日韩国内少妇激情av| 亚洲中文字幕日韩| 免费在线观看视频国产中文字幕亚洲| 久热这里只有精品99| 亚洲少妇的诱惑av| 亚洲精品粉嫩美女一区| www.www免费av| 日韩欧美一区视频在线观看| 久久久精品欧美日韩精品| 欧美在线一区亚洲| 99热国产这里只有精品6| 免费不卡黄色视频| 精品久久久久久久久久免费视频 | www.熟女人妻精品国产| 国产日韩一区二区三区精品不卡| 国产熟女xx| 黄色 视频免费看| 日本黄色日本黄色录像| 69av精品久久久久久| 麻豆国产av国片精品| 国产单亲对白刺激| 50天的宝宝边吃奶边哭怎么回事| 50天的宝宝边吃奶边哭怎么回事| 丰满迷人的少妇在线观看| 精品久久久精品久久久| 欧美成人午夜精品| 91字幕亚洲| 亚洲少妇的诱惑av| avwww免费| 国产精品香港三级国产av潘金莲| 久久精品国产清高在天天线| 美女高潮到喷水免费观看| 狠狠狠狠99中文字幕| 在线观看日韩欧美| 亚洲第一欧美日韩一区二区三区| 最近最新中文字幕大全电影3 | 中文字幕高清在线视频| 色哟哟哟哟哟哟| 久久天堂一区二区三区四区| 亚洲av熟女| 国产极品粉嫩免费观看在线| 黄片播放在线免费| 国产一区二区三区视频了| 美女高潮喷水抽搐中文字幕| 国产黄色免费在线视频| 久久久精品国产亚洲av高清涩受| 国产激情久久老熟女| 亚洲欧美一区二区三区久久| 亚洲精品成人av观看孕妇| 亚洲第一av免费看| 亚洲熟妇中文字幕五十中出 | 国产成人影院久久av| 97超级碰碰碰精品色视频在线观看| 精品国内亚洲2022精品成人| 亚洲欧美激情在线| 午夜影院日韩av| 老汉色av国产亚洲站长工具| 亚洲人成77777在线视频| 成年人黄色毛片网站| 久久精品国产99精品国产亚洲性色 | 久久精品亚洲精品国产色婷小说| 国产亚洲精品久久久久久毛片| 欧美日本亚洲视频在线播放| 天天添夜夜摸| 桃红色精品国产亚洲av| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲 欧美一区二区三区| 国产精品一区二区精品视频观看| 国产野战对白在线观看| 欧美激情极品国产一区二区三区| a在线观看视频网站| 中出人妻视频一区二区| 国产亚洲精品一区二区www| www.自偷自拍.com| 欧美日本中文国产一区发布| 日韩高清综合在线| 久久久久久久久免费视频了| 国产一区二区三区视频了| 亚洲第一青青草原| 久久天躁狠狠躁夜夜2o2o| 午夜久久久在线观看| 美女国产高潮福利片在线看| 亚洲成人精品中文字幕电影 | 亚洲性夜色夜夜综合| 欧美精品一区二区免费开放| 日韩欧美在线二视频| 99国产精品一区二区三区| 亚洲美女黄片视频| 亚洲狠狠婷婷综合久久图片| 午夜老司机福利片| 黄色a级毛片大全视频| 岛国在线观看网站| 久久国产精品男人的天堂亚洲| 国产亚洲欧美在线一区二区| 一级作爱视频免费观看| 久久影院123| 久久精品亚洲熟妇少妇任你| 村上凉子中文字幕在线| 叶爱在线成人免费视频播放| 真人一进一出gif抽搐免费| 法律面前人人平等表现在哪些方面| 亚洲精品av麻豆狂野| 欧美日韩黄片免| 久久精品国产亚洲av香蕉五月| 日本免费a在线| 黄色片一级片一级黄色片| 日本三级黄在线观看| 曰老女人黄片| 精品久久久久久,| 免费观看人在逋| 日韩一卡2卡3卡4卡2021年| 50天的宝宝边吃奶边哭怎么回事| 91精品国产国语对白视频| 亚洲专区国产一区二区| 97碰自拍视频| 国产一区二区在线av高清观看| 国产成人一区二区三区免费视频网站| 在线国产一区二区在线| 久久久久久人人人人人| 女性被躁到高潮视频| 国产在线观看jvid| 高清黄色对白视频在线免费看| 高清在线国产一区| av免费在线观看网站| 欧美在线黄色| 精品免费久久久久久久清纯| 国产激情久久老熟女| 757午夜福利合集在线观看| 一进一出抽搐gif免费好疼 | 日本vs欧美在线观看视频| xxxhd国产人妻xxx| 黑人巨大精品欧美一区二区mp4| 男女下面进入的视频免费午夜 | 久久久国产成人免费| 人人妻人人添人人爽欧美一区卜| 夜夜看夜夜爽夜夜摸 | 久久人妻福利社区极品人妻图片| 日本撒尿小便嘘嘘汇集6| 最近最新中文字幕大全电影3 | 国产一区二区三区视频了| 国产精品久久久人人做人人爽| 日日干狠狠操夜夜爽| 91麻豆av在线| 日韩精品中文字幕看吧| 精品人妻在线不人妻| 成人黄色视频免费在线看| 人人妻人人添人人爽欧美一区卜| 精品国产亚洲在线| 91麻豆精品激情在线观看国产 | 91大片在线观看| 亚洲av五月六月丁香网| 久热这里只有精品99| 久久性视频一级片| 精品高清国产在线一区| 人人妻,人人澡人人爽秒播| 十八禁网站免费在线| 国产精品美女特级片免费视频播放器 | 老司机在亚洲福利影院| 国产成人系列免费观看| 久久久久久久精品吃奶| 91大片在线观看| 99国产精品一区二区三区| 亚洲精品一区av在线观看| 免费女性裸体啪啪无遮挡网站| 高清av免费在线| 日韩精品中文字幕看吧| 久久国产乱子伦精品免费另类| 天天添夜夜摸| 久久久国产成人精品二区 | 精品国产一区二区三区四区第35| 日韩人妻精品一区2区三区| 国产亚洲欧美精品永久| 九色亚洲精品在线播放| 亚洲第一av免费看| 日日干狠狠操夜夜爽| av天堂久久9| 妹子高潮喷水视频| 国产一区在线观看成人免费| 黄片大片在线免费观看| 久久久久精品国产欧美久久久| 午夜视频精品福利| 欧美激情极品国产一区二区三区| 亚洲一区高清亚洲精品| 美女国产高潮福利片在线看| 亚洲精品一二三| 热99re8久久精品国产| 黄色毛片三级朝国网站| 亚洲精品一区av在线观看| 最近最新中文字幕大全免费视频| 久久久久久亚洲精品国产蜜桃av| 色老头精品视频在线观看| 国产主播在线观看一区二区| 这个男人来自地球电影免费观看| 亚洲情色 制服丝袜| 波多野结衣av一区二区av| 精品福利永久在线观看| 亚洲色图综合在线观看| 亚洲专区中文字幕在线| 国产成人精品无人区| 9色porny在线观看| 亚洲 国产 在线| 欧美激情高清一区二区三区| 级片在线观看| 欧美一区二区精品小视频在线| 亚洲狠狠婷婷综合久久图片| 黑人猛操日本美女一级片| 亚洲精品中文字幕在线视频| 国产有黄有色有爽视频| 国产亚洲欧美98| 欧美日韩精品网址| 亚洲精品美女久久av网站| 成人三级做爰电影| 国产亚洲av高清不卡| 日韩视频一区二区在线观看| 精品久久久久久成人av| 丰满饥渴人妻一区二区三| 五月开心婷婷网| 午夜成年电影在线免费观看| 国产精品综合久久久久久久免费 | 欧美性长视频在线观看| 在线观看一区二区三区| av超薄肉色丝袜交足视频| 国产精品 国内视频| 黄色毛片三级朝国网站| 一区二区日韩欧美中文字幕| 人人妻人人澡人人看| 日韩精品中文字幕看吧| 日韩三级视频一区二区三区| 亚洲avbb在线观看| 亚洲精品av麻豆狂野| 色在线成人网| 国产精品久久久久久人妻精品电影| 日本wwww免费看| 久热爱精品视频在线9| 黄色视频,在线免费观看| 级片在线观看| 亚洲伊人色综图| 午夜福利在线观看吧| 久久精品亚洲精品国产色婷小说| 午夜免费观看网址| 狂野欧美激情性xxxx| 亚洲精品中文字幕在线视频| 大型av网站在线播放| 看片在线看免费视频| av在线播放免费不卡| 交换朋友夫妻互换小说| 91精品国产国语对白视频| 日本 av在线| e午夜精品久久久久久久| 日本黄色视频三级网站网址| 18禁美女被吸乳视频| 国产aⅴ精品一区二区三区波| 久久人人97超碰香蕉20202| 久久99一区二区三区| 久久国产亚洲av麻豆专区| 美女高潮喷水抽搐中文字幕| 精品日产1卡2卡| 99久久人妻综合| 男女之事视频高清在线观看| 国产片内射在线| 纯流量卡能插随身wifi吗| 一级片免费观看大全| 免费一级毛片在线播放高清视频 | 熟女少妇亚洲综合色aaa.| 精品国产超薄肉色丝袜足j| 久久性视频一级片| 色哟哟哟哟哟哟| 中文字幕人妻熟女乱码| 999久久久精品免费观看国产| 免费人成视频x8x8入口观看| 亚洲国产欧美网| 免费在线观看完整版高清| 国产成人av教育| 黄色成人免费大全| 成人亚洲精品一区在线观看| 成人三级做爰电影| 少妇粗大呻吟视频| 久久精品国产亚洲av高清一级| 国产1区2区3区精品| 一进一出好大好爽视频| 欧美中文日本在线观看视频| 欧美成人午夜精品| 黄频高清免费视频| 国产精品野战在线观看 | 国产成人av教育| 亚洲精品成人av观看孕妇| 69av精品久久久久久| 国产精品国产高清国产av| 欧美日韩乱码在线| 高清欧美精品videossex| 国产精品爽爽va在线观看网站 | 亚洲精品一区av在线观看| 在线观看日韩欧美| 亚洲精品国产区一区二| 久久精品成人免费网站| 曰老女人黄片| 最近最新中文字幕大全免费视频| 在线观看舔阴道视频| 亚洲成av片中文字幕在线观看| 日韩欧美在线二视频| 搡老岳熟女国产| 老司机午夜十八禁免费视频| 丰满饥渴人妻一区二区三| 亚洲一区二区三区欧美精品| 亚洲va日本ⅴa欧美va伊人久久| videosex国产| netflix在线观看网站| 叶爱在线成人免费视频播放| 成人精品一区二区免费| 天堂√8在线中文| 91老司机精品| 国产欧美日韩一区二区三| 正在播放国产对白刺激| 在线永久观看黄色视频| 国产亚洲欧美98| 村上凉子中文字幕在线| 久久久精品国产亚洲av高清涩受| 天天躁夜夜躁狠狠躁躁| 久久人妻熟女aⅴ| 欧美性长视频在线观看| 一夜夜www| 又黄又爽又免费观看的视频| 男女之事视频高清在线观看| 欧美性长视频在线观看| 午夜福利免费观看在线| 日日摸夜夜添夜夜添小说| 日本精品一区二区三区蜜桃| 最新美女视频免费是黄的| 他把我摸到了高潮在线观看| 欧美中文综合在线视频| 国产不卡一卡二| 精品午夜福利视频在线观看一区| 久久久国产欧美日韩av| 桃色一区二区三区在线观看| 91成人精品电影| 99久久国产精品久久久| 日韩免费av在线播放| 三级毛片av免费| 最好的美女福利视频网| 亚洲人成伊人成综合网2020| 自线自在国产av| 欧美人与性动交α欧美精品济南到| 国产亚洲av高清不卡| 午夜福利在线观看吧| 国产精品一区二区精品视频观看| 国产成人精品无人区| 日韩国内少妇激情av| 少妇裸体淫交视频免费看高清 | 国产日韩一区二区三区精品不卡| 两个人免费观看高清视频| 夫妻午夜视频| 丰满的人妻完整版| 法律面前人人平等表现在哪些方面| 日韩精品免费视频一区二区三区| 国产精品永久免费网站| 一区福利在线观看| 多毛熟女@视频| 国产蜜桃级精品一区二区三区| 中文字幕最新亚洲高清| 他把我摸到了高潮在线观看| 黑人猛操日本美女一级片| 国产高清激情床上av| 免费av中文字幕在线| 国产精品久久久人人做人人爽| 精品午夜福利视频在线观看一区| www.自偷自拍.com| 日韩大码丰满熟妇| 超碰97精品在线观看| 亚洲五月婷婷丁香| 国产精品综合久久久久久久免费 | 亚洲,欧美精品.| 伦理电影免费视频| 一a级毛片在线观看| 夫妻午夜视频| 久久狼人影院| 国产成人欧美在线观看| 天天影视国产精品| 精品午夜福利视频在线观看一区| 成人三级黄色视频| 婷婷丁香在线五月| 国产av一区二区精品久久| 国产高清国产精品国产三级| 久久国产精品男人的天堂亚洲| 欧美丝袜亚洲另类 | 成人特级黄色片久久久久久久| 在线观看午夜福利视频| 日韩免费高清中文字幕av| 在线看a的网站| 午夜激情av网站| 桃红色精品国产亚洲av| 国产1区2区3区精品| 午夜福利免费观看在线| 精品一区二区三区av网在线观看| 91精品三级在线观看| 一区二区三区国产精品乱码| 国产亚洲欧美在线一区二区| 精品国产国语对白av| 中文字幕人妻丝袜制服| 亚洲va日本ⅴa欧美va伊人久久| 老鸭窝网址在线观看| 一区二区三区激情视频| 久久精品国产亚洲av高清一级| 美国免费a级毛片| 亚洲一码二码三码区别大吗| 欧美不卡视频在线免费观看 |