黃園英,王倩,劉斯文,袁欣
1. 國(guó)家地質(zhì)實(shí)驗(yàn)測(cè)試中心,北京100037;2. 中國(guó)地質(zhì)大學(xué)水資源與環(huán)境學(xué)院, 北京100083
納米鐵快速去除地下水中多種重金屬研究
黃園英1,王倩2,劉斯文1,袁欣1
1. 國(guó)家地質(zhì)實(shí)驗(yàn)測(cè)試中心,北京100037;2. 中國(guó)地質(zhì)大學(xué)水資源與環(huán)境學(xué)院, 北京100083
重金屬污染的地下水治理不斷面臨著挑戰(zhàn),尤其是在一些發(fā)展中國(guó)家。納米鐵顆粒代表新一代環(huán)境治理技術(shù),面對(duì)最具挑戰(zhàn)的環(huán)境治理問題能夠提供有效的解決辦法。在實(shí)驗(yàn)室制得納米鐵顆粒,粒徑為20~40 nm,比表面積(BET)為49.16 m2·g-1。通過考察納米鐵對(duì)多種重金屬共存水體的去除情況,包括As(III)、As(V)、Cd(II)、Pb(II)、Cr(VI)、Cu(II)和Mn(II),實(shí)驗(yàn)結(jié)果表明,重金屬的去除效果與重金屬類型,納米鐵投加量和反應(yīng)時(shí)間有關(guān)。通常當(dāng)納米鐵投加量為1.25 g·L-1時(shí),反應(yīng)時(shí)間在30 min內(nèi),納米鐵對(duì)水體中質(zhì)量濃度范圍為0.1~1.0 mg·L-1的重金屬離子As(III)、As(V)、Cd(II)、Pb(II)、Cr(VI)、Cu(II)和Mn(II)去除率達(dá)90%以上,還可獲得以下結(jié)論:1)納米鐵能同時(shí)對(duì)As(III)和As(V)去除,而不需要將As(III)預(yù)先氧化成As(V);2)納米鐵對(duì)重金屬去除速率快慢為Cu(Ⅱ)> Pb(Ⅱ)>Cr(Ⅵ)>Cd(Ⅱ);3)納米鐵對(duì)重金屬去除由剛開始快速消失,到后期緩慢去除的2個(gè)步驟組成;4)納米鐵對(duì)實(shí)際水樣中重金屬都有很好的去除效果,尤其是對(duì)高濃度Mn去除效果更明顯,可通過延長(zhǎng)處理時(shí)間或增加納米鐵的投加量方式,去除率能達(dá)99%以上。納米鐵對(duì)重金屬的去除機(jī)理取決于重金屬的標(biāo)準(zhǔn)電勢(shì),納米鐵對(duì)As和Cd(Ⅱ)的去除主要是通過吸附沉淀作用,而對(duì)Cu(Ⅱ)、Pb(Ⅱ)和Cr(Ⅵ)去除以還原為主。納米鐵因具有高的比表面積和高的反應(yīng)活性,更重要的是,它在現(xiàn)場(chǎng)應(yīng)用時(shí)具有很好的靈活性,故可通過高壓噴射方式直接注入到地下水中用于多種污染物治理。
納米鐵;重金屬;地下水;去除
重金屬污染是水污染的重要問題之一。重金屬通過礦山開采、金屬冶煉、金屬加工及化工生產(chǎn)廢水、化石燃料的燃燒、施用農(nóng)藥化肥和生活垃圾等人為污染源,以及地質(zhì)侵蝕、風(fēng)化等天然源形式進(jìn)入水體。當(dāng)今人們主要關(guān)心的微痕量元素是汞、砷、鉛、錫、銻、銅、鎘、鉻、鎳、釩等。尤其是當(dāng)水體被重金屬如Cr(VI)、Cd(II)和Pb(II)污染,則問題更嚴(yán)重,因?yàn)檫@些重金屬對(duì)人體毒性更強(qiáng)。20世紀(jì)60年代,在日本的富山縣神通川流域,由于鉛鋅冶煉廠排放的含Cd廢水污染稻田,居民長(zhǎng)期食用含Cd稻米和含Cd水而造成Cd中毒,引發(fā)“骨痛病”(Pence等,2000)。由于重金屬具有較高的移動(dòng)性和較低的中毒濃度,使得重金屬污染具有一定的隱蔽性和延后性。這些元素以各種各樣的化學(xué)形態(tài)存在于空氣、水和土壤中,工業(yè)的發(fā)展引起局域水體的重金屬超標(biāo)造成嚴(yán)重的環(huán)境污染問題,危害人們健康并對(duì)區(qū)域生態(tài)體系造成嚴(yán)重的環(huán)境污染問題(Pollack等,2011)。
修復(fù)治理水體重金屬污染的研究是世界各國(guó)開展最為廣泛的研究?jī)?nèi)容,幾乎每個(gè)國(guó)家都面臨著不同程度的水體重金屬污染問題,所以這方面的研究備受關(guān)注。目前廢水中重金屬處理方法有:化學(xué)沉淀法(Ludwig等,2007)、吸附法(Mohan等,2006)、離子交換法(Hansen等,1997)、膜分離法(Sang等,2008)以及生物法(Dvorak和Hedin,1992)等。在這些方法中,吸附方法被認(rèn)為是水體中重金屬污染治理非常有效的一種方法。目前常用吸附劑主要包括黏土(Sharma,2008)、沸石(Czurda和Haus,2002)、烘干的植物(Periasamy和Namasivayam,1996)、農(nóng)業(yè)廢棄的生物料(Sud等,2008)、生物高聚物(Sciban和Klasnja,2004)、活性污泥(Soltani等,2009)、金屬氧化物(Meng等,2009)和活性炭(Dwivedi等,2008)等。而這些吸附劑的吸附量相對(duì)來說比較低,納米鐵因具有高的還原能力和大的比表面積成為重金屬十分有效的治理方法(Wang等,2010;LI等,2011;Boparai等,2011;Li和Zhang,2006)。但目前更多的報(bào)道是利用納米鐵對(duì)某種單一污染物去除(Shi
等,2011;Yuan和Lien,2006;Dickinson和Scott,2010;Yan等,2012),而自然水體往往是多種重金屬同時(shí)存在,本研究通過考察納米鐵對(duì)模擬和實(shí)際水樣中多種重金屬去除效果,進(jìn)一步探討納米鐵在水處理中應(yīng)用前景。
1.1 納米鐵制備及表征
以NaBH4作為還原劑,通過液相還原方法制得納米鐵(Zhang等,1998),反應(yīng)方程式如下:
詳細(xì)的操作步驟見我們以前的報(bào)道(黃園英等,2009)。圖1為新鮮制得的納米顆粒放大5萬倍時(shí)掃描電鏡譜圖(SEM)。納米鐵顆粒直徑范圍為20~40 nm,主要以“顆粒狀”和“鏈狀”形式存在,并且形成“網(wǎng)狀結(jié)構(gòu)”,中間留有大量的空隙。通過氮?dú)馕椒y(cè)定的BET比表面積為49.16 m2·g-1。
圖1 新鮮合成的納米鐵SEM圖Fig. 1 SEM image of freshly prepared NZVI particles
1.2 主要儀器和試劑
1.2.1 主要儀器
數(shù)顯水浴恒溫振蕩器:SHA-B(江蘇金壇市榮華儀器制造有限公司);干燥箱:DHG-9070A型(上海一恒科技有限公司);磁力攪拌器:C-MAG HS10(德國(guó)IKA);離心機(jī):TGL-16C(上海安亭科學(xué)儀器廠);SA-10型砷形態(tài)分析儀(北京吉天儀器有限公司);比表面與孔隙度分析儀(Autosorb-1型美國(guó));掃描電子顯微鏡(S-4300型,日本);7500a型電感耦合等離子體質(zhì)譜儀(美國(guó)Agilent公司)。
1.2.2 主要試劑
Pb、Zn、Cd、Cr、Mn、Ni、Cu標(biāo)準(zhǔn)溶液:1000 mg·L-1標(biāo)準(zhǔn)溶液(國(guó)家地質(zhì)實(shí)驗(yàn)測(cè)試中心);As(V):砷酸氫二鈉(Na2HAsO4·7H2O)(SIGMA-ALDRICH, Inc. 西班牙);FeCl3·6H2O,NaBH4均為分析純,濃HCl(優(yōu)級(jí)純)和無水乙醇(色譜純)。
1.3 重金屬離子測(cè)試方法
取水樣10 mL,用硝酸酸化至pH<2,立即用直徑9 mm,孔徑為0.45 μm水系濾紙過濾,冷藏,待上機(jī)分析。電感耦合等離子體質(zhì)譜儀(美國(guó)Agilent公司),工作參數(shù):射頻功率1360 W;采樣深度:7.5 mm;Babinton型霧化器;載氣流量1.05 L·min-1;載氣流速1.13 L·min-1;采樣模式:樣品提升速率1.13 mL·min-1。重金屬離子濃度采用電感耦合等離子體質(zhì)譜法(ICP-MS)測(cè)定,方法檢出限如表1所示。
表1 不同離子的方法檢出限Table 1 Detection limit for the analytical method in determination of the elements
1.4 批實(shí)驗(yàn)條件
批實(shí)驗(yàn)在250 mL反應(yīng)瓶中進(jìn)行,反應(yīng)瓶?jī)?nèi)裝有一定量新鮮合成的納米鐵,加入200 mL模擬水樣,擰緊瓶蓋,將反應(yīng)瓶置于(20±1) ℃的水浴振蕩器中,振蕩速率為170 r·min-1,每隔一定時(shí)間取樣,用ICP-MS分析測(cè)定。
2.1 納米鐵對(duì)As(Ⅲ)和As(V)去除
含砷地下水是全世界共同關(guān)注的重要環(huán)境問題之一,長(zhǎng)期暴露到質(zhì)量濃度高于0.1 mg·L-1砷環(huán)境中,將會(huì)引起神經(jīng)紊亂、皮膚病、肝癌和肺癌等疾?。ㄎ捍蟪?,2004)。在地下水和地表水中,砷主要以三價(jià)砷As(Ⅲ)和五價(jià)砷As(Ⅴ)形式存在。在含砷地下水中96%都為As(Ⅲ),而As(Ⅲ)毒性為As(Ⅴ)的60倍。大多數(shù)國(guó)家對(duì)飲用水含砷量都有嚴(yán)格界定,2001年美國(guó)環(huán)保局飲用水中砷的標(biāo)準(zhǔn)由50 μg·L-1降為10 μg·L-1(US EPA,2001)。中國(guó)最新的《生活飲用水衛(wèi)生標(biāo)準(zhǔn)》(GB 5749—2006)修訂稿中規(guī)定砷的最大限值為10 μg·L-1,但對(duì)于農(nóng)村小型集中式供水和分散式供水部分仍為50 μg·L-1。中國(guó)高砷地下水區(qū)主要分布在內(nèi)蒙、新疆、山西、吉林、江蘇、安徽、山東、河南、湖南、云南、臺(tái)灣等省(自治區(qū))區(qū)的40個(gè)縣(旗、市),因此對(duì)于水中砷污染治
理迫在眉睫。目前大多數(shù)方法對(duì)As(V)去除有效,但通常需要將As(Ш)進(jìn)行前處理,氧化成As(V)。
稱取0.25 g新鮮合成制得的納米鐵,對(duì)起始質(zhì)量濃度As(Ш)為1015 μg·L-1和As(V)為857 μg·L-1,體積為200 mL As(Ш)和As(V)混合溶液進(jìn)行吸附實(shí)驗(yàn),即固液比為0.25 g ∶ 200 mL。
由納米鐵對(duì)As(III)和As(V)的混合液去除效果(圖2)可看出,10 min時(shí),As(Ш)和As(V)的去除率已達(dá)到95%以上,反應(yīng)60 min后,對(duì)砷的去除率在99.5%以上,As(Ш)和As(V)的總質(zhì)量濃度為3.36 μg·L-1,低于世界衛(wèi)生組織建議的飲用水標(biāo)準(zhǔn)(10 μg·L-1),表明納米鐵對(duì)As(Ш)和As(V)能同時(shí)去除,而不用將As(Ш)預(yù)先氧化成As(V)(黃園英等,2009)。
圖2 納米鐵對(duì)As(Ш)和As(V)混合溶液的去除率與時(shí)間關(guān)系Fig.2 The relationship between the removal rate of As(Ⅲ+V ) and reaction time
圖3 納米鐵對(duì)As(Ⅲ)、Cd(Ⅱ)和Pb(Ⅱ)混合溶液的去除率與時(shí)間關(guān)系Fig.3 The relationship between the removal rate of As(Ⅲ), Cd()Ⅱand Pb()Ⅱ, and reaction time
圖4 納米鐵對(duì)Cr(VI), Cu(Ⅱ), Cd(Ⅱ)和Pb(Ⅱ)混合溶液的去除率與時(shí)間關(guān)系Fig.4 The relationship between the removal rate of Cr(VI), Cu()Ⅱ, Cd()Ⅱand Pb()Ⅱ, and reaction time
2.2 納米鐵對(duì)As(Ⅲ)、Cd(Ⅱ)和Pb(Ⅱ)去除
一些有毒有害的元素通過飲用水或農(nóng)作物灌溉進(jìn)入食物鏈?zhǔn)且粋€(gè)非常普遍的現(xiàn)象,特別是在一些經(jīng)濟(jì)比較落后的國(guó)家。因As、Cd和Pb三種元素本身毒性大而且在污染水體中普遍存在,所以關(guān)于這3種元素的治理問題尤其迫切。通常對(duì)于含有As、Cd和Pb混合污染物大量水體的處理在技術(shù)上有難度且成本高(Yadanaparthi等,2009)。本研究利用納米鐵對(duì)As(Ⅲ)、Cd(Ⅱ)和Pb(Ⅱ) 3種元素混合溶液進(jìn)行實(shí)驗(yàn)。稱取0.20 g新鮮合成制得的納米鐵,對(duì)起始質(zhì)量濃度As(Ш)為1130 μg·L-1、Cd(Ⅱ)為1453 μg·L-1和1464 μg·L-1Pb(Ⅱ)混合液進(jìn)行吸附實(shí)驗(yàn),反應(yīng)液體積為200 mL,即固液比為0.20 g ∶ 200 mL,其他基準(zhǔn)條件保持不變。納米鐵對(duì)As(III)、Cd(Ⅱ)和Pb(Ⅱ)去除效果見圖3,由圖3可得知,在5 min之內(nèi),納米鐵對(duì)Pb(Ⅱ)去除率為100%,As(Ш)濃度由起始質(zhì)量濃度1130 μg·L-1降為29.4 μg·L-1,去除率達(dá)97%,Cd(Ⅱ) 由1453 μg·L-1降為170.8 μg·L-1,去除率達(dá)88%以上,這可能是在反應(yīng)剛開始時(shí)主要是通過吸附作用來去除。隨著反應(yīng)時(shí)間增加,水體中Cd(Ⅱ)濃度逐漸降低,在反應(yīng)90 min,Cd(Ⅱ)濃度降為3 μg·L-1,低于中國(guó)《生活飲用水衛(wèi)生標(biāo)準(zhǔn)》(GB 5749—2006)中Cd標(biāo)準(zhǔn)5 μg·L-1。在30 min內(nèi),As(Ш)質(zhì)量濃度降為12.90 μg·L-1,去除率都大于99%。去除速率快慢順序?yàn)镻b(Ⅱ)>As(III)>Cd(Ⅱ)。另外,重金屬離子Cd(Ⅱ)和Pb(Ⅱ)存在時(shí),對(duì)納米鐵去除砷的速率并沒有明顯影響。
2.3 納米鐵對(duì)多種重金屬離子去除
有些材料對(duì)于高濃度的去除效果比較好,但當(dāng)重金屬濃度比較低時(shí),通常去除效果不理想。為了考察納米鐵對(duì)于低濃度重金屬去除情況,本研究配制起始質(zhì)量濃度分別為95.6 μg·L-1Cr(Ⅵ),105 μg·L-1Cu(Ⅱ),110 μg· L-1Cd(Ⅱ),83.6 μg·L-1Pb(Ⅱ)和920 μg·L-1As(Ш)混合溶液,固液比為0.25 g ∶ 200 mL,其他基準(zhǔn)條件保持不變。納米鐵對(duì)4種重金屬離子去除效果見圖4,由圖4可知,重金屬離子(除
Cd(Ⅱ)之外)在10 min之內(nèi),去除率都大于90%,這可能是在反應(yīng)剛開始時(shí)主要是通過吸附作用來去除。在30 min內(nèi),4種重金屬離子質(zhì)量濃度都低于0.8 μg·L-1,且去除率都大于99%。總之,由于納米鐵具有高比表面積和高反應(yīng)活性的特點(diǎn),所以納米鐵不僅對(duì)砷有很好的去除效果,同時(shí)能夠快速去除水中的重金屬離子,去除速率快慢順序?yàn)镃u(Ⅱ)>Pb(Ⅱ)>Cr(Ⅵ)>Cd(Ⅱ),該順序與陽離子標(biāo)準(zhǔn)還原電位是一致的(Li和Zhang,2007)。
2.4 納米鐵對(duì)實(shí)際水樣中重金屬去除
前面的試驗(yàn)都是在實(shí)驗(yàn)室配制的模擬水樣,相對(duì)實(shí)際水樣來說,成份較單一,為了更好地了解納米鐵對(duì)實(shí)際水樣中重金屬離子的處理情況,本研究對(duì)采自于東北某地區(qū)地下水進(jìn)行了組份分析,結(jié)果表明該地下水中,Mn質(zhì)量濃度異常高,高達(dá)5645 μg·L-1,為飲用水標(biāo)準(zhǔn)的110倍,而水中Cr、Cu、Zn、As、Cd、Pb質(zhì)量濃度都低于中國(guó)《生活飲用水衛(wèi)生標(biāo)準(zhǔn)》(GB 5749—2006),但由于某些離子對(duì)人體健康不利,因此其質(zhì)量濃度越低越好,或者未檢出最好。分別投加0.2 g和0.4 g NZVI于40 mL水樣中,在反應(yīng)1和4 h時(shí)取樣測(cè)定,圖5為納米鐵對(duì)地下水中重金屬Cr、Cu、Zn、As、Cd、Pb隨反應(yīng)時(shí)間和納米鐵投加量的變化情況,當(dāng)納米鐵投加量為0.2 g時(shí),隨著反應(yīng)時(shí)間增加,重金屬質(zhì)量濃度Cr、Cu、Zn和As不斷降低,尤其是Zn質(zhì)量濃度由起始76.9 μg·L-1降至0.65 μg·L-1,去除率為99%。因Cd和Pb起始質(zhì)量濃度較低,所以在反應(yīng)1 h時(shí),Cd和Pb質(zhì)量濃度低于方法檢出限。圖6為納米鐵對(duì)地下水中Mn的去除情況,隨著NZVI投加量增加,Mn去除效果更加明顯,如投加量為0.2 g,反應(yīng)時(shí)間為4 h,Mn質(zhì)量濃度由5645 μg·L-1降至39.9 μg·L-1,去除率達(dá)99.3%;當(dāng)NZVI投加量增至0.4 g時(shí),反應(yīng)時(shí)間為4 h時(shí),Mn質(zhì)量濃度降為20.1 μg·L-1,去除率為99.7%。同時(shí)發(fā)現(xiàn),NZVI投加量對(duì)各種離子去除效果的影響小于反應(yīng)時(shí)間。如當(dāng)NZVI投加量由0.2 g增加至0.4 g,反應(yīng)1 h,Mn的去除率由53%增至78%,即提高25%。而投加量都為0.2 g,反應(yīng)時(shí)間從1 h延長(zhǎng)為4 h,則Mn的去除率由53%升高至99.3%,提高了46.3%,大約為增加投加量時(shí),引起的去除率提高時(shí)的1.9倍。因此,考慮到成本,不一定需增加NZVI的投加量,有時(shí)可適當(dāng)延長(zhǎng)處理時(shí)間,或許能獲得更理想的處理效果。
通過上述批試驗(yàn)結(jié)果發(fā)現(xiàn),自制NZVI對(duì)地下水中各離子都有很好的去除效果,尤其是對(duì)高質(zhì)量濃度Mn和Zn去除效果更明顯,去除率能達(dá)99%以上。
圖5 自制NZVI對(duì)地下水中不同元素的去除Fig.5 Removal of various elements from groundwater by synthetic NZVI
圖6 自制NZVI對(duì)地下水中Mn2+的去除Fig.6 Removal of Mn2+from groundwater by synthetic NZVI
2.5 納米鐵對(duì)重金屬去除機(jī)理探討
納米鐵對(duì)As(Ш)的去除機(jī)理主要是通過吸附和沉淀共同作用(黃園英等,2009;Bang等,2005;Farrell等,2001;Melitas等,2002),而關(guān)于納米鐵對(duì)于重金屬離子去除機(jī)理許多研究者已進(jìn)行了較深入的探討,重金屬去除機(jī)理主要取決于重金屬的標(biāo)準(zhǔn)電位,通常包括吸附、還原和沉淀或2種作用機(jī)理同時(shí)存在。鐵的標(biāo)準(zhǔn)電勢(shì)為-0.41 eV,其他重金屬的標(biāo)準(zhǔn)電勢(shì)一般與鐵標(biāo)準(zhǔn)電勢(shì)(-0.41 eV)接近或更高一些。例如,在25 ℃時(shí),Cd(Ⅱ)的標(biāo)準(zhǔn)電勢(shì)為-0.40 eV,這與零價(jià)鐵的標(biāo)準(zhǔn)電勢(shì)非常接近(-0.41 eV),所以從熱力學(xué)角度認(rèn)為納米鐵主要是通過化學(xué)吸附作用去除Cd(Ⅱ),吸附速率受表面吸附控制(Li和Zhang,2007;Boparai等,2011)。Pb(II)標(biāo)準(zhǔn)電勢(shì)為-0.13 eV,去除機(jī)理主要為吸附和還原,Pb(Ⅱ)被還原成Pb0(Ponder等,2000)。Cr(Ⅵ)的標(biāo)準(zhǔn)電勢(shì)明顯高于鐵,為1.36 eV,主要去除機(jī)理為還原和沉淀,首先納米鐵將Cr(VI)還原成Cr(Ш),然后
生成Cr(OH)3沉淀而被去除,同時(shí)檢測(cè)到Fe(Ⅱ)、Fe(Ш)生成(Ponder等,2000;Shi等,2011)。Cu的標(biāo)準(zhǔn)電勢(shì)為0.337 eV,納米鐵對(duì)Cu(Ⅱ)快速去除也是通過還原作用,XRD分析表明Cu(Ⅱ)被還原后生成了大量的Cu2O和少量的Cu單質(zhì)(üzüm等,2009;Karabelli等,2008)。納米鐵對(duì)重金屬的去除機(jī)理與它本身核殼結(jié)構(gòu)和溶液pH密切相關(guān)(Li和Zhang,2007)。雖然目前有大量實(shí)驗(yàn)結(jié)果表明納米鐵對(duì)重金屬去除機(jī)理主要為吸附和還原作用,但對(duì)于一些更確切的污染物去除機(jī)理仍不是很清楚,如顆粒表面的化學(xué)作用(Noubactep,2010)。Huang等(2013)研究發(fā)現(xiàn)通過增加納米鐵的磁力分離時(shí)間,水體中重金屬Pb(II)去除效率隨之升高,表明納米鐵的磁性也是重金屬去除機(jī)理之一。
由于納米鐵具有高的比表面積和高反應(yīng)活性特點(diǎn),所以能同時(shí)對(duì)多種重金屬具有很好的處理效果,表明納米鐵可用于水中重金屬處理的吸附材料之一,但在實(shí)際應(yīng)用中納米鐵的保存和易氧化問題,還需要進(jìn)一步研究。由實(shí)驗(yàn)結(jié)果,可推斷出以下結(jié)論:
1)納米鐵對(duì)As(Ш)和As(V)能同時(shí)去除,而不用將As(Ш)預(yù)先氧化成As(V)。
2)納米鐵不僅對(duì)砷有很好的去除效果,同時(shí)能夠快速去除水中的重金屬離子,去除速率快慢順序?yàn)镃u(Ⅱ)> Pb(Ⅱ)>Cr(Ⅵ)>Cd(Ⅱ)。重金屬離子存在時(shí),對(duì)納米鐵去除As(Ш)的速率并沒有明顯影響。
3)納米鐵對(duì)成分復(fù)雜的實(shí)際水樣中重金屬都有很好的去除效果,尤其是對(duì)高濃度Mn去除效果更明顯,可通過延長(zhǎng)處理時(shí)間或增加納米鐵的投加量方式,去除率能達(dá)99%以上。
4)納米鐵對(duì)As 和Cd(Ⅱ)的去除主要是通過吸附沉淀作用,而對(duì)Cu(Ⅱ)、Pb(Ⅱ)和Cr(Ⅵ)去除以還原為主。
BANG S, KORFIATIS G P, MENG X. 2005. Removal of arsenic from water by zero-valent iron[J].Journal of Hazardous Materials, 121:61-67.
BOPARAI H K, JOSEPH M, O’Carroll D M. 2011. Kinetics and thermodynamics of cadmiumion removal by adsorption onto nano zero valent iron particles[J]. Journal of Hazardous Materials, 186(1):458-465.
CZURDA K A, HAUS R. 2002. Reactive barriers with fly ash zeolites for in situ groundwater remediation[J]. Applied Clay Science, 21: 13-20.
DICKINSON M, SCOTT T B. 2010. The application of zero-valent iron nanoparticles for the remediation of a uranium-contaminated waste effluent[J]. Journal of Hazardous Materials, 178:171-179.
DVORAK D H, HEDIN R S. 1992. Treatment of metal contaminated water using bacterial sulfate reduction: results from pilot-scale reactors[J]. Biotechnology and Bioprocess Engineering, 40:609-616.
DWIVEDI C P, SAHU J N, MOHANTY C R, et al. 2008. Column performance of granular activated carbon packed bed for Pb(II) removal[J]. Journal of Hazardous Materials, 156: 596-603.
FARRELL J, WANG J P, O’DAY P, et al. 2001. Electrochemical and spectroscopic study of arsenate removal from water using zero-valent iron media[J], Environmental Science and Technology, 35: 2026-2032.
HANSEN H K, OTTOSEMN L M, LAURSEN S, et al. 1997. Electrochemical analysis of ion-exchange membranes with respect to a possible use in electrodialytic decontamination of soil polluted with heavy metals[J]. Separation Science and Technology, 32: 2425-2444.
HUANG P P, YE Z F, XIE W M, et al. 2013. Rapid magnetic removal of aqueous heavy metals and their relevant mechanisms using nanoscale zero valent iron (nZVI) particles[J]. Water Research, 47:4050-4058.
KARABELLI D, UZUM C, SHAHWAN T, et al. 2008. Batch removal of aqueous Cu2+ions using nanoparticles of zero-valent iron: a study of the capacity and mechanism of uptake [J]. Industrial & Engineering Chemistry Research, 47: 4758-4764.
LI X Q, ZHANG W X. 2007. Sequestration of metal cations with zero valent iron nanoparticales a study with high resolution X ray photoelectron spectroscopy (HR-XPS) [J]. Journal of Physical Chemistry C, 11: 6939-6946.
LI X, LI Y, YE Z. 2011. Preparation of macroporous bead adsorbents based on poly (vinyl alcohol) /chitosan and their adsorption properties for heavy metals from aqueous solution[J]. Chemical Engineering Journal, 178: 60-68.
LI X, ZHANG W. 2006. Iron nanoparticles: the core-shell structure and unique properties for Ni (II) sequestration [J]. Langmuir, 22:4638-4642.
LUDWIG R D, SU C, LEE T R, et al. 2007. In situ chemical reduction of Cr (VI) in groundwater using a combination of ferrous sulfate and sodium dithionite: a field investigation[J]. Environmental Science and Technology, 41: 5299-5305.
MELITAS N, WANG J, CONKLIN M, et al. 2002. Understanding soluble arsenate removal kinetics by zerovalent iron media[J]. Environmental Science and Technology, 36: 2074-2081.
MENG Y T, ZHENG Y M, ZHANG L M, et al. 2009. Biogenic Mn oxides for effective adsorption of Cd from aquatic environment [J]. Environmental Pollution, 157: 2577-2583.
MOHAN D, CHANDER S. 2006. Removal and recovery of metal ions from acid mine drainage using ligniteea low cost sorbent[J]. Journal of Hazardous Materials, 137:1545-1553.
NOUBACTEP C. 2010. The fundamental mechanism of aqueous contaminant removal by metallic iron[J]. Water SA, 36: 663-670.
PENCE N S, LARSEN P B, EBBS S D, et al. 2000. Themolecular physiolosy of heavy metal transport in the Zn/Cd hyper accumulator [J]. Proceedings of the National Academy of Sciences, 97: 4956-4960.
PERIASAMY K, NAMASIVAYAM C. 1996. Removal of copper (II) by adsorption onto peanut hull carbon from water and copper plating industry wastewater[J]. Chemosphere, 32: 769-789.
POLLACK A Z, SCHISTERMAN E F, GOLDMAN L R, et al. 2011. Cadmium, lead, and mercury in relation to reproductive hormones and anovulation in premenopausal women [J]. Environmental Health Perspectives, 119: 1156-1161.
PONDER S M, DARAB J G, MALLOUK T E. 2000. Remediation of Cr (Ⅵ) and Pb (Ⅱ) aqueous solution using supported nanoscale zero-valent [J]. Environmental Science and Technology, 34: 2564-2569.
SANG Y, LI F, GU Q, et al. 2008. Heavy metal-contaminated groundwater
treatment by a novel nanofiber membrane[J]. Desalination, 223: 349-360.
SCIBAN M, KLASNJA M. 2004. Wood sawdust and wood originate materials as adsorbents for heavy metal ions[J]. Holz Roh Werkst, 62: 69-73.
SHARMA Y C. 2008. Thermodynamics of removal of cadmium by adsorption on an indigenous clay [J]. Chemical Engineering Journal, 145:64-68.
SHI L N, ZHANG X, CHEN Z L. 2011. Removal of Chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron[J].Water Research, 45: 886-892.
SOLTANI R D C, JAFARI A J, KHORRAMSBADI Gh S. 2009. Investigation of cadmium (II) ions biosorption onto pretreated dried activated sludge [J]. American Journal Environmental Science, 5: 41-46.
SUD D, MAHAJAN G, KAUR M P. 2008. Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions - a review[J]. Bioresource Technology, 99: 6017-6027.
U. S. EPA. 2001. National primary drinking water regulations: arsenic and clarifications to compliance and new source contaminants monitoring; final rule [J]. Federal Register, 66(14):69-76.
üZüM C, SHAHWAN T, ERO?LU A E, et al. 2009. Synthesis and characterization of kaolinite supported zero valent iron nanoparticles and their application for the removal of aqueous Cu2+and Co2+ions[J]. Applied Clay Science, 43: 172-181.
WANG F Y, WANG H, Ma J W. 2010. Adsorption of cadmium (II) ions from aqueous solution by a new low-cost adsorbent-Bamboo charcoal[J]. Journal of Hazardous Materials, 177: 300-306.
YADANAPARTHI S K R, GRAYBILL D, VONWANDRUSZKA R. 2009. Adsorbents for the removal of arsenic, cadmium, and lead from contaminated waters[J]. Journal of Hazardous Materials, 171: 1-15.
YAN W, RAMOS M A, KOEL B E, et al. 2012. As (III) sequestration by iron nanoparticles: study of solid-phase redox transformations with X-ray photoelectron spectroscopy[J]. Journal of Physical Chemistry C, 116: 5303-5311.
YUAN C, LIEN H L. 2006. Removal of Arsenate from Aqueous Solution Using Nanoscale Iron Particles[J]. Water Quality Research Journal of Canada, 41(2): 210-215.
ZHANG W X, WANG C B, LIEN H L. 1998. Treatment of chlorinated organic contaminants with nanoscale bimetallic particles[J]. Catalysis Today, 40: 387-395.
黃園英, 秦臻, 劉菲. 2009. 納米鐵去除飲用水中As(III)和As(V)[J]. 巖礦測(cè)試, 6(28): 529-534.
魏大成. 2004. 砷與健康[J]. 國(guó)外醫(yī)學(xué): 醫(yī)學(xué)地理分冊(cè), 25(2): 72-74.
Rapid removal of heavy metals from groundwater using nanoscale zero valent iron (nZVI) particles
HUANG Yuanying1, WANG Qian2, LIU Siwen1, YUAN Xin1
1. National Research Center for Geoanalysis, Beijing 100037, China; 2. School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
Remediation of groundwater contaminated by heavy metal is a recurring challenge, especially in developing countries. Nanoscale iron particles represent a new generation of environmental remediation technologies that could provide cost-effective solutions to some of the most challenging environmental cleanup problems. This study investigated the use of nZVI particles with the particle size of 20-40 nm and specific surface area (BET) of 49.16 m2·g-1in removing mixed heavy metal contaminants including As(III), As(V), Cd(II), Pb(II), Cr(VI), Cu(II) and Mn(II) from groundwater. Results showed that the removal efficiencies of heavy metals varied with the metal species, nZVI loading, and reaction time. In most cases, use of 1.25 g·L-1nZVI resulted in removal efficiencies of more than 90% for Cr(VI), Cu(II), Cd(II), Pb(II), Mn(II), As(III), and As(V) with different concentration levels (0.1-1.0 mg·L-1) in 30 min. The following points may be concluded: 1) Both As(III) and As(V) from aqueous solution were removed effectively using NZVI without additional oxidant for oxidizing As(III) to As(V). 2) The removal rate of the heavy metals by nZVI particles followed the sequence Cu(Ⅱ)> Pb(Ⅱ) >Cr(Ⅵ) >Cd(Ⅱ). 3) Batch studies indicate that the removal of heavy metals is a two-step reaction with a fast initial reaction which remove heavy metals to a near-disappearance (or very low) level followed by a slow subsequent removal process. 4) This study demonstrated the efficacy of nZVI particles for the rapid removal of mixed heavy metals, especially for high level Mn(II) from groundwater. 99% for Mn(II) can be removed by prolonging reaction time or increasing the nZVI loading. Depending on the standard potential E0of the heavy metals, the removal mechanisms of Cd(Ⅱ) and As(III) by nZVI is due to sorption or coprecipitation while that of Cu(Ⅱ), Pb(Ⅱ) or Cr(Ⅵ) is mainly redox processes. Due to their small particle size and reactivity, the nanosacle particles may be useful in wide array of environmental applications including subsurface injection for groundwater treatment.
nanoscale iron; heavy metals; groundwater; removal
X523
A
1674-5906(2014)05-0847-06
國(guó)土資源部公益性行業(yè)專項(xiàng)(201411089)
黃園英(1978年生), 女,副研究員,博士,研究方向?yàn)樗廴究刂婆c治理技術(shù)研究。E-mail: yuanyinghuang304@163.com
2014-02-09
黃園英,王倩,劉斯文,袁欣. 納米鐵快速去除地下水中多種重金屬研究[J]. 生態(tài)環(huán)境學(xué)報(bào), 2014, 23(5): 847-852. HUANG Yuanying, WANG Qian, LIU Siwen, YUAN Xin. Rapid removal of heavy metals from groundwater using nanoscale zero valent iron (nZVI) particles [J]. Ecology and Environmental Sciences, 2014, 23(5): 847-852.