彭孝東, 張鐵民, 李繼宇, 閆國(guó)琦
(1.華南農(nóng)業(yè)大學(xué)工程學(xué)院 廣州,510642) (2.機(jī)器人學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室 沈陽(yáng),110016)
農(nóng)業(yè)機(jī)械的自動(dòng)導(dǎo)航控制與變量作業(yè)實(shí)施中,實(shí)時(shí)檢測(cè)與獲取農(nóng)業(yè)機(jī)械的姿態(tài)角對(duì)農(nóng)業(yè)機(jī)械精確導(dǎo)航及變量作業(yè)控制具有重要意義[1]。對(duì)物體姿態(tài)角的監(jiān)測(cè)常用到電子羅盤(pán)、陀螺儀以及加速度計(jì)等慣性測(cè)量單元進(jìn)行組合監(jiān)測(cè),采用多傳感器融合技術(shù)來(lái)獲取物體的偏航角、俯仰角及翻滾角信息[2-3]。慣性測(cè)量單元在使用前必須對(duì)其進(jìn)行標(biāo)定校準(zhǔn)實(shí)驗(yàn),補(bǔ)償各種誤差以提高檢測(cè)精度。慣性傳感器的標(biāo)定通常是在三軸轉(zhuǎn)臺(tái)上來(lái)完成的,高精度三軸轉(zhuǎn)臺(tái)價(jià)格昂貴,體積笨重,只限于實(shí)驗(yàn)室使用。普通用戶和一般的實(shí)驗(yàn)室很少具備這類(lèi)精密昂貴的專(zhuān)用實(shí)驗(yàn)設(shè)備,很少有條件對(duì)此類(lèi)傳感器做精確標(biāo)定,因此需要一種簡(jiǎn)單方便、快捷有效的標(biāo)定校準(zhǔn)方法。
根據(jù)MEMS三軸數(shù)字加速度計(jì)的特點(diǎn),利用普通氣泡水平儀、六面體盒狀物實(shí)現(xiàn)了加速度計(jì)的六位置現(xiàn)場(chǎng)簡(jiǎn)易標(biāo)定,并通過(guò)三軸轉(zhuǎn)臺(tái)實(shí)驗(yàn)驗(yàn)證了其準(zhǔn)確性及精度,證明了該標(biāo)定法簡(jiǎn)單快速,準(zhǔn)確可靠,特別適合于現(xiàn)場(chǎng)標(biāo)定。
根據(jù)誤差產(chǎn)生機(jī)制不同,三軸加速度計(jì)誤差主要分為零位偏差、標(biāo)度系數(shù)誤差、安裝誤差及軸間非正交誤差等[4-5]。對(duì)MEMS三軸加速度計(jì)傳感器來(lái)說(shuō),零位誤差和標(biāo)度系數(shù)誤差是影響其精度的主要因素,且隨時(shí)間環(huán)境的變化而變化,安裝誤差及軸間非正交誤差在長(zhǎng)時(shí)間范圍內(nèi)不會(huì)產(chǎn)生較大的變化,并可以通過(guò)提高安裝工藝及制造工藝來(lái)減小此類(lèi)誤差的影響。軸間非正交誤差造成影響和安裝誤差相似,可將其統(tǒng)一劃歸為安裝誤差。因此,根據(jù)上述MEMS三軸加速度計(jì)誤差形成的特點(diǎn),將傳感器輸出誤差數(shù)學(xué)模型[5-10]表示為
其中:Dx,Dy,Dz為加速度的真實(shí)值;Mx,My,Mz為傳感器測(cè)量值;Bx,By,Bz為傳感器的零偏;Sx,Sy,Sz為傳感器的比例因子;kij(i=x,y,z;j=x,y,z;i≠j)為傳感器安裝誤差系數(shù)。
加速度傳感器的標(biāo)定就是確定數(shù)學(xué)模型中的零偏、比例因子、安裝誤差系數(shù),該模型中共有12個(gè)未知參數(shù)。隨著安裝工藝和制作工藝的提高,安裝誤差所帶來(lái)的影響很小,相對(duì)于比例因子和零偏所造成的誤差來(lái)說(shuō)是可以忽略的小量,因此現(xiàn)場(chǎng)簡(jiǎn)單標(biāo)定可以只對(duì)比例因子與零偏進(jìn)行標(biāo)定,則傳感器的誤差數(shù)學(xué)模型簡(jiǎn)化為
實(shí)驗(yàn)用的加速度傳感器是ADI公司新推出的三軸數(shù)字加速度計(jì)ADXL345,一款主要應(yīng)用于消費(fèi)電子的微型慣性器件,具有3.9mg/LSB(least significant bit,簡(jiǎn)稱LSB)最低有效位的靈敏度,數(shù)據(jù)輸出頻率高達(dá)3 200Hz。該傳感器采用集成式存儲(chǔ)器管理系統(tǒng),有可選的32級(jí)先進(jìn)先出(first input first output,簡(jiǎn)稱FIFO)緩沖器存儲(chǔ)數(shù)據(jù),能大大降低主機(jī)處理器負(fù)荷及系統(tǒng)功耗。
加速度計(jì)的標(biāo)定通常是在重力場(chǎng)下采用基于重力的多位置翻滾標(biāo)定法,常用的有6位置[5]、10位置[10]、12位置[11]及24位置[12]標(biāo)定等,根據(jù)確定位置的理論加速度和傳感器的量測(cè)值來(lái)解算傳感器標(biāo)定系數(shù)矩陣中的未知量。為了簡(jiǎn)化現(xiàn)場(chǎng)標(biāo)定的難度,文中采用基于長(zhǎng)方體的六位置標(biāo)定法并按表1所示設(shè)置傳感器各敏感軸位置方向。將ADXL345設(shè)置成全分辨率模式時(shí),其靈敏度為256LSB/g(或0.003 9g/LSB)。當(dāng)敏感軸與重力方向平行時(shí)其理論值應(yīng)輸出256LSB或-256LSB。
表1 加速度計(jì)各軸取向與加速度輸出Tab.1 Sensitive axis orientation and acceleration values of accelerometer
加速度計(jì)零位偏差校準(zhǔn)需要在靜態(tài)下進(jìn)行,將傳感器模塊安放在一長(zhǎng)方體盒狀物的某個(gè)面上,并使傳感器的三個(gè)敏感軸方向與長(zhǎng)方體的長(zhǎng)寬高平行。將盒狀物按位置1放置在經(jīng)過(guò)氣泡水平儀檢驗(yàn)后的相對(duì)水平的一個(gè)桌面上,保持靜止?fàn)顟B(tài)至2~3min,記錄經(jīng)過(guò)均值濾波的x軸輸出,記為X+1g;然后按位置2放置得到X-1g,則x軸的零位偏差Bx由式(3)計(jì)算出來(lái),同理可得y軸z軸的零位偏差By,Bz。
x軸的比例因子Sx可由式(4)計(jì)算得到,同理可以得到y(tǒng)軸、z軸的標(biāo)度因數(shù)Sy,Sz。
通過(guò)6個(gè)位置測(cè)試得到加速度計(jì)各敏感軸的零偏與比例因子(表2),為降低單片機(jī)處理負(fù)荷數(shù)據(jù)做了取整處理,其中M為加速度計(jì)敏感軸實(shí)際輸出,并記該標(biāo)定過(guò)程為現(xiàn)場(chǎng)標(biāo)定I。
表2 現(xiàn)場(chǎng)簡(jiǎn)易標(biāo)定I加速度計(jì)零偏與比例因子Tab.2 Bias and scale factor of accelerometer in simple field calibration I
為了檢驗(yàn)現(xiàn)場(chǎng)標(biāo)定的精度,將傳感器模塊安放在北京航空精密機(jī)械研究所研制的SGT320E型三軸多功能轉(zhuǎn)臺(tái)的內(nèi)框上,MCU采用Atmega16,串口波特率設(shè)置為110592,設(shè)置轉(zhuǎn)臺(tái)工作于“位置方式”,轉(zhuǎn)臺(tái)的“位率”采用默認(rèn)值10.000(°)/s,“位加速度”采用默認(rèn)值10.000(°)/s2。
圖1 轉(zhuǎn)臺(tái)模式設(shè)置與轉(zhuǎn)臺(tái)標(biāo)定實(shí)驗(yàn)Fig.1 Mode settings and calibration experiments of turntable
在6種位置下分別采集xyz3個(gè)敏感軸的原始數(shù)據(jù)至少20組取平均值,且小數(shù)點(diǎn)后保留2位有效數(shù)字,得到6位置下的原始數(shù)據(jù)如表3所示。
為便于求解傳感器數(shù)學(xué)模型中的12個(gè)未知參數(shù),對(duì)傳感器模型2進(jìn)行等價(jià)變換
記為:D=M·K。其中:D為已知的6個(gè)位置的重力加速度;M為加速度傳感器的6個(gè)位置原始輸出;K為待求標(biāo)定系數(shù)矩陣,共12個(gè)未知參數(shù)。
表3 實(shí)驗(yàn)室轉(zhuǎn)臺(tái)標(biāo)定加速度計(jì)6位置輸出Tab.3 Six position output of accelerometer in laboratory calibration with turntable
在位置1下有
同理,由表1加速度計(jì)理論輸出值及表3的實(shí)際測(cè)量值可以得到D(2),D(3),…,D(6)和M(2),M(3),…,M(6)。 表 示 成 矩 陣 形 式D6×3= [D(1),D(2),D(3),D(4),D(5),D(6)]T,M6×4= [M(1),M(2),M(3),M(4),M(5),M(6)]T。
則式(5)可表示為:D6×3=M6×4·K4×3,可得到18個(gè)方程,需求解12個(gè)未知數(shù),因此采用最小二乘法即可得到最優(yōu)解。鑒于篇幅,此處推導(dǎo)從略,給出系數(shù)矩陣解的表達(dá)式如下
在MATLAB中求出標(biāo)定系數(shù)矩陣為
則標(biāo)定補(bǔ)償后的加速度傳感器輸出值可由下面標(biāo)定補(bǔ)償解算矩陣得到
將轉(zhuǎn)臺(tái)標(biāo)定得到的比例因子Si(i=x,y,z)和零偏值Bi(i=x,y,z)與表2中的數(shù)據(jù)對(duì)比見(jiàn)表4,不難發(fā)現(xiàn)現(xiàn)場(chǎng)簡(jiǎn)易標(biāo)定I與轉(zhuǎn)臺(tái)精確標(biāo)定得到的加速度計(jì)比例因子和零偏值已經(jīng)非常接近,其中比例因子偏差在±10-3左右,x軸的零偏移值偏差最大為1.018LSB,約為0.003 97g,y軸、z軸的零偏移值偏差均小于0.5LSB。
表4 轉(zhuǎn)臺(tái)標(biāo)定與兩種現(xiàn)場(chǎng)標(biāo)定結(jié)果對(duì)比Tab.4 Turntable calibration results compared with two kinds of field calibration
現(xiàn)場(chǎng)簡(jiǎn)易標(biāo)定I是為了便于單片機(jī)快速處理,因此表2中數(shù)據(jù)是按四舍五入做了取整處理。如果小數(shù)點(diǎn)后保留2位有效數(shù)據(jù)進(jìn)行簡(jiǎn)單標(biāo)定(記為簡(jiǎn)易現(xiàn)場(chǎng)標(biāo)定II),以表3的數(shù)據(jù)為例計(jì)算得到的3個(gè)軸的比例因子與轉(zhuǎn)臺(tái)標(biāo)定后的比例因子更接近(見(jiàn)表4),比例因子偏差能再降低一個(gè)數(shù)量級(jí),在±10-4左右。x軸零偏移值誤差也降低至0.568LSB,即0.002 22g,y軸、z軸的零偏移值偏差雖略有增加,但均小于0.1LSB。
由于實(shí)驗(yàn)室現(xiàn)有條件限制,不能對(duì)加速度計(jì)標(biāo)定精度進(jìn)行直接驗(yàn)證,故在重力場(chǎng)空間采用間接驗(yàn)證的方法。其原理如下,當(dāng)加速度計(jì)模塊傾斜放置時(shí),由重力加速度在其3個(gè)正交敏感軸上的分量Mi(i=x,y,z)可以計(jì)算出其各敏感軸相對(duì)水平面的夾角,定義俯仰角ρ為敏感軸x與水平面夾角,定義翻滾角γ為敏感軸y與水平面的夾角,則有
將加速度計(jì)模塊放置在三軸轉(zhuǎn)臺(tái)內(nèi)框上,轉(zhuǎn)動(dòng)轉(zhuǎn)臺(tái)內(nèi)框使加速度計(jì)翻滾角置于30.000°并保持不變,然后按表5所示的俯仰角轉(zhuǎn)動(dòng)轉(zhuǎn)臺(tái)中框。由加速度計(jì)原始數(shù)據(jù)和經(jīng)過(guò)兩種標(biāo)定方法補(bǔ)償后的數(shù)據(jù)解算俯仰角,結(jié)果如表5所示。
表5 加速度計(jì)標(biāo)定前后及角度誤差Tab.5 Output of accelerometer and angular errors before and after calibration
由表5可知,標(biāo)定補(bǔ)償前的角度偏差最大值為3.591°,簡(jiǎn)易現(xiàn)場(chǎng)標(biāo)定I后的絕對(duì)誤差降為0.051°,轉(zhuǎn)臺(tái)標(biāo)定補(bǔ)償后的角度誤差降為0.048°??梢钥闯?,未經(jīng)校準(zhǔn)補(bǔ)償?shù)妮敵稣`差較大,無(wú)論是簡(jiǎn)單標(biāo)定法還是轉(zhuǎn)臺(tái)標(biāo)定均能將輸出絕對(duì)誤差減小約2個(gè)數(shù)量級(jí)左右。同時(shí)可以看出,簡(jiǎn)易現(xiàn)場(chǎng)標(biāo)定I法與轉(zhuǎn)臺(tái)標(biāo)定法的精度大致相當(dāng),甚至在某些位置,現(xiàn)場(chǎng)簡(jiǎn)單標(biāo)定補(bǔ)償后的準(zhǔn)確度更高,這也證明了忽略安裝誤差的簡(jiǎn)單現(xiàn)場(chǎng)標(biāo)定法簡(jiǎn)單可行、正確有效。
在加速度傳感器標(biāo)定中,一般認(rèn)為標(biāo)定點(diǎn)的位置選取越多,標(biāo)定結(jié)果越正確,然而事實(shí)并非總是如此。筆者在6位置的基礎(chǔ)上,分別增加4個(gè)和8個(gè)位置,即設(shè)置三軸轉(zhuǎn)臺(tái)使加速度傳感器模塊的敏感軸z軸向上、向下并分別置俯仰角和翻滾角為+45°,-45°,記錄傳感器均值輸出。根據(jù)最小二乘原理解算加速度計(jì)在10位置下和14位置下的標(biāo)定系數(shù)矩陣,按上述方法間接檢驗(yàn)標(biāo)定結(jié)果,得到角度解算誤差曲線如圖2所示。從圖示各偏差曲線可以看出,對(duì)加速度計(jì)進(jìn)行更多位置的標(biāo)定,操作繁瑣,數(shù)據(jù)處理與解算復(fù)雜程度加劇,然而標(biāo)定精度并沒(méi)得到預(yù)期提高。
圖2 多位置標(biāo)定俯仰角偏差比較Fig.2 Comparison of pitch error with multi-position calibration
在使用MEMS慣性傳感器對(duì)物體進(jìn)行姿態(tài)解算前,必須對(duì)其進(jìn)行標(biāo)定和誤差補(bǔ)償。筆者詳細(xì)地介紹了兩種標(biāo)定MEMS數(shù)字加速度計(jì)方法,即現(xiàn)場(chǎng)標(biāo)定法和轉(zhuǎn)臺(tái)標(biāo)定法,給出了標(biāo)定系數(shù)的解算過(guò)程及驗(yàn)證原理。轉(zhuǎn)臺(tái)多位置標(biāo)定試驗(yàn)表明,更多位置標(biāo)定法對(duì)傳感器輸出精度的提高能力有限,并不一定能帶來(lái)預(yù)期效果,且標(biāo)定過(guò)程繁瑣、數(shù)據(jù)處理以及系數(shù)解算復(fù)雜?;谄胀馀菟絻x和一個(gè)具有長(zhǎng)方體結(jié)構(gòu)的盒狀物的六位置現(xiàn)場(chǎng)標(biāo)定法,具有便捷快速、簡(jiǎn)單易行和準(zhǔn)確有效的優(yōu)點(diǎn),特別適合于現(xiàn)場(chǎng)標(biāo)定。同時(shí),文中的標(biāo)定過(guò)程及系數(shù)矩陣解算方法具有一定的通用性,可為MEMS三軸數(shù)字加速度計(jì)的標(biāo)定補(bǔ)償校準(zhǔn)提供參考。
[1] 張智剛,羅錫文.農(nóng)業(yè)機(jī)械導(dǎo)航中的航向角度估計(jì)算法[J].農(nóng)業(yè)工程學(xué)報(bào),2008,24(5):110-114.
Zhang Zhigang,Luo Xiwen.Adaptive weighted fusion algorithm for orientation evaluation of agricultural machinery[J].Transactions of the Chinese Society of Agricultural Engineering,2008,24(5):110-114.(in Chinese)
[2] 薛亮,李天志,李曉瑩,等.基于 MEMS傳感器的微型姿態(tài)確定系統(tǒng)研究[J].傳感技術(shù)學(xué)報(bào),2008,21(3):457-460.
Xue Liang,Li Tianzhi,Li Xiaoying,et al.Study of micro attitude determination system based on MEMS sensors[J].Chinese Journal of Sensors and Actuators,2008,21(3):457-460.(in Chinese)
[3] 張麗杰,常佶.小型飛行器 MEMS姿態(tài)測(cè)量系統(tǒng)[J].振動(dòng)、測(cè)試與診斷,2010,30(6):698-714.
Zhang Lijie,Chang Ji.MEMS-based attitude measurement system for miniature air vehicle[J].Journal of Vibration,Measurement & Diagnosis,2010,30(6):698-714.(in Chinese)
[4] 宋麗君,秦永元.MEMS加速度計(jì)的六位置測(cè)試法[J].測(cè)控技術(shù),2009,28(7):11-17.
Song Lijun,Qin Yongyuan.Six-position testing of MEMS Accelerometer[J].Measurement & Control Technology,2009,28(7):11-17.(in Chinese)
[5] Fong W T,Ong S K,Nee A Y C.Methods for in-field user calibration of an inertial measurement unit without external equipment[J]. Measurement Science and Technology,2008,19(8):1-11.
[6] 趙玉龍,劉巖,孫祿.機(jī)械故障信息監(jiān)測(cè)MEMS高頻加速度傳感器[J].振動(dòng)、測(cè)試與診斷,2012,32(6):875-882.
Zhao Yulong,Liu Yan,Sun Lu.MEMS high-frequency accelerometers for mechanical fault monitoring[J].Journal of Vibration, Measurement & Diagnosis,2012,32(6):875-882.(in Chinese)
[7] 李杰,洪惠惠,張文棟.MEMS微慣性測(cè)量組合標(biāo)定技術(shù)研究[J].傳感器技術(shù)學(xué)報(bào),2008,21(7):1170-1173.
Li Jie,Hong Huihui,Zhang Wendong.Research on calibration techniques for MEMS-micro inertial measurement unit[J].Chinese Journal of Sensors and Actuators,2008,21(7):1170-1173.(in Chinese)
[8] Hung Y,Lee S.A calibration method for six-accelerometer INS[J].International Journal of Control Automation and Systems,2006,4(5):615-623.
[9] Syed Z F,Aggarwal P,Goodall C,et al.A new multiposition calibration method for MEMS inertial navigation system[J].Measurement Science and Technology,2007,18(7):1897-1907.
[10]孫楓,曹通.基于Kalman濾波的加速度計(jì)十位置標(biāo)定方法[J].系統(tǒng)工程與電子技術(shù),2011,33(10):2272-2276.
Sun Feng,Cao Tong.Ten-position calibration for accelero meter based on Kalman filter[J].Systems Engineering and Electronics,2011,33(10):2272-2276.(in Chinese)
[11]陳劍,孫金海,李金海,等.慣性系統(tǒng)中加速度計(jì)標(biāo)定方法研究[J].微電子學(xué)與計(jì)算機(jī),2012,29(8):130-133.
Chen Jian,Sun Jinhai,Li Jinhai,et al.The research of calibration method of accelerator in inertial navigation system[J].Microelectronics &Computer,2012,29(8):130-133.(in Chinese)
[12]肖桂平,武元新,呂鳴,等.加速度計(jì)的多位置標(biāo)定精度分析與比較[J].戰(zhàn)術(shù)導(dǎo)彈控制技術(shù),2008,30(2):23-32.
Xiao Guiping,Wu Yuanxin,LüMing,et al.Analysis and comparison of multi-position calibrations[J].Control Technology of Tactical Missile,2008,30(2):23-32.(in Chinese)