• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    甲烷部分氧化過程中強制振蕩的動力學Monte Carlo模擬

    2014-02-18 12:06:58任秀彬周安寧章結(jié)兵
    物理化學學報 2014年11期
    關(guān)鍵詞:化工學院物理化學西安

    任秀彬 周安寧 章結(jié)兵

    (西安科技大學化學與化工學院,西安710054)

    1 Introduction

    The oxidation of methane on metal catalysts can result in partial oxidation to syngas(CO and H2),which is mostly used for synthesis of chemical materials,for example methanol.It has been reported that the catalytic oxidation of methane exhibits kinetic oscillations in a variety of catalysts including palladium,nickel,cobalt,and nickel/chromium alloy.1The analysis of oscillatory behavior can present valuable information about the intrinsic mechanisms of catalytic reactions.Besides,it is practical to use oscillations to avoid dangerous oscillatory state of reactors,or bring better catalytic performance in some cases.For instance the utilization of pressure cycling is targeted at changing kinetic oscillations,which results in high conversion rate.2

    To interpret this complex dynamics in partial oxidation of methane under Ni catalysts,both experimental studies and simulations have been proposed.With experimental studies,the oscillations over Ni foam,3wire and foil,4,5nickel/chromium alloy,6-9and supported nickel catalyst10have been investigated.With simulations,Slinko11and Lashina12et al.developed continuous mathematical models for describing the oscillatory behavior during methane partial oxidation in isothermal and nonisothermal conditions,respectively.In our previous studies,13-17the oscillations during partial oxidation of methane have been surveyed by Monte Carlo(MC)simulations with 12-and 18-step Langmuir-Hinshelwood(LH)mechanism and the formation and removal of nickel oxide under isothermal and nonisothermal conditions,and the formation mechanism of reaction rate oscillations has also been discussed in detail.In all the studies,it is generally suggested that the oscillations over Ni catalysts originate from the repetitive cycles of oxidation and reduction of the metal surface.

    After the fact of mechanism has been clarified,the next goal is to control the kinetics on the purpose of avoiding dangerous oscillatory state or bringing about better catalytic performance and high conversion rate.Practically,a large number of researches have been focused on improving the conversion rate of methane to syngas,such as catalytic oxidation of methane on special catalysts in high pressure or high temperature.18-20In earlier studies,it has also been shown that forced composition cycling of the feed to catalytic reactions can lead to significant dynamic change and rate enhancement for the platinum catalyzed CO+N2O reaction,21and CO+O2reaction.22How does the composition cycling of feed influence the dynamics and conversion during partial oxidation of methane on catalysts?This paper studies the impact of forced composition cycling of the feed on the dynamics and conversion in methane oxidation to CO and H2by using kinetic MC simulations.

    2 MC model

    The partial oxidation of methane on Ni catalysts follows the Langmuir-Hinshelwood mechanism.Because the formation of CO2and H2O may be ruled out in some circumstances,in the simulation the main products(CO and H2)are only considered.The detailed 12 step elementary reactions have been given and summarized in Table 1.

    In the MC model,the catalyst surface is represented by a twodimensional square lattice ofL×Lsites with periodic boundary conditions.CH4adsorption occurs on an empty site while O2adsorption on a pair of nearest-neighbor(nn)empty sites.CH4desorption and nickel oxide formation are treated as first-order processes.The sum of rate constants for O desorption,LH step(reaction between adsorbed C and O),and oxide formation are taken as a normalized constant.Probability(pi)for each reaction stepiis drawn from the ratio of the reaction rate constant(ki)to the sum of above three rate constants.That is,the probabilitypifor each event is,

    Table 1 Elementary steps

    Especially,thepifor steps 3,4,5,6,10,is considered as being equal to 1 because those steps can proceed completely.Adsorbed CH4,O,and H species are allowed to diffuse to an empty nn site.

    A dimensionless parameterpreais used to characterize the relative rates of reaction and diffusion,and the rates of the reaction and diffusion processes are considered to be proportional topreaand 1-prea,respectively.The MC algorithm is shown in the following:

    (1)A random numberχ(0<χ<1)is firstly generated.The reaction trial is executed withχprea.

    (2)For a diffusion trial,if the randomly selected site is occupied by adsorbed CH4,O,or H,and a randomly selected nn site is empty,the particle jumps to the selected nn site.

    (3)For a reaction trial,a lattice site is randomly selected and a random numberχ1(0<χ1<1)is used to determine a reaction event.

    (i)If the selected site is empty,CH4or O2adsorption can occur forχ1

    (ii)If the selected site is occupied by adsorbed CH4,CH4desorption or dissociation can occur whenχ1

    (iii)If the selected site is occupied by CHx(x=1-3),the trial of CHxdissociation is considered to be successful if the randomly selected nn site is empty.

    (iv)If the selected site is occupied by C,one of the nn sites is chosen at random.If the nn site is occupied by nickel oxide(Ox),the reaction can occur with the probabilityp12.

    (v)If the selected site is occupied by O,O2desorption,formation of NiO or reaction with C can occur forχ1

    (vi)If the selected site is occupied by H,one of the nn sites is chosen at random.If the nn site is also occupied by H,a gaseous H2molecule is released.

    (4)CH4and O2adsorption probabilities(p1andp7)have been changed to zero in a fixed period and width periodically.

    The MC simulation starts from a clean surface,and the MC step(MCS)is employed to represent the reaction time.One MCS is defined asL×Lattempts of the adsorption-reaction events.23,24The reaction rate is determined by the number of produced CO or H2molecules per lattice site in a MCS.The average of produced CO or H2molecules over 50 MCS is used to calculate the reaction rate.

    3 Results and discussion

    It should be mentioned that the simulations are also carried out in the lattice sizes of 100 and 400 to understand the effect of lattice size on the results.The results show that when the lattice size is larger than or equal to 200×200,the oscillatory kinetics has no obvious change.Therefore,all simulations are performed on a square lattice of 200×200 sites.The simulation parameters are executed forprea=0.01,p1=0.009,p2=0.01,p7=0.01,p8=0.001,p11=0.002,andp12=0.001.14

    Autonomous oscillations are shown in Fig.1.From the figure,the coverage of empty sites,C,O,Ox and formation rates of CO and H2all exhibit well-developed oscillations.It is found that the transformation of the dominant reaction(from reaction of C and O to the reaction of C and Ox)results in the periodic oscillations of the reaction kinetics,while the oxidation and reduction of nickel surface play an important role in the transformation.13It can also be seen that those self-sustained oscillations have a relatively fixed period.Therefore,the average periodThas been calculated.

    Composition cycling of feed is used for external forcing of the system.In our previous studies,the reaction rate constant for CH4and O2can be estimated by

    whereJistands for the impinging constant,Pithe partial pressure,andSithe sticking coefficient.Then,the probabilities for CH4and O2adsorption(p1andp7)are taken by calculating the ratio of the reaction rate constants to normalized constant.Therefore,we can easily see that the parameters ofp1andp7are proportional to the concentration(partial pressure)of CH4and O2,respectively.The paper proposes that composition cycling of feed can be easily achieved by changing the adsorption probabilities ofp1andp7periodically.In the simulation,the forcing width is selected asT/5,whereTis the average period of autonomous oscillations,and the results of forced oscillations for different forcing period(T/3,T/2,T,1.3T,1.5T,and 2T)have been shown from Fig.2 to Fig.7.

    In order to determine whether the forced oscillations are random,chaotic or periodic,the chaotic attractor is firstly calculated by using time delay method and the correlation dimension algorithm.25,26The one-dimensional time seriesu(tk)(k=0,1,…,M)measured from surface coverage is extended tom-dimensional phase spaceV(tn)(n=0,1,…,N),whereMandNare the number of data points,mis the dimension of phase space.Then the correlation dimensionD(m)can be calculated by correlation integralC(r,m).

    whereτis the delay time,ris the scaling length,θis the Hevisaide function.The correlation dimensionD(m)is not increased untilmis up tomc,thenD(mc)is the chaotic attractor,wheremcis saturation dimension of phase space.27The calculations are performed utilizing FORTRAN software and the chaotic attractors for forced oscillations are given in Table 2.

    Fig.1 Autonomous oscillations of coverages of C,O,Ox,empty sites and formation rates of CO and H2

    Fig.2 Forced oscillations with the forcing period of T/3 and forcing width of T/5

    It is reported that if the chaotic attractorD(mc)is equal to 1,it is periodic oscillation,and if the chaotic attractorD(mc)is equal to 2,it is quasi-periodic oscillation.28WhenD(mc)is greater than 2,and is the fraction,the oscillation is chaotic.FromTable 2 it can be seen that the chaotic attractors of forced oscillations are 1-2,which means that the oscillations with forcing periods ofT/3,T/2,T,and 2Tare periodic oscillations,and the oscillations with forcing periods of 1.3Tand 2Tare quasi-periodic oscillations.

    In Fig.2,with the forcing period ofT/3,though the chaotic attractor calculation demonstrates it is periodic oscillations,the obtained oscillations are complicated,which is mainly due to system noise.With the forcing period ofT/2(Fig.3),the oscillations show a little complicated state and the period and amplitude have changed.Compared with autonomous oscillations(Fig.1),the period of forced oscillations has reduced by half,which attributes to the transformation of nickel surface between oxidation and reduction.When the reaction begins,the surface is in the reduced state.Then the oxide formation results in the surface changing to oxidized state.Once the breakdown of feed happens,due to the main reaction of C and Ox,the surface again turns to reduced state.It is the period of changing between reduced state and oxidized state that determines the period of forced oscillations.The coverage amplitude of empty sites is slightly increasing while the coverages of C,O,and Ox are reduced by half.This can be interpreted in this way:when the reaction begins there are maximum empty sites on the surface.Methane and oxygen can be easily adsorbed and dissociated,and these processes result in the decrease of empty sites.When the breakdown of feed happens,there is no adsorption of CH4and O2.The increase of C and Ox coverages and decrease of empty sites stop,and C and Ox coverages reach their maximum or minimum respectively.Due to the main reaction of C and Ox,the coverages of C and Ox decrease.Because the reaction rate between C and Ox is very small,the extent of C and Ox decreasing is restricted,which leads to small amplitudes of C and Ox.The consumptions of adsorbed species and oxide could also bring about a larger burst of empty sites.

    Table 2 Chaotic attractors(D(mc))for different forcing conditions

    With the forcing period ofT(Fig.4),it is found that the period and amplitude have not changed obviously.Although any particular information has not been acquired from the coverages of C,O,and Ox,it can be seen from the figure that the double-peak oscillations are found in the coverage of empty sites.For the coverage of empty sites,the first peak is originated from external forcing and the second peak from the autonomous oscillations.When the breakdown of feed happens,the empty sites increase and firstly reach their maximum mainly due to the main surface reaction of adsorbed C and Ox.When the reactant concentration resumes,the adsorption of methane and oxygen becomes easier due to the large empty sites,and these processes result in the decrease of empty sites.With the adsorption of methane and oxygen,the quick reaction between adsorbed C and O leads to the empty sites increasing and again reaching its maximum.

    With the forcing periods of 1.3T(Fig.5)and 1.5T(Fig.6),the period of forced oscillations is decreased remarkably.Besides,double-peak oscillations can be found in the coverages of empty sites,C,O,and Ox.When the forcing period comes to 2T(Fig.7),it can be seen from the coverage of empty sites that in one period the breakout is single-peak,but in the next period the breakout is double-peak.

    Fig.3 Forced oscillations with the forcing period of T/2 and forcing width of T/5

    Fig.4 Forced oscillations with the forcing period of T and forcing width of T/5

    The above results show that with composition cycling of feed,not only the oscillatory behavior such as the period and amplitude could be changed,but also some complex dynamics such as double-peak oscillations can be obtained.The changing of oscillatory dynamics is considered to be related with the transition of metal from oxidized to reduced state.When the forcing of feed happens,the oxidized surface changes to partially reduced surface due to the main reaction between C and Ox.When the reactant concentration resumes,the oxide formation changes reduced surface to the partially oxidized surface.If the forcing period is less than that of autonomous oscillations,the recovery of the system after the forcing of feed is not completed up to the time when the new forcing begins,the smaller oscillatory periods and amplitudes are found.If the forcing period is longer than that of autonomous oscillations and the recovery of system is achieved adequately,the complex dynamics such as double-peak oscillations can be found.

    Fig.5 Forced oscillations with the forcing period of 1.3T and forcing width of T/5

    It has been reported that high conversion rate can be obtained in some forcing conditions.We will now concentrate on the conversion rates of forced oscillations.In the simulation,the conversion rate in different forcing conditions has been calculated.The conversion rate is defined as the ratio between CO production and amount of CH4feed.It is assumed that the amount of CH4feed in one MCS is proportional to the probability of CH4adsorption(p1)and the value isC.Then,the relative average conversion rates of forced oscillations(Xforce)and autonomous oscillations(Xauto)can be calculated as follows.

    Fig.6 Forced oscillations with the forcing period of 1.5T and forcing width of T/5

    Fig.7 Forced oscillations with the forcing period of 2T and forcing width of T/5

    Fig.8 shows conversion rate as a function of forcing period.From Fig.8 it can be seen that the mean conversion rate of forced oscillations is higher than that of the autonomously oscillating state.When the forcing periods areTand 2T,the average conversion rates drop to almost the same value the autonomous system shows.

    Effects of forced processes on the conversion rates can be realized by changing the oxidation and reduction state of catalysts.When the surface is oxidized,the operations of composition cycling of feed(with forcing periods of 1.3Tand 1.5T)make the surface be reduced mainly due to the reaction between C and Ox,which results in an obvious increasing of empty sites.On this basis,CH4and O2adsorption become much easier,and much higher conversion rate of CO can be found.When the surface is reduced,the operations of composition cycling of feed(with forcing periods ofTand 2T)result in further reduction of catalysts due to the reaction between C and Ox.Because the reaction rate of C and Ox is small,the increasing of empty sites is limited,and relative lower conversion rate of CO can be found.With the forcing periods ofT/2,both the above effects make the conversion rate reach its maximum.

    Fig.8 Relative conversion rate as a function of the forcing period

    4 Conclusions

    The kinetics of external forced oscillations during partial oxidation of methane over Ni surface was simulated by the MC method.Based on 12-step Langmuir-Hinshelwood mechanism and composition cycling of feed,kinetic oscillations in both products and coverage of surface species have been observed.The results indicate that with fixed forcing amplitude ofT/5(Tis the average period of autonomous oscillations)and alterable forcing period fromT/3 to 2T,not only the period and amplitude change obviously,but also the kinetic oscillations show double-peak behavior.The mean conversion rates have also been calculated in both autonomous oscillations and forced oscillations.The results demonstrate that the forced oscillations show an increase in conversion rate.The changes of kinetics and conversion rate could attribute to the surface transition from oxidized to reduced states due to the operation of composition cycling of the feed.The results show that the kinetic oscillations could be effectively controlled by composition cycling of feed.

    (1)Zhang,X.L.;Lee,C.S.M.;Hayward,D.O.;Mingos,D.M.P.Catal.Today2005,105,283.doi:10.1016/j.cattod.2005.02.040

    (2) Svensson,P.;Jaeger,N.I.;Plath,P.J.J.Phys.Chem.1988,92,1882.doi:10.1021/j100318a037

    (3) Cimino,S.;Lisi,L.;Mancino,G.;Musiani,M.;Vázquez-Gómez,L.;Verlato,E.Int.J.Hydrog.Energy2012,37,17040.doi:10.1016/j.ijhydene.2012.08.022

    (4)Zhang,X.L.;Hayward,D.O.;Mingos,D.M.P.Catal.Lett.2003,86,235.doi:10.1023/A:1022672219909

    (5)Zhang,X.L.;Hayward,D.O.;Mingos,D.M.P.Catal.Lett.2002,83,149.doi:10.1023/A:1021069510797

    (6)Tulenin,Y.P.;Sinev,M.Y.;Savkin,V.V.;Korchak,V.N.Stud.Surf.Sci.Catal.1997,110,757.doi:10.1016/S0167-2991(97)81038-5

    (7)Tulenin,Y.P.;Sinev,M.Y.;Savkin,V.V.;Korchak,V.N.;Yan,Y.B.Kinet.Catal.1999,40,405.

    (8) Tulenin,Y.P.;Sinev,M.Y.;Savkin,V.V.;Korchak,V.N.Catal.Today2004,91-92,155.

    (9)Zhang,X.L.;Hayward,D.O.;Mingos,D.M.P.Catal.Lett.2001,72,147.

    (10) Hu,Y.H.;Ruckenstein,E.Ind.Eng.Chem.Res.1998,37,2333.doi:10.1021/ie980027f

    (11) Slinko,M.M.;Korchak,V.N.;Peskov,N.V.Appl.Catal.A:Gen.2006,303,258.doi:10.1016/j.apcata.2006.02.010

    (12)Lashina,E.A.;Kaichev,V.V.;Chumakova,N.A.;Ustyugov,V.V.;Chumakov,G.A.;Bukhtlyrov,V.I.Kinet.Catal.2012,53,374.doi:10.1134/S0023158412030081

    (13) Ren,X.B.;Li,H.Y.;Guo,X.Y.Surf.Sci.2008,602,300.doi:10.1016/j.susc.2007.10.016

    (14)Ren,X.B.;Li,H.Y.;Guo,X.Y.Acta Phys.-Chim.Sin.2008,24,197.[任秀彬,李換英,郭向云.物理化學學報,2008,24,197.]doi:10.1016/S1872-1508(08)60009-1

    (15) Ren,X.B.;Guo,X.Y.Surf.Rev.Lett.2008,15,769.doi:10.1142/S0218625X0801213X

    (16) Ren,X.B.;Guo,X.Y.Surf.Sci.2009,603,606.doi:10.1016/j.susc.2008.12.018

    (17)Ren,X.B.;Guo,X.Y.J.Nat.Gas Chem.2011,20,503.doi:10.1016/S1003-9953(10)60216-2

    (18) Zhao,K.;He,F.;Huang,Z.;Zheng,A.Q.;Li,H.B.;Zhao,Z.L.Chin.J.Catal.2014,35,1196.[趙 坤,何 方,黃 振,鄭安慶,李海濱,趙增立.催化學報,2014,35,1196.]doi:10.1016/S1872-2067(14)60084-X

    (19) Donazzi,A.;Livio,D.;Diehm,C.;Beretta,A.;Groppi,G.;Forzatti,P.Appl.Catal.A:Gen.2014,469,52.

    (20) Nguyen,T.H.;?amacz,A.;Beaunier,P.;Czajkowska,S.;DomaDski,M.;KrztoD,A.;Le,T.V.;Djéga-Mariadassou,G.Appl.Catal.B:Environ.2014,152-153,360.

    (21) Sadhankar,R.R.;Lynch,D.T.J.Catal.1994,149,278.doi:10.1006/jcat.1994.1296

    (22)Graham,W.R.C.;Lynch,D.T.AIChE J.1990,36,1796.

    (23) Sinha,I.;Mukherjee,A.K.Chem.Phys.Lett.2012,553,30.doi:10.1016/j.cplett.2012.09.073

    (24) Liu,D.J.;Evans,J.W.Prog.Surf.Sci.2013,88,393.doi:10.1016/j.progsurf.2013.10.001

    (25) Packard,N.H.;Crutcheld,J.P.;Farmer,J.D.;Shaw,R.S.Phys.Rev.Lett.1980,45,712.doi:10.1103/PhysRevLett.45.712

    (26) Grassberger,P.;Procaccia,I.Phys.Rev.Lett.1983,50,346.doi:10.1103/PhysRevLett.50.346

    (27) Kipchatov,A.A.;Krasichkov,L.V.On Reconstruction of ChaoticAttractor from Time Series Represented as"Clusters".InDynamical Systems and Chaos;The Proceedings of the International Conference on Dynamical Systems and Chaos,Tokyo,Japan,May 23-27,1994;pp 1-4.

    (28)Guo,X.Y.;Zhong,B.;Peng,S.Y.Acta Phys.-Chim.Sin.1995,11,873.[郭向云,鐘 炳,彭少逸.物理化學學報,1995,11,873.]doi:10.3866/PKU.WHXB20080524

    猜你喜歡
    化工學院物理化學西安
    使固態(tài)化學反應100%完成的方法
    西安2021
    Oh 西安
    物理化學課程教學改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學課堂教學改進的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    國家開放大學石油和化工學院學習中心列表
    【鏈接】國家開放大學石油和化工學院學習中心(第四批)名單
    《西安人的歌》突如其來?
    當代陜西(2019年6期)2019-04-17 05:04:10
    Chemical Concepts from Density Functional Theory
    追根溯源 回到西安
    国内毛片毛片毛片毛片毛片| 大码成人一级视频| 美女 人体艺术 gogo| 欧美色视频一区免费| 一级片免费观看大全| 国产午夜精品久久久久久| 黄色视频不卡| 成在线人永久免费视频| 一边摸一边抽搐一进一小说| 久久久久久久久久久久大奶| 大香蕉久久成人网| 午夜精品久久久久久毛片777| 亚洲成av片中文字幕在线观看| av有码第一页| 大型av网站在线播放| 电影成人av| 香蕉国产在线看| 午夜精品久久久久久毛片777| 一进一出抽搐动态| 欧美人与性动交α欧美精品济南到| 国产97色在线日韩免费| 性少妇av在线| 亚洲精品国产一区二区精华液| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品国产一区二区精华液| 人人澡人人妻人| 精品国产国语对白av| 国产精品98久久久久久宅男小说| 一a级毛片在线观看| 日本撒尿小便嘘嘘汇集6| 久久久久久久久免费视频了| 无限看片的www在线观看| av天堂在线播放| 国产精品日韩av在线免费观看 | 久久亚洲精品不卡| 在线免费观看的www视频| 少妇裸体淫交视频免费看高清 | 嫩草影院精品99| 亚洲精品av麻豆狂野| 正在播放国产对白刺激| 一本综合久久免费| 国产亚洲精品一区二区www| 国产成人啪精品午夜网站| netflix在线观看网站| 亚洲人成网站在线播放欧美日韩| 午夜免费成人在线视频| 国产免费av片在线观看野外av| 精品久久久久久,| 日本黄色日本黄色录像| 亚洲精华国产精华精| 视频区图区小说| 久久精品国产99精品国产亚洲性色 | 久久精品91无色码中文字幕| 国产欧美日韩综合在线一区二区| 99在线视频只有这里精品首页| 老司机午夜福利在线观看视频| 黄片播放在线免费| 精品国产乱子伦一区二区三区| netflix在线观看网站| 欧美日韩国产mv在线观看视频| 曰老女人黄片| 亚洲一区二区三区色噜噜 | 叶爱在线成人免费视频播放| 国产黄色免费在线视频| 国产欧美日韩综合在线一区二区| 精品日产1卡2卡| 淫妇啪啪啪对白视频| 国产熟女xx| 亚洲精品一卡2卡三卡4卡5卡| 欧美日韩亚洲高清精品| 亚洲成av片中文字幕在线观看| 亚洲黑人精品在线| 搡老乐熟女国产| 亚洲精品一卡2卡三卡4卡5卡| 国产av一区二区精品久久| 久久亚洲真实| 91大片在线观看| 久久香蕉精品热| 久久中文看片网| 久久精品亚洲av国产电影网| 免费一级毛片在线播放高清视频 | 啦啦啦 在线观看视频| 午夜精品久久久久久毛片777| 可以在线观看毛片的网站| 午夜精品国产一区二区电影| 日本免费a在线| 少妇的丰满在线观看| 高清欧美精品videossex| 亚洲国产毛片av蜜桃av| 日韩av在线大香蕉| 欧美久久黑人一区二区| 韩国精品一区二区三区| 亚洲av熟女| 熟女少妇亚洲综合色aaa.| 激情在线观看视频在线高清| 他把我摸到了高潮在线观看| 99热国产这里只有精品6| 色综合婷婷激情| 国产三级在线视频| 电影成人av| 多毛熟女@视频| 精品久久久精品久久久| 国产成年人精品一区二区 | av福利片在线| 亚洲成a人片在线一区二区| 午夜免费鲁丝| 久久精品国产综合久久久| 亚洲成人免费电影在线观看| 一进一出抽搐gif免费好疼 | 18禁黄网站禁片午夜丰满| 无人区码免费观看不卡| 亚洲国产欧美一区二区综合| 精品熟女少妇八av免费久了| 99香蕉大伊视频| av在线播放免费不卡| 亚洲男人天堂网一区| 国产成人精品久久二区二区91| 美女 人体艺术 gogo| 男女高潮啪啪啪动态图| 久久久久久久久中文| 国产无遮挡羞羞视频在线观看| 午夜影院日韩av| 深夜精品福利| a级毛片在线看网站| 久久精品亚洲av国产电影网| 国产区一区二久久| 亚洲在线自拍视频| 亚洲色图av天堂| 男人舔女人的私密视频| 国产又色又爽无遮挡免费看| 女性生殖器流出的白浆| 电影成人av| 欧美丝袜亚洲另类 | 亚洲欧美日韩无卡精品| 国产欧美日韩精品亚洲av| 国产精品久久视频播放| 成熟少妇高潮喷水视频| 色哟哟哟哟哟哟| 美女高潮到喷水免费观看| 老司机午夜十八禁免费视频| 亚洲欧美日韩另类电影网站| 午夜福利在线免费观看网站| 老司机福利观看| 在线观看免费视频日本深夜| 亚洲人成77777在线视频| 久久精品国产99精品国产亚洲性色 | 亚洲精品久久午夜乱码| 久久国产乱子伦精品免费另类| 欧美在线一区亚洲| 欧美久久黑人一区二区| 在线视频色国产色| 欧美成狂野欧美在线观看| 中文字幕高清在线视频| 精品一品国产午夜福利视频| 国产成人一区二区三区免费视频网站| 欧美不卡视频在线免费观看 | 色播在线永久视频| 免费av毛片视频| 欧美人与性动交α欧美精品济南到| 9191精品国产免费久久| 一a级毛片在线观看| a在线观看视频网站| 久久国产亚洲av麻豆专区| 久久欧美精品欧美久久欧美| 18禁裸乳无遮挡免费网站照片 | 视频区图区小说| 亚洲中文日韩欧美视频| 亚洲专区国产一区二区| 欧美久久黑人一区二区| 亚洲欧美精品综合一区二区三区| 欧美+亚洲+日韩+国产| 欧美av亚洲av综合av国产av| 久久精品国产亚洲av高清一级| 少妇的丰满在线观看| 美女国产高潮福利片在线看| 99久久人妻综合| 久久香蕉国产精品| 一级作爱视频免费观看| 黄片播放在线免费| netflix在线观看网站| 悠悠久久av| 精品乱码久久久久久99久播| 大型av网站在线播放| 国产精品秋霞免费鲁丝片| 精品国内亚洲2022精品成人| 久久精品国产清高在天天线| 黑丝袜美女国产一区| 久久久国产成人免费| 成人18禁高潮啪啪吃奶动态图| a级毛片黄视频| 国产三级在线视频| 日韩视频一区二区在线观看| tocl精华| 国产精品永久免费网站| av国产精品久久久久影院| 999久久久精品免费观看国产| 午夜免费观看网址| 中国美女看黄片| 欧美另类亚洲清纯唯美| 国产精品久久久久成人av| 日韩精品青青久久久久久| 亚洲国产看品久久| 亚洲av电影在线进入| 如日韩欧美国产精品一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 亚洲专区字幕在线| 神马国产精品三级电影在线观看 | 亚洲av电影在线进入| 99精品久久久久人妻精品| 9色porny在线观看| 亚洲中文字幕日韩| 欧美午夜高清在线| 1024视频免费在线观看| 欧美成人免费av一区二区三区| x7x7x7水蜜桃| 亚洲一码二码三码区别大吗| 中文字幕人妻熟女乱码| 日韩有码中文字幕| 久久久国产成人免费| www.精华液| 国产熟女xx| 好男人电影高清在线观看| 他把我摸到了高潮在线观看| 亚洲久久久国产精品| 亚洲精品成人av观看孕妇| 亚洲精品在线观看二区| 国产91精品成人一区二区三区| 午夜亚洲福利在线播放| e午夜精品久久久久久久| 人人妻人人添人人爽欧美一区卜| 黄网站色视频无遮挡免费观看| 久热这里只有精品99| 欧美成人性av电影在线观看| 久久精品国产99精品国产亚洲性色 | 亚洲av美国av| 中文欧美无线码| 国产精品一区二区免费欧美| 亚洲欧美激情在线| 精品乱码久久久久久99久播| 后天国语完整版免费观看| 91老司机精品| 妹子高潮喷水视频| 亚洲熟妇中文字幕五十中出 | 91大片在线观看| 美女 人体艺术 gogo| 91大片在线观看| 一进一出抽搐gif免费好疼 | 在线播放国产精品三级| 亚洲自偷自拍图片 自拍| av天堂在线播放| 亚洲人成77777在线视频| 亚洲欧美激情综合另类| 好看av亚洲va欧美ⅴa在| 亚洲精品一区av在线观看| 精品久久久久久久毛片微露脸| 极品人妻少妇av视频| 99久久99久久久精品蜜桃| 男女午夜视频在线观看| 久久人妻福利社区极品人妻图片| 国产精品亚洲av一区麻豆| 国产伦一二天堂av在线观看| 亚洲成人精品中文字幕电影 | 精品日产1卡2卡| 欧美精品亚洲一区二区| 日韩 欧美 亚洲 中文字幕| 免费搜索国产男女视频| 精品久久久久久成人av| 亚洲精品av麻豆狂野| 日韩免费av在线播放| 日韩免费av在线播放| 午夜影院日韩av| 亚洲国产看品久久| 久久天堂一区二区三区四区| 深夜精品福利| 大陆偷拍与自拍| 国产精品 国内视频| 亚洲色图 男人天堂 中文字幕| 国产麻豆69| 成人亚洲精品av一区二区 | 神马国产精品三级电影在线观看 | 嫩草影视91久久| 国产亚洲欧美在线一区二区| 欧美中文日本在线观看视频| 水蜜桃什么品种好| 日韩三级视频一区二区三区| 性欧美人与动物交配| 不卡av一区二区三区| 久久国产精品男人的天堂亚洲| 久久久久久久精品吃奶| 久久久久久久久免费视频了| 午夜免费成人在线视频| 日韩av在线大香蕉| 精品久久蜜臀av无| 美女 人体艺术 gogo| 身体一侧抽搐| 久久人人97超碰香蕉20202| 丝袜在线中文字幕| 久久久水蜜桃国产精品网| 日韩有码中文字幕| 亚洲专区字幕在线| av欧美777| 亚洲人成电影观看| 免费在线观看日本一区| 国产精品影院久久| 日本a在线网址| av天堂久久9| 91字幕亚洲| 精品免费久久久久久久清纯| 黄色丝袜av网址大全| 国产成人欧美| 久久九九热精品免费| 水蜜桃什么品种好| 亚洲七黄色美女视频| 黑人操中国人逼视频| 在线天堂中文资源库| 天堂影院成人在线观看| 日韩欧美一区二区三区在线观看| 久久伊人香网站| 巨乳人妻的诱惑在线观看| 亚洲欧美激情综合另类| av天堂在线播放| 国产极品粉嫩免费观看在线| 精品国产超薄肉色丝袜足j| av超薄肉色丝袜交足视频| 亚洲自偷自拍图片 自拍| 一个人免费在线观看的高清视频| 丝袜美足系列| 嫩草影院精品99| 黄色毛片三级朝国网站| 国产午夜精品久久久久久| 黄片播放在线免费| www.999成人在线观看| 天堂影院成人在线观看| 18禁国产床啪视频网站| 久久人妻av系列| 国产精品久久久人人做人人爽| 人妻久久中文字幕网| 久久国产乱子伦精品免费另类| 日本wwww免费看| 一进一出抽搐gif免费好疼 | 一级黄色大片毛片| 免费看十八禁软件| 亚洲欧美日韩另类电影网站| 99riav亚洲国产免费| av免费在线观看网站| 亚洲av电影在线进入| 美女扒开内裤让男人捅视频| 一区二区三区激情视频| 国产熟女xx| 久久香蕉精品热| 婷婷六月久久综合丁香| av超薄肉色丝袜交足视频| 我的亚洲天堂| 午夜影院日韩av| 十八禁人妻一区二区| 色播在线永久视频| avwww免费| 如日韩欧美国产精品一区二区三区| 日韩大尺度精品在线看网址 | 国产精品综合久久久久久久免费 | 99国产精品免费福利视频| 精品一区二区三区四区五区乱码| 精品卡一卡二卡四卡免费| 宅男免费午夜| 高清av免费在线| 男女午夜视频在线观看| 夜夜爽天天搞| 手机成人av网站| 在线看a的网站| 国产伦一二天堂av在线观看| 中文字幕人妻丝袜制服| 久久精品亚洲熟妇少妇任你| 久久久久久久精品吃奶| 变态另类成人亚洲欧美熟女 | 搡老乐熟女国产| 少妇被粗大的猛进出69影院| 久久人妻av系列| 精品乱码久久久久久99久播| xxxhd国产人妻xxx| videosex国产| 亚洲一区二区三区不卡视频| 欧美成人性av电影在线观看| 水蜜桃什么品种好| 色精品久久人妻99蜜桃| 精品国产超薄肉色丝袜足j| 欧美成狂野欧美在线观看| 亚洲一区二区三区色噜噜 | 变态另类成人亚洲欧美熟女 | 色精品久久人妻99蜜桃| 精品国产乱子伦一区二区三区| 亚洲 国产 在线| 亚洲aⅴ乱码一区二区在线播放 | 咕卡用的链子| 99热只有精品国产| 操美女的视频在线观看| 久久精品91蜜桃| 久久99一区二区三区| 高潮久久久久久久久久久不卡| 搡老岳熟女国产| 国产av又大| 免费在线观看视频国产中文字幕亚洲| 久久中文看片网| 可以免费在线观看a视频的电影网站| 在线观看www视频免费| 日韩欧美免费精品| 精品久久久久久久久久免费视频 | 国产成人精品无人区| 在线国产一区二区在线| 亚洲av电影在线进入| 午夜91福利影院| 欧美日韩乱码在线| 手机成人av网站| 久久精品91无色码中文字幕| 超碰97精品在线观看| 中文字幕人妻熟女乱码| av天堂在线播放| 国产麻豆69| 午夜免费成人在线视频| 久久久久国产一级毛片高清牌| 午夜福利欧美成人| 亚洲男人的天堂狠狠| 午夜a级毛片| 久久久久精品国产欧美久久久| 国产欧美日韩一区二区三| 久久影院123| 亚洲成av片中文字幕在线观看| 99精品在免费线老司机午夜| 黄色视频,在线免费观看| 欧美乱色亚洲激情| 一个人观看的视频www高清免费观看 | 久久热在线av| 亚洲男人天堂网一区| 免费观看精品视频网站| 淫秽高清视频在线观看| 国产精品野战在线观看 | 中文字幕人妻熟女乱码| 国产精品成人在线| 亚洲欧美日韩高清在线视频| 亚洲精品一二三| 日本三级黄在线观看| 在线观看一区二区三区激情| 免费在线观看亚洲国产| 精品一区二区三区视频在线观看免费 | 丁香欧美五月| 国产精品秋霞免费鲁丝片| 不卡av一区二区三区| 成年人免费黄色播放视频| 亚洲欧美精品综合久久99| 动漫黄色视频在线观看| 亚洲精品中文字幕一二三四区| 亚洲,欧美精品.| 亚洲欧美精品综合久久99| 97碰自拍视频| 真人一进一出gif抽搐免费| av免费在线观看网站| 免费女性裸体啪啪无遮挡网站| 精品国内亚洲2022精品成人| 亚洲视频免费观看视频| 国产97色在线日韩免费| 大型黄色视频在线免费观看| 欧美成狂野欧美在线观看| 一边摸一边抽搐一进一出视频| 在线观看免费日韩欧美大片| 国产乱人伦免费视频| 国产成人影院久久av| 久久婷婷成人综合色麻豆| 亚洲人成伊人成综合网2020| 精品国产一区二区三区四区第35| 伦理电影免费视频| 成年人免费黄色播放视频| 黄色毛片三级朝国网站| 国产精品九九99| 一级毛片女人18水好多| 免费高清视频大片| 久久人妻av系列| 丰满的人妻完整版| 色尼玛亚洲综合影院| 午夜福利欧美成人| 欧美日韩亚洲国产一区二区在线观看| 天天影视国产精品| 久久久国产成人精品二区 | 久久久国产成人免费| 一区二区三区激情视频| 国产精华一区二区三区| 亚洲 欧美 日韩 在线 免费| 亚洲国产欧美一区二区综合| 国产精品国产高清国产av| 亚洲精品中文字幕一二三四区| 精品国产国语对白av| 国产免费现黄频在线看| 色综合婷婷激情| 国产免费现黄频在线看| 亚洲av成人一区二区三| 俄罗斯特黄特色一大片| 一本大道久久a久久精品| 俄罗斯特黄特色一大片| 又黄又粗又硬又大视频| 黄频高清免费视频| 免费在线观看视频国产中文字幕亚洲| 51午夜福利影视在线观看| 超碰成人久久| 69av精品久久久久久| 美女国产高潮福利片在线看| 一级片免费观看大全| 欧美日韩精品网址| 国产精品 国内视频| 亚洲精品一卡2卡三卡4卡5卡| a级毛片在线看网站| av免费在线观看网站| 精品熟女少妇八av免费久了| av在线播放免费不卡| 精品国产乱子伦一区二区三区| 欧美激情高清一区二区三区| 亚洲成人免费电影在线观看| 操美女的视频在线观看| 宅男免费午夜| 亚洲一区二区三区不卡视频| 在线观看免费日韩欧美大片| 亚洲美女黄片视频| 国产精品一区二区免费欧美| 少妇裸体淫交视频免费看高清 | 老鸭窝网址在线观看| 欧美日韩亚洲高清精品| 国产亚洲欧美精品永久| 老汉色av国产亚洲站长工具| 热99国产精品久久久久久7| 青草久久国产| 免费少妇av软件| 怎么达到女性高潮| 性色av乱码一区二区三区2| 热re99久久精品国产66热6| 首页视频小说图片口味搜索| 国产精品免费一区二区三区在线| 好看av亚洲va欧美ⅴa在| 18禁裸乳无遮挡免费网站照片 | 两性午夜刺激爽爽歪歪视频在线观看 | 欧美性长视频在线观看| 成年人黄色毛片网站| 成人三级黄色视频| 黄色怎么调成土黄色| 51午夜福利影视在线观看| 999精品在线视频| www国产在线视频色| 亚洲成av片中文字幕在线观看| 超碰成人久久| 久久久国产成人免费| 久久狼人影院| 美女福利国产在线| 亚洲av熟女| 一二三四在线观看免费中文在| 亚洲人成电影观看| 国产成+人综合+亚洲专区| 午夜视频精品福利| 欧美成狂野欧美在线观看| 欧美日韩黄片免| 香蕉国产在线看| 热re99久久精品国产66热6| 欧美精品一区二区免费开放| 亚洲精品在线美女| 国产欧美日韩一区二区精品| 精品电影一区二区在线| 国产区一区二久久| 日韩精品免费视频一区二区三区| 亚洲精品国产一区二区精华液| 国产精品国产av在线观看| 9色porny在线观看| 欧美激情极品国产一区二区三区| 丝袜美足系列| 亚洲国产精品一区二区三区在线| 变态另类成人亚洲欧美熟女 | 99riav亚洲国产免费| 丝袜在线中文字幕| 免费在线观看亚洲国产| 在线观看一区二区三区激情| 黑人猛操日本美女一级片| 深夜精品福利| 亚洲中文日韩欧美视频| 久久人妻福利社区极品人妻图片| 手机成人av网站| 国产色视频综合| www.自偷自拍.com| 精品欧美一区二区三区在线| 亚洲,欧美精品.| 91九色精品人成在线观看| 日韩人妻精品一区2区三区| 动漫黄色视频在线观看| 18禁黄网站禁片午夜丰满| 日韩欧美一区二区三区在线观看| 看免费av毛片| 精品国产乱码久久久久久男人| 9热在线视频观看99| 这个男人来自地球电影免费观看| 纯流量卡能插随身wifi吗| 少妇的丰满在线观看| 亚洲视频免费观看视频| 日日摸夜夜添夜夜添小说| 亚洲欧美一区二区三区黑人| 亚洲成人免费电影在线观看| 热99re8久久精品国产| 欧美在线黄色| 久久热在线av| 日韩视频一区二区在线观看| 老熟妇乱子伦视频在线观看| tocl精华| 村上凉子中文字幕在线| 黄色丝袜av网址大全| 久久香蕉国产精品| 亚洲va日本ⅴa欧美va伊人久久| 国产成人影院久久av| 自线自在国产av| 成人亚洲精品av一区二区 | 亚洲在线自拍视频| 久久久精品欧美日韩精品| 欧美不卡视频在线免费观看 | 人妻丰满熟妇av一区二区三区|