• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    甲烷部分氧化過程中強制振蕩的動力學Monte Carlo模擬

    2014-02-18 12:06:58任秀彬周安寧章結(jié)兵
    物理化學學報 2014年11期
    關(guān)鍵詞:化工學院物理化學西安

    任秀彬 周安寧 章結(jié)兵

    (西安科技大學化學與化工學院,西安710054)

    1 Introduction

    The oxidation of methane on metal catalysts can result in partial oxidation to syngas(CO and H2),which is mostly used for synthesis of chemical materials,for example methanol.It has been reported that the catalytic oxidation of methane exhibits kinetic oscillations in a variety of catalysts including palladium,nickel,cobalt,and nickel/chromium alloy.1The analysis of oscillatory behavior can present valuable information about the intrinsic mechanisms of catalytic reactions.Besides,it is practical to use oscillations to avoid dangerous oscillatory state of reactors,or bring better catalytic performance in some cases.For instance the utilization of pressure cycling is targeted at changing kinetic oscillations,which results in high conversion rate.2

    To interpret this complex dynamics in partial oxidation of methane under Ni catalysts,both experimental studies and simulations have been proposed.With experimental studies,the oscillations over Ni foam,3wire and foil,4,5nickel/chromium alloy,6-9and supported nickel catalyst10have been investigated.With simulations,Slinko11and Lashina12et al.developed continuous mathematical models for describing the oscillatory behavior during methane partial oxidation in isothermal and nonisothermal conditions,respectively.In our previous studies,13-17the oscillations during partial oxidation of methane have been surveyed by Monte Carlo(MC)simulations with 12-and 18-step Langmuir-Hinshelwood(LH)mechanism and the formation and removal of nickel oxide under isothermal and nonisothermal conditions,and the formation mechanism of reaction rate oscillations has also been discussed in detail.In all the studies,it is generally suggested that the oscillations over Ni catalysts originate from the repetitive cycles of oxidation and reduction of the metal surface.

    After the fact of mechanism has been clarified,the next goal is to control the kinetics on the purpose of avoiding dangerous oscillatory state or bringing about better catalytic performance and high conversion rate.Practically,a large number of researches have been focused on improving the conversion rate of methane to syngas,such as catalytic oxidation of methane on special catalysts in high pressure or high temperature.18-20In earlier studies,it has also been shown that forced composition cycling of the feed to catalytic reactions can lead to significant dynamic change and rate enhancement for the platinum catalyzed CO+N2O reaction,21and CO+O2reaction.22How does the composition cycling of feed influence the dynamics and conversion during partial oxidation of methane on catalysts?This paper studies the impact of forced composition cycling of the feed on the dynamics and conversion in methane oxidation to CO and H2by using kinetic MC simulations.

    2 MC model

    The partial oxidation of methane on Ni catalysts follows the Langmuir-Hinshelwood mechanism.Because the formation of CO2and H2O may be ruled out in some circumstances,in the simulation the main products(CO and H2)are only considered.The detailed 12 step elementary reactions have been given and summarized in Table 1.

    In the MC model,the catalyst surface is represented by a twodimensional square lattice ofL×Lsites with periodic boundary conditions.CH4adsorption occurs on an empty site while O2adsorption on a pair of nearest-neighbor(nn)empty sites.CH4desorption and nickel oxide formation are treated as first-order processes.The sum of rate constants for O desorption,LH step(reaction between adsorbed C and O),and oxide formation are taken as a normalized constant.Probability(pi)for each reaction stepiis drawn from the ratio of the reaction rate constant(ki)to the sum of above three rate constants.That is,the probabilitypifor each event is,

    Table 1 Elementary steps

    Especially,thepifor steps 3,4,5,6,10,is considered as being equal to 1 because those steps can proceed completely.Adsorbed CH4,O,and H species are allowed to diffuse to an empty nn site.

    A dimensionless parameterpreais used to characterize the relative rates of reaction and diffusion,and the rates of the reaction and diffusion processes are considered to be proportional topreaand 1-prea,respectively.The MC algorithm is shown in the following:

    (1)A random numberχ(0<χ<1)is firstly generated.The reaction trial is executed withχprea.

    (2)For a diffusion trial,if the randomly selected site is occupied by adsorbed CH4,O,or H,and a randomly selected nn site is empty,the particle jumps to the selected nn site.

    (3)For a reaction trial,a lattice site is randomly selected and a random numberχ1(0<χ1<1)is used to determine a reaction event.

    (i)If the selected site is empty,CH4or O2adsorption can occur forχ1

    (ii)If the selected site is occupied by adsorbed CH4,CH4desorption or dissociation can occur whenχ1

    (iii)If the selected site is occupied by CHx(x=1-3),the trial of CHxdissociation is considered to be successful if the randomly selected nn site is empty.

    (iv)If the selected site is occupied by C,one of the nn sites is chosen at random.If the nn site is occupied by nickel oxide(Ox),the reaction can occur with the probabilityp12.

    (v)If the selected site is occupied by O,O2desorption,formation of NiO or reaction with C can occur forχ1

    (vi)If the selected site is occupied by H,one of the nn sites is chosen at random.If the nn site is also occupied by H,a gaseous H2molecule is released.

    (4)CH4and O2adsorption probabilities(p1andp7)have been changed to zero in a fixed period and width periodically.

    The MC simulation starts from a clean surface,and the MC step(MCS)is employed to represent the reaction time.One MCS is defined asL×Lattempts of the adsorption-reaction events.23,24The reaction rate is determined by the number of produced CO or H2molecules per lattice site in a MCS.The average of produced CO or H2molecules over 50 MCS is used to calculate the reaction rate.

    3 Results and discussion

    It should be mentioned that the simulations are also carried out in the lattice sizes of 100 and 400 to understand the effect of lattice size on the results.The results show that when the lattice size is larger than or equal to 200×200,the oscillatory kinetics has no obvious change.Therefore,all simulations are performed on a square lattice of 200×200 sites.The simulation parameters are executed forprea=0.01,p1=0.009,p2=0.01,p7=0.01,p8=0.001,p11=0.002,andp12=0.001.14

    Autonomous oscillations are shown in Fig.1.From the figure,the coverage of empty sites,C,O,Ox and formation rates of CO and H2all exhibit well-developed oscillations.It is found that the transformation of the dominant reaction(from reaction of C and O to the reaction of C and Ox)results in the periodic oscillations of the reaction kinetics,while the oxidation and reduction of nickel surface play an important role in the transformation.13It can also be seen that those self-sustained oscillations have a relatively fixed period.Therefore,the average periodThas been calculated.

    Composition cycling of feed is used for external forcing of the system.In our previous studies,the reaction rate constant for CH4and O2can be estimated by

    whereJistands for the impinging constant,Pithe partial pressure,andSithe sticking coefficient.Then,the probabilities for CH4and O2adsorption(p1andp7)are taken by calculating the ratio of the reaction rate constants to normalized constant.Therefore,we can easily see that the parameters ofp1andp7are proportional to the concentration(partial pressure)of CH4and O2,respectively.The paper proposes that composition cycling of feed can be easily achieved by changing the adsorption probabilities ofp1andp7periodically.In the simulation,the forcing width is selected asT/5,whereTis the average period of autonomous oscillations,and the results of forced oscillations for different forcing period(T/3,T/2,T,1.3T,1.5T,and 2T)have been shown from Fig.2 to Fig.7.

    In order to determine whether the forced oscillations are random,chaotic or periodic,the chaotic attractor is firstly calculated by using time delay method and the correlation dimension algorithm.25,26The one-dimensional time seriesu(tk)(k=0,1,…,M)measured from surface coverage is extended tom-dimensional phase spaceV(tn)(n=0,1,…,N),whereMandNare the number of data points,mis the dimension of phase space.Then the correlation dimensionD(m)can be calculated by correlation integralC(r,m).

    whereτis the delay time,ris the scaling length,θis the Hevisaide function.The correlation dimensionD(m)is not increased untilmis up tomc,thenD(mc)is the chaotic attractor,wheremcis saturation dimension of phase space.27The calculations are performed utilizing FORTRAN software and the chaotic attractors for forced oscillations are given in Table 2.

    Fig.1 Autonomous oscillations of coverages of C,O,Ox,empty sites and formation rates of CO and H2

    Fig.2 Forced oscillations with the forcing period of T/3 and forcing width of T/5

    It is reported that if the chaotic attractorD(mc)is equal to 1,it is periodic oscillation,and if the chaotic attractorD(mc)is equal to 2,it is quasi-periodic oscillation.28WhenD(mc)is greater than 2,and is the fraction,the oscillation is chaotic.FromTable 2 it can be seen that the chaotic attractors of forced oscillations are 1-2,which means that the oscillations with forcing periods ofT/3,T/2,T,and 2Tare periodic oscillations,and the oscillations with forcing periods of 1.3Tand 2Tare quasi-periodic oscillations.

    In Fig.2,with the forcing period ofT/3,though the chaotic attractor calculation demonstrates it is periodic oscillations,the obtained oscillations are complicated,which is mainly due to system noise.With the forcing period ofT/2(Fig.3),the oscillations show a little complicated state and the period and amplitude have changed.Compared with autonomous oscillations(Fig.1),the period of forced oscillations has reduced by half,which attributes to the transformation of nickel surface between oxidation and reduction.When the reaction begins,the surface is in the reduced state.Then the oxide formation results in the surface changing to oxidized state.Once the breakdown of feed happens,due to the main reaction of C and Ox,the surface again turns to reduced state.It is the period of changing between reduced state and oxidized state that determines the period of forced oscillations.The coverage amplitude of empty sites is slightly increasing while the coverages of C,O,and Ox are reduced by half.This can be interpreted in this way:when the reaction begins there are maximum empty sites on the surface.Methane and oxygen can be easily adsorbed and dissociated,and these processes result in the decrease of empty sites.When the breakdown of feed happens,there is no adsorption of CH4and O2.The increase of C and Ox coverages and decrease of empty sites stop,and C and Ox coverages reach their maximum or minimum respectively.Due to the main reaction of C and Ox,the coverages of C and Ox decrease.Because the reaction rate between C and Ox is very small,the extent of C and Ox decreasing is restricted,which leads to small amplitudes of C and Ox.The consumptions of adsorbed species and oxide could also bring about a larger burst of empty sites.

    Table 2 Chaotic attractors(D(mc))for different forcing conditions

    With the forcing period ofT(Fig.4),it is found that the period and amplitude have not changed obviously.Although any particular information has not been acquired from the coverages of C,O,and Ox,it can be seen from the figure that the double-peak oscillations are found in the coverage of empty sites.For the coverage of empty sites,the first peak is originated from external forcing and the second peak from the autonomous oscillations.When the breakdown of feed happens,the empty sites increase and firstly reach their maximum mainly due to the main surface reaction of adsorbed C and Ox.When the reactant concentration resumes,the adsorption of methane and oxygen becomes easier due to the large empty sites,and these processes result in the decrease of empty sites.With the adsorption of methane and oxygen,the quick reaction between adsorbed C and O leads to the empty sites increasing and again reaching its maximum.

    With the forcing periods of 1.3T(Fig.5)and 1.5T(Fig.6),the period of forced oscillations is decreased remarkably.Besides,double-peak oscillations can be found in the coverages of empty sites,C,O,and Ox.When the forcing period comes to 2T(Fig.7),it can be seen from the coverage of empty sites that in one period the breakout is single-peak,but in the next period the breakout is double-peak.

    Fig.3 Forced oscillations with the forcing period of T/2 and forcing width of T/5

    Fig.4 Forced oscillations with the forcing period of T and forcing width of T/5

    The above results show that with composition cycling of feed,not only the oscillatory behavior such as the period and amplitude could be changed,but also some complex dynamics such as double-peak oscillations can be obtained.The changing of oscillatory dynamics is considered to be related with the transition of metal from oxidized to reduced state.When the forcing of feed happens,the oxidized surface changes to partially reduced surface due to the main reaction between C and Ox.When the reactant concentration resumes,the oxide formation changes reduced surface to the partially oxidized surface.If the forcing period is less than that of autonomous oscillations,the recovery of the system after the forcing of feed is not completed up to the time when the new forcing begins,the smaller oscillatory periods and amplitudes are found.If the forcing period is longer than that of autonomous oscillations and the recovery of system is achieved adequately,the complex dynamics such as double-peak oscillations can be found.

    Fig.5 Forced oscillations with the forcing period of 1.3T and forcing width of T/5

    It has been reported that high conversion rate can be obtained in some forcing conditions.We will now concentrate on the conversion rates of forced oscillations.In the simulation,the conversion rate in different forcing conditions has been calculated.The conversion rate is defined as the ratio between CO production and amount of CH4feed.It is assumed that the amount of CH4feed in one MCS is proportional to the probability of CH4adsorption(p1)and the value isC.Then,the relative average conversion rates of forced oscillations(Xforce)and autonomous oscillations(Xauto)can be calculated as follows.

    Fig.6 Forced oscillations with the forcing period of 1.5T and forcing width of T/5

    Fig.7 Forced oscillations with the forcing period of 2T and forcing width of T/5

    Fig.8 shows conversion rate as a function of forcing period.From Fig.8 it can be seen that the mean conversion rate of forced oscillations is higher than that of the autonomously oscillating state.When the forcing periods areTand 2T,the average conversion rates drop to almost the same value the autonomous system shows.

    Effects of forced processes on the conversion rates can be realized by changing the oxidation and reduction state of catalysts.When the surface is oxidized,the operations of composition cycling of feed(with forcing periods of 1.3Tand 1.5T)make the surface be reduced mainly due to the reaction between C and Ox,which results in an obvious increasing of empty sites.On this basis,CH4and O2adsorption become much easier,and much higher conversion rate of CO can be found.When the surface is reduced,the operations of composition cycling of feed(with forcing periods ofTand 2T)result in further reduction of catalysts due to the reaction between C and Ox.Because the reaction rate of C and Ox is small,the increasing of empty sites is limited,and relative lower conversion rate of CO can be found.With the forcing periods ofT/2,both the above effects make the conversion rate reach its maximum.

    Fig.8 Relative conversion rate as a function of the forcing period

    4 Conclusions

    The kinetics of external forced oscillations during partial oxidation of methane over Ni surface was simulated by the MC method.Based on 12-step Langmuir-Hinshelwood mechanism and composition cycling of feed,kinetic oscillations in both products and coverage of surface species have been observed.The results indicate that with fixed forcing amplitude ofT/5(Tis the average period of autonomous oscillations)and alterable forcing period fromT/3 to 2T,not only the period and amplitude change obviously,but also the kinetic oscillations show double-peak behavior.The mean conversion rates have also been calculated in both autonomous oscillations and forced oscillations.The results demonstrate that the forced oscillations show an increase in conversion rate.The changes of kinetics and conversion rate could attribute to the surface transition from oxidized to reduced states due to the operation of composition cycling of the feed.The results show that the kinetic oscillations could be effectively controlled by composition cycling of feed.

    (1)Zhang,X.L.;Lee,C.S.M.;Hayward,D.O.;Mingos,D.M.P.Catal.Today2005,105,283.doi:10.1016/j.cattod.2005.02.040

    (2) Svensson,P.;Jaeger,N.I.;Plath,P.J.J.Phys.Chem.1988,92,1882.doi:10.1021/j100318a037

    (3) Cimino,S.;Lisi,L.;Mancino,G.;Musiani,M.;Vázquez-Gómez,L.;Verlato,E.Int.J.Hydrog.Energy2012,37,17040.doi:10.1016/j.ijhydene.2012.08.022

    (4)Zhang,X.L.;Hayward,D.O.;Mingos,D.M.P.Catal.Lett.2003,86,235.doi:10.1023/A:1022672219909

    (5)Zhang,X.L.;Hayward,D.O.;Mingos,D.M.P.Catal.Lett.2002,83,149.doi:10.1023/A:1021069510797

    (6)Tulenin,Y.P.;Sinev,M.Y.;Savkin,V.V.;Korchak,V.N.Stud.Surf.Sci.Catal.1997,110,757.doi:10.1016/S0167-2991(97)81038-5

    (7)Tulenin,Y.P.;Sinev,M.Y.;Savkin,V.V.;Korchak,V.N.;Yan,Y.B.Kinet.Catal.1999,40,405.

    (8) Tulenin,Y.P.;Sinev,M.Y.;Savkin,V.V.;Korchak,V.N.Catal.Today2004,91-92,155.

    (9)Zhang,X.L.;Hayward,D.O.;Mingos,D.M.P.Catal.Lett.2001,72,147.

    (10) Hu,Y.H.;Ruckenstein,E.Ind.Eng.Chem.Res.1998,37,2333.doi:10.1021/ie980027f

    (11) Slinko,M.M.;Korchak,V.N.;Peskov,N.V.Appl.Catal.A:Gen.2006,303,258.doi:10.1016/j.apcata.2006.02.010

    (12)Lashina,E.A.;Kaichev,V.V.;Chumakova,N.A.;Ustyugov,V.V.;Chumakov,G.A.;Bukhtlyrov,V.I.Kinet.Catal.2012,53,374.doi:10.1134/S0023158412030081

    (13) Ren,X.B.;Li,H.Y.;Guo,X.Y.Surf.Sci.2008,602,300.doi:10.1016/j.susc.2007.10.016

    (14)Ren,X.B.;Li,H.Y.;Guo,X.Y.Acta Phys.-Chim.Sin.2008,24,197.[任秀彬,李換英,郭向云.物理化學學報,2008,24,197.]doi:10.1016/S1872-1508(08)60009-1

    (15) Ren,X.B.;Guo,X.Y.Surf.Rev.Lett.2008,15,769.doi:10.1142/S0218625X0801213X

    (16) Ren,X.B.;Guo,X.Y.Surf.Sci.2009,603,606.doi:10.1016/j.susc.2008.12.018

    (17)Ren,X.B.;Guo,X.Y.J.Nat.Gas Chem.2011,20,503.doi:10.1016/S1003-9953(10)60216-2

    (18) Zhao,K.;He,F.;Huang,Z.;Zheng,A.Q.;Li,H.B.;Zhao,Z.L.Chin.J.Catal.2014,35,1196.[趙 坤,何 方,黃 振,鄭安慶,李海濱,趙增立.催化學報,2014,35,1196.]doi:10.1016/S1872-2067(14)60084-X

    (19) Donazzi,A.;Livio,D.;Diehm,C.;Beretta,A.;Groppi,G.;Forzatti,P.Appl.Catal.A:Gen.2014,469,52.

    (20) Nguyen,T.H.;?amacz,A.;Beaunier,P.;Czajkowska,S.;DomaDski,M.;KrztoD,A.;Le,T.V.;Djéga-Mariadassou,G.Appl.Catal.B:Environ.2014,152-153,360.

    (21) Sadhankar,R.R.;Lynch,D.T.J.Catal.1994,149,278.doi:10.1006/jcat.1994.1296

    (22)Graham,W.R.C.;Lynch,D.T.AIChE J.1990,36,1796.

    (23) Sinha,I.;Mukherjee,A.K.Chem.Phys.Lett.2012,553,30.doi:10.1016/j.cplett.2012.09.073

    (24) Liu,D.J.;Evans,J.W.Prog.Surf.Sci.2013,88,393.doi:10.1016/j.progsurf.2013.10.001

    (25) Packard,N.H.;Crutcheld,J.P.;Farmer,J.D.;Shaw,R.S.Phys.Rev.Lett.1980,45,712.doi:10.1103/PhysRevLett.45.712

    (26) Grassberger,P.;Procaccia,I.Phys.Rev.Lett.1983,50,346.doi:10.1103/PhysRevLett.50.346

    (27) Kipchatov,A.A.;Krasichkov,L.V.On Reconstruction of ChaoticAttractor from Time Series Represented as"Clusters".InDynamical Systems and Chaos;The Proceedings of the International Conference on Dynamical Systems and Chaos,Tokyo,Japan,May 23-27,1994;pp 1-4.

    (28)Guo,X.Y.;Zhong,B.;Peng,S.Y.Acta Phys.-Chim.Sin.1995,11,873.[郭向云,鐘 炳,彭少逸.物理化學學報,1995,11,873.]doi:10.3866/PKU.WHXB20080524

    猜你喜歡
    化工學院物理化學西安
    使固態(tài)化學反應100%完成的方法
    西安2021
    Oh 西安
    物理化學課程教學改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學課堂教學改進的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    國家開放大學石油和化工學院學習中心列表
    【鏈接】國家開放大學石油和化工學院學習中心(第四批)名單
    《西安人的歌》突如其來?
    當代陜西(2019年6期)2019-04-17 05:04:10
    Chemical Concepts from Density Functional Theory
    追根溯源 回到西安
    国产精品一区www在线观看| 又爽又黄无遮挡网站| 最近在线观看免费完整版| 久久精品国产自在天天线| 亚洲熟妇熟女久久| 日韩精品中文字幕看吧| 久久久久久久久中文| 精品久久久久久成人av| 国产精品嫩草影院av在线观看| 男女视频在线观看网站免费| 精品免费久久久久久久清纯| 国产高清有码在线观看视频| 18禁在线无遮挡免费观看视频 | 黄色视频,在线免费观看| 亚洲av免费在线观看| 国产精品久久久久久精品电影| 一级a爱片免费观看的视频| av中文乱码字幕在线| 亚洲美女黄片视频| 国产黄a三级三级三级人| 成人午夜高清在线视频| 中文字幕精品亚洲无线码一区| 十八禁国产超污无遮挡网站| 成人特级黄色片久久久久久久| 欧美bdsm另类| 两个人视频免费观看高清| 国产真实乱freesex| 亚洲欧美精品综合久久99| 国产激情偷乱视频一区二区| 色哟哟哟哟哟哟| 午夜a级毛片| 成人漫画全彩无遮挡| 一本久久中文字幕| 亚洲久久久久久中文字幕| 国产视频内射| avwww免费| 最好的美女福利视频网| 神马国产精品三级电影在线观看| 男女啪啪激烈高潮av片| 97超级碰碰碰精品色视频在线观看| 给我免费播放毛片高清在线观看| 俺也久久电影网| 两个人视频免费观看高清| 中文字幕熟女人妻在线| 床上黄色一级片| 狂野欧美激情性xxxx在线观看| 我要看日韩黄色一级片| 午夜亚洲福利在线播放| 免费观看人在逋| 午夜老司机福利剧场| 简卡轻食公司| 美女高潮的动态| 亚洲人成网站在线播| 乱码一卡2卡4卡精品| 欧美日本视频| 日韩av不卡免费在线播放| 国产男人的电影天堂91| 久久久色成人| 久久久精品大字幕| 老熟妇仑乱视频hdxx| 十八禁网站免费在线| 日本欧美国产在线视频| 国产精品野战在线观看| 老熟妇仑乱视频hdxx| 精品久久国产蜜桃| 精品人妻熟女av久视频| 看片在线看免费视频| 日本免费一区二区三区高清不卡| or卡值多少钱| 精品日产1卡2卡| 黄色配什么色好看| 菩萨蛮人人尽说江南好唐韦庄 | 国产熟女欧美一区二区| 日日撸夜夜添| 成人性生交大片免费视频hd| 真人做人爱边吃奶动态| 美女大奶头视频| 国产黄色小视频在线观看| 性欧美人与动物交配| 欧美激情国产日韩精品一区| 18禁黄网站禁片免费观看直播| 精品免费久久久久久久清纯| 色尼玛亚洲综合影院| 国语自产精品视频在线第100页| 日韩中字成人| 俺也久久电影网| 国产成人a区在线观看| 国产极品精品免费视频能看的| 亚洲精品色激情综合| 99久久精品国产国产毛片| 国产高清三级在线| 男女啪啪激烈高潮av片| 国产精品女同一区二区软件| 欧美高清性xxxxhd video| 黄色日韩在线| 日韩欧美三级三区| 麻豆成人午夜福利视频| 午夜免费男女啪啪视频观看 | 成人亚洲精品av一区二区| 国产毛片a区久久久久| 欧美bdsm另类| 亚洲av免费高清在线观看| 亚洲三级黄色毛片| 亚洲精品在线观看二区| 国产精品女同一区二区软件| 别揉我奶头 嗯啊视频| 一级黄色大片毛片| 欧美一区二区国产精品久久精品| 欧美成人免费av一区二区三区| 三级经典国产精品| 久久人人爽人人爽人人片va| 日本黄色片子视频| 精品福利观看| 久久人人爽人人爽人人片va| 又爽又黄无遮挡网站| 黄色一级大片看看| 日本精品一区二区三区蜜桃| 乱系列少妇在线播放| 99久久九九国产精品国产免费| 在线观看av片永久免费下载| 露出奶头的视频| 韩国av在线不卡| 熟妇人妻久久中文字幕3abv| 免费电影在线观看免费观看| 美女 人体艺术 gogo| 国产伦一二天堂av在线观看| 日日撸夜夜添| 在线免费观看不下载黄p国产| 欧美高清成人免费视频www| 亚洲乱码一区二区免费版| 一个人免费在线观看电影| 久久草成人影院| 亚洲国产欧洲综合997久久,| 男人狂女人下面高潮的视频| 亚洲成人av在线免费| 亚洲av美国av| 1024手机看黄色片| 欧美人与善性xxx| 欧美bdsm另类| 国产精品嫩草影院av在线观看| 日韩一区二区视频免费看| 日日啪夜夜撸| 久久午夜福利片| 日本一本二区三区精品| 人人妻人人澡欧美一区二区| 99riav亚洲国产免费| 国产色婷婷99| 欧美日本亚洲视频在线播放| 性色avwww在线观看| 精品国内亚洲2022精品成人| 18禁黄网站禁片免费观看直播| 嫩草影院入口| 午夜日韩欧美国产| 久久精品久久久久久噜噜老黄 | 久久综合国产亚洲精品| 亚洲第一电影网av| 亚洲精品在线观看二区| 国模一区二区三区四区视频| 国产欧美日韩精品一区二区| av国产免费在线观看| 久久韩国三级中文字幕| av专区在线播放| 亚洲精品一区av在线观看| 一夜夜www| 一本精品99久久精品77| 亚洲真实伦在线观看| 少妇裸体淫交视频免费看高清| 欧美极品一区二区三区四区| 亚洲欧美精品自产自拍| АⅤ资源中文在线天堂| 欧美色欧美亚洲另类二区| 熟妇人妻久久中文字幕3abv| 男女做爰动态图高潮gif福利片| 男插女下体视频免费在线播放| 精品久久久久久久人妻蜜臀av| 亚洲成人精品中文字幕电影| 性色avwww在线观看| a级一级毛片免费在线观看| 亚洲美女黄片视频| 春色校园在线视频观看| 欧美绝顶高潮抽搐喷水| 九色成人免费人妻av| 99热全是精品| 女同久久另类99精品国产91| av在线天堂中文字幕| 蜜桃久久精品国产亚洲av| 寂寞人妻少妇视频99o| 舔av片在线| 亚洲美女搞黄在线观看 | 国产中年淑女户外野战色| 亚洲欧美成人精品一区二区| 国产成人91sexporn| 午夜爱爱视频在线播放| 黄色日韩在线| 欧美性感艳星| 精品一区二区三区av网在线观看| 国产av在哪里看| 国产精品久久久久久av不卡| 日韩欧美在线乱码| eeuss影院久久| 亚洲va在线va天堂va国产| 成人欧美大片| 精品一区二区免费观看| 国产亚洲欧美98| 伦理电影大哥的女人| 五月玫瑰六月丁香| 亚洲av电影不卡..在线观看| 日韩精品青青久久久久久| 欧美激情在线99| 成人综合一区亚洲| 成人国产麻豆网| 别揉我奶头~嗯~啊~动态视频| 国产成人一区二区在线| 免费不卡的大黄色大毛片视频在线观看 | 国产精品美女特级片免费视频播放器| 成年版毛片免费区| 中国国产av一级| 久久精品国产鲁丝片午夜精品| 欧美一区二区精品小视频在线| 日本a在线网址| 99热这里只有是精品50| 日日啪夜夜撸| 精品欧美国产一区二区三| 成人永久免费在线观看视频| 国产亚洲91精品色在线| 亚洲精品乱码久久久v下载方式| 色哟哟哟哟哟哟| 搡老妇女老女人老熟妇| 国产伦精品一区二区三区四那| eeuss影院久久| 麻豆成人午夜福利视频| 日本成人三级电影网站| 99九九线精品视频在线观看视频| 又黄又爽又刺激的免费视频.| 久久人人精品亚洲av| 国产精品久久视频播放| 成人永久免费在线观看视频| 淫秽高清视频在线观看| 亚洲国产精品久久男人天堂| 亚洲成人中文字幕在线播放| 麻豆乱淫一区二区| 一进一出抽搐gif免费好疼| 女人十人毛片免费观看3o分钟| 日日摸夜夜添夜夜添小说| 热99在线观看视频| 国产69精品久久久久777片| 不卡一级毛片| 高清毛片免费观看视频网站| 国产精品一区二区三区四区免费观看 | 成熟少妇高潮喷水视频| 村上凉子中文字幕在线| av女优亚洲男人天堂| 99久久九九国产精品国产免费| 亚洲无线在线观看| 精品一区二区三区av网在线观看| 男女做爰动态图高潮gif福利片| aaaaa片日本免费| 日本黄色视频三级网站网址| 美女内射精品一级片tv| 日韩,欧美,国产一区二区三区 | 亚洲av美国av| 级片在线观看| 99久久精品热视频| 精品日产1卡2卡| 日韩人妻高清精品专区| 男人的好看免费观看在线视频| 国产探花极品一区二区| 免费看美女性在线毛片视频| 欧美高清成人免费视频www| 亚洲av免费在线观看| 国产91av在线免费观看| 亚洲精品成人久久久久久| 成人av在线播放网站| 在线a可以看的网站| 我要搜黄色片| 99久久精品一区二区三区| 久久精品国产清高在天天线| 日韩av在线大香蕉| 国产男靠女视频免费网站| 国产成人91sexporn| 国模一区二区三区四区视频| 中文字幕免费在线视频6| 精品福利观看| 色噜噜av男人的天堂激情| 免费人成视频x8x8入口观看| 天堂影院成人在线观看| 变态另类成人亚洲欧美熟女| 99热网站在线观看| 免费看美女性在线毛片视频| 久久草成人影院| 色综合色国产| 老熟妇仑乱视频hdxx| 亚洲av.av天堂| 久久6这里有精品| 少妇熟女欧美另类| 亚洲av成人精品一区久久| 黄色配什么色好看| 少妇人妻一区二区三区视频| 色综合站精品国产| 久久午夜亚洲精品久久| 欧美成人精品欧美一级黄| 日日摸夜夜添夜夜添小说| 国产成人精品久久久久久| 国产亚洲精品久久久久久毛片| 国产高清激情床上av| 观看美女的网站| 久久精品国产亚洲网站| 国产在线男女| 高清午夜精品一区二区三区 | 国产久久久一区二区三区| 亚洲欧美成人精品一区二区| 日日摸夜夜添夜夜添小说| 三级男女做爰猛烈吃奶摸视频| 中文字幕av成人在线电影| a级毛片免费高清观看在线播放| 亚洲国产精品久久男人天堂| 神马国产精品三级电影在线观看| 国产亚洲精品久久久com| 在线观看66精品国产| 亚洲精品国产成人久久av| 99热这里只有精品一区| 国产三级中文精品| 精品一区二区三区视频在线| 黄色日韩在线| 亚洲最大成人av| 国产在线精品亚洲第一网站| 国产真实伦视频高清在线观看| 午夜福利视频1000在线观看| 搡老熟女国产l中国老女人| 亚洲av成人av| 国产v大片淫在线免费观看| 欧美三级亚洲精品| 国产成人a∨麻豆精品| 内射极品少妇av片p| 亚洲自偷自拍三级| 色av中文字幕| 欧美又色又爽又黄视频| 简卡轻食公司| 亚洲精品一卡2卡三卡4卡5卡| 欧美一区二区国产精品久久精品| 观看免费一级毛片| 久久精品国产亚洲av香蕉五月| 午夜激情福利司机影院| 国产精品久久久久久久电影| 久久久久国内视频| 中国美白少妇内射xxxbb| 亚洲av免费在线观看| 少妇熟女欧美另类| 全区人妻精品视频| 亚洲av熟女| 国产精品野战在线观看| 综合色av麻豆| 精品久久久久久久久久免费视频| 五月伊人婷婷丁香| 亚洲久久久久久中文字幕| 国产av在哪里看| 午夜福利视频1000在线观看| 国产精品久久久久久久电影| 久久韩国三级中文字幕| 欧美+日韩+精品| 免费看美女性在线毛片视频| a级一级毛片免费在线观看| 国产伦精品一区二区三区视频9| 人妻久久中文字幕网| 永久网站在线| 亚洲av第一区精品v没综合| 欧美一级a爱片免费观看看| 国产一区亚洲一区在线观看| 亚洲av电影不卡..在线观看| 国产一区二区三区av在线 | 日本欧美国产在线视频| 亚洲欧美精品自产自拍| 日日摸夜夜添夜夜爱| 亚洲中文日韩欧美视频| 国产精品免费一区二区三区在线| 国产乱人偷精品视频| av在线蜜桃| 免费搜索国产男女视频| 国产午夜精品论理片| 欧美一区二区国产精品久久精品| 亚洲人成网站高清观看| 男女下面进入的视频免费午夜| 亚洲一区高清亚洲精品| 美女大奶头视频| 免费看日本二区| 美女免费视频网站| 内地一区二区视频在线| 久久精品国产清高在天天线| 午夜精品一区二区三区免费看| 国产乱人视频| 日本黄色片子视频| 深夜a级毛片| 国产麻豆成人av免费视频| 日韩人妻高清精品专区| 人妻少妇偷人精品九色| 看十八女毛片水多多多| av视频在线观看入口| 亚洲av五月六月丁香网| 日日摸夜夜添夜夜爱| 亚洲av二区三区四区| 我要搜黄色片| 亚洲最大成人中文| 综合色丁香网| 成人高潮视频无遮挡免费网站| 亚洲无线在线观看| 色5月婷婷丁香| 久久久精品94久久精品| 搡老熟女国产l中国老女人| 国产精品日韩av在线免费观看| a级一级毛片免费在线观看| 亚洲熟妇中文字幕五十中出| 国产乱人偷精品视频| 亚洲av美国av| 日韩欧美国产在线观看| 亚洲熟妇熟女久久| 淫妇啪啪啪对白视频| 变态另类丝袜制服| 亚洲三级黄色毛片| 久久久精品欧美日韩精品| 啦啦啦韩国在线观看视频| 99在线人妻在线中文字幕| 老师上课跳d突然被开到最大视频| 亚洲一级一片aⅴ在线观看| 欧美另类亚洲清纯唯美| 18禁黄网站禁片免费观看直播| 亚洲人成网站在线播| 色在线成人网| 欧美xxxx性猛交bbbb| 欧美又色又爽又黄视频| 乱系列少妇在线播放| 国产精品久久久久久久电影| 久久久色成人| 国产老妇女一区| 99国产精品一区二区蜜桃av| 国产精品1区2区在线观看.| 日本a在线网址| 国产亚洲精品av在线| 日本a在线网址| 国产伦在线观看视频一区| 国产一区二区三区在线臀色熟女| 国产伦在线观看视频一区| 日韩强制内射视频| 国产av麻豆久久久久久久| 舔av片在线| 麻豆一二三区av精品| 国产高清视频在线观看网站| 99久久精品一区二区三区| 久久人人爽人人爽人人片va| 国产色爽女视频免费观看| 国产国拍精品亚洲av在线观看| 成人特级av手机在线观看| 久久人妻av系列| 久久久久久伊人网av| 麻豆精品久久久久久蜜桃| 欧美+亚洲+日韩+国产| 国产精品福利在线免费观看| 秋霞在线观看毛片| 久久精品国产自在天天线| 一级av片app| 自拍偷自拍亚洲精品老妇| 久久精品国产99精品国产亚洲性色| 亚洲精品一区av在线观看| 非洲黑人性xxxx精品又粗又长| 两个人的视频大全免费| 国产视频内射| 亚洲精品一区av在线观看| 精品欧美国产一区二区三| 此物有八面人人有两片| 少妇人妻精品综合一区二区 | 高清午夜精品一区二区三区 | 禁无遮挡网站| 免费av观看视频| 久久久久久大精品| 国产91av在线免费观看| 亚洲欧美成人综合另类久久久 | 久久精品综合一区二区三区| 99热精品在线国产| 亚州av有码| 真人做人爱边吃奶动态| 99九九线精品视频在线观看视频| 91狼人影院| 亚洲欧美日韩卡通动漫| 亚洲精品一卡2卡三卡4卡5卡| 欧美xxxx黑人xx丫x性爽| 亚洲一区二区三区色噜噜| 毛片女人毛片| 国产极品精品免费视频能看的| 秋霞在线观看毛片| 国产精品福利在线免费观看| 精品人妻一区二区三区麻豆 | 国产美女午夜福利| 国产乱人视频| 国产91av在线免费观看| 搡女人真爽免费视频火全软件 | 美女免费视频网站| 免费在线观看成人毛片| 久久人人精品亚洲av| 日本黄色片子视频| 91午夜精品亚洲一区二区三区| 最新在线观看一区二区三区| 国产真实伦视频高清在线观看| 天堂影院成人在线观看| 国产精品人妻久久久影院| 国产成人a区在线观看| 成人漫画全彩无遮挡| 亚洲,欧美,日韩| 97热精品久久久久久| 全区人妻精品视频| 久久久色成人| 97人妻精品一区二区三区麻豆| 国产精品伦人一区二区| 美女黄网站色视频| 久久久久久久亚洲中文字幕| 久久人人爽人人爽人人片va| 一个人看视频在线观看www免费| av在线播放精品| 少妇熟女aⅴ在线视频| 亚洲av免费高清在线观看| 国产精品一区二区性色av| 99热6这里只有精品| av天堂在线播放| 久久99热6这里只有精品| 日韩制服骚丝袜av| 久久久a久久爽久久v久久| 免费高清视频大片| 免费看光身美女| 99久久无色码亚洲精品果冻| 变态另类成人亚洲欧美熟女| 中文字幕精品亚洲无线码一区| av天堂在线播放| 级片在线观看| 亚洲自偷自拍三级| 久久人妻av系列| 欧美一区二区亚洲| 成人高潮视频无遮挡免费网站| 精品欧美国产一区二区三| 久久热精品热| 成年免费大片在线观看| 一进一出好大好爽视频| 国内精品久久久久精免费| 亚洲七黄色美女视频| av福利片在线观看| 春色校园在线视频观看| 国产午夜精品久久久久久一区二区三区 | 久99久视频精品免费| 又粗又爽又猛毛片免费看| 最近的中文字幕免费完整| 国产高清激情床上av| 真实男女啪啪啪动态图| 美女xxoo啪啪120秒动态图| 少妇熟女aⅴ在线视频| 亚洲高清免费不卡视频| 国产三级中文精品| 女人被狂操c到高潮| 免费不卡的大黄色大毛片视频在线观看 | 看免费成人av毛片| 麻豆成人午夜福利视频| 久久欧美精品欧美久久欧美| 女人被狂操c到高潮| 亚洲熟妇中文字幕五十中出| 91在线观看av| 99riav亚洲国产免费| 三级国产精品欧美在线观看| 校园春色视频在线观看| 欧美一区二区国产精品久久精品| 国产成人freesex在线 | 我的老师免费观看完整版| 国产精品久久久久久久久免| 99久久精品热视频| 久久久久久久亚洲中文字幕| 日日干狠狠操夜夜爽| 国产视频一区二区在线看| 啦啦啦啦在线视频资源| 成人国产麻豆网| 国产精品人妻久久久久久| 国产成人福利小说| 中国美白少妇内射xxxbb| 18禁在线播放成人免费| 国产极品精品免费视频能看的| 秋霞在线观看毛片| 精品乱码久久久久久99久播| 国产精品野战在线观看| 成人无遮挡网站| 我的老师免费观看完整版| 中文字幕精品亚洲无线码一区| av免费在线看不卡| 99热精品在线国产| 亚洲高清免费不卡视频| 国产精品1区2区在线观看.| 禁无遮挡网站| av国产免费在线观看| 久久人妻av系列| av在线播放精品| 日本黄色视频三级网站网址| 人妻久久中文字幕网| 亚洲自偷自拍三级| 啦啦啦韩国在线观看视频| 我要搜黄色片| 欧美高清成人免费视频www| 给我免费播放毛片高清在线观看| 老熟妇仑乱视频hdxx| 精品久久久久久久久久久久久| 国产一区二区亚洲精品在线观看| 亚洲专区国产一区二区| 国产精品美女特级片免费视频播放器| 久久久久久久久大av| 99热精品在线国产| 免费大片18禁| ponron亚洲| 久久精品国产99精品国产亚洲性色| 有码 亚洲区| 欧美激情国产日韩精品一区| 可以在线观看的亚洲视频| 搡老岳熟女国产| 久久99热6这里只有精品|