• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Temperature Distribution and Scuffing of Tapered Roller Bearing

    2014-02-07 12:45:08WANGAilinandWANGJiugen

    WANG Ailin and WANG Jiugen*

    Department of Mechanical Engineering,Zhejiang University,Hangzhou 310027,China

    1 Introduction*

    The rapid developments of high-speed roller bearings demand higher requirements for structural design,material selection,lubrication method and theoretical analysis of rolling bearings.Especially in the field of aerospace,high speed trains and automobile,and so on,tribological design problems deserve more and more attention such as fatigue life,thermal instability and scuffing failure of bearings.Tapered roller bearings have several advantages,such as compact structure,small radial size,high load capacity,small friction torque and lower operating temperature,thus tapered roller bearings are widely used in high-speed spindle assembly.The research into temperature distribution and scuffing possibility of tapered roller bearings has great significance in engineering practice.

    Both experiments and theories pay extensive attention to heat transfer inside the bearings and scuffing failure of bearing elements.For experimental studies,ZANTOPULOS[1]made a series tests that tapered roller bearings were running under severe operating conditions,and used optical microscope,scanning electron microscope and metallographic examinations,proposed a qualitative model for the onset of scuffing.TARAWNEH,et al[2],used heaters embedded in two rollers to study the dynamics of heating in railroad tapered-rollers bearings,after the heat transfer inside the bearing,the temperature of outer raceway was measured with infrared sensing temperature method,and the experimental results were compared to zero-and first-order thermal models to estimate overall heat transfer coefficients of the bearings.In situ Raman spectroscopy was employed for real time correlation of contact surface chemistry to friction coefficient for solid lubricated contact[3],and this method was also used to acquire point spectra in a running EHL contact,and measure pressure,lubricant film thickness and temperature[4].

    Theoretical analyses can be divided into two categories,one is to consider heat transfer in the whole surface of relative moving object,another concern is the actual contact area in terms of rough spots or hot spots.LING,et al[5],proposed a solution method for normal displacement of half-space under an arbitrarily distributed fast moving heat source.FLOQUET,et al[6–7],used the Fourier transform methods developed by Ling to analyze surface temperature,and their three dimensional analysis was verified with infra-red technique.GECIM,et al[8],selected a cylinder moving heat source,and used integral transform method to solve the heat conduction equation with cylindrical coordinate system.KENNEDY[9]analyzed the hot spots on the surface of relative moving object,and pointed out that the decrease of contact temperatures can be achieved with materials with higher thermal conductivity and higher heat capacity or with mechanical properties that have small stiffness,low yield stress or small coefficient of thermal expansion,which yields larger size hot spots.GECIM,et al[10],established transient temperature model in the vicinity of an asperity contact,they argued that the asperity achieves high transient temperature rise in a very short period of time,which may become the initial point of scuffing failure.In addition,there are several articles on the interactions of multiple heat sources problem[11–12].

    Scuffing is a typical failure mode of tribological pairs in mixed lubrication under heavy load and high sliding speed.The theoretical models of scuffing for metals in contact were classified in terms of temperature,frictional power intensity,thermal instability,collapse of partial-ehl film,tribo-chemistry and plastic flow of surface layer[13].Furthermore,the factors of surface hardness,surface texture and roughness,load and sliding speed,temperature,lubricants and additives,and debris have effects on scuffing mechanisms and occurrence process of scuffing[14].WINER,et al[15],studied the thermal resistance of a tapered roller bearing,presented a thermal resistance model and verified their results with an infrared scanner and thermocouples.BRYANT[16]solved the heat conduction equation with the concept of a moving temperature wave and a novel form of an exponential Fourier transform.JANG,et al[17],developed a theoretical model to take into account of the speed variation with time,and illustrated the time-seizure characteristics.They investigated the effects of thermomechanical properties,operating speed,and convective heat transfer coefficient on seizure time of a journal bearing[18].ZHAI,et al[19],and BHUSHAN,et al[20],studied the thermal behavior and friction coefficient at surface asperity scale.ZHAI,et al[19],analyzed the viscous shearing and cooling of transportation of heat out of the thermally intensive asperity contacts,and side-flow of heat is weak in mixed lubrication.BHUSHAN,et al[20],studied the scale effects of hardness,mean contact size,asperity slope,number of contacts,summit radius of asperities on friction coefficient and temperature.In 1989,DUFRANE,et al[21],studied seizure of journal bearings with respect to thermal expansion of shaft and bearing bore.KHONSARI,et al[22],studied the transient thermoelastic behavior of shaft of journal bearing,and predicted seizure with the rule that operating clearance is removed as seizure appears.The scuffing failure of high speed rolling bearings under heavy load still is not well understood and the prediction of scuffing in those cases has practical meaning for high speed train and other rotating machines.

    The objective of this study is to analyze temperature distribution and scuffing possibility of tapered roller bearings on the basis of internal contact stress[23].Cylinder moving heat source model proposed by GECIM,et al[8],and a slice method are utilized to calculate the internal temperature distribution and maximum temperature rise of bearing elements,and predict possible positions of scuffing.With the method and results of this study,the scuffing resistant design can be achieved for tapered roller bearings.

    2 Temperature Calculation Model

    The tapered rollers roll and slide on the inner raceway and outer raceway inside the bearing.The heat source model proposed by GECIM,et al[8],is used in present numerical modeling.Furthermore,the tapered roller bearing is divided into ten sections in the generation line of the tapered roller direction.Each slice can be approximated with a cylinder.The temperature distributions of tapered roller and raceways in each section are calculated respectively.

    2.1 Heat conduction equation

    Fig.1 shows the geometry and boundary of the slice model.The heat conductions in axial and circumferential directions are neglected,and the circumferential heat convection is taken into account.The heat flux distribution is uniform over the heating zone,φ0.Because the Hertzian contact width is very small,compared with the circumferential length of the tapered rollers,this assumption is reasonable.With the above assumptions,the equation of heat conduction is

    where T is the difference between the actual temperature and the ambient(℃),r and φ are the cylindrical coordinates,ω is angular speed of tapered roller(rad/s),and α is thermal diffusivity(m2/s).

    Defining the following variables:

    where u is dimensionless temperature,h is convective heat transfer coefficient(W/(m2?K)),q is heat flux(W/m2),R is radius of the slices(m),k is thermal conductivity(W/(m?K)),and N stands for Peclet number.

    Eq.(1)becomes

    The boundary conditions at ρ=1 are

    and u(ρ=0)is a finite value.

    Using the finite Fourier transform,Bessel functions and Kelvin functions,Dimensionless temperature can be obtained:

    For the process of the solution in detail can refer to Ref.[8].The maximum surface temperature with uniform heat input is at Φ=Φ0.Hence,Eq.(5)can be written as

    where S represents the infinite summation.Defining

    where TBis the bulk temperature andat φ=φ0and ρ=1.Eq.(7)can be rewritten as

    2.2 Friction power and heat distribution in interface

    The power loss of bearing caused by friction can be calculated according to the following equation[24]:

    where H is the power loss(W),and M stands for the frictional torque(N?mm).Assuming that frictional power Higenerated between roller and inner raceway is equal to friction power Hogenerated between roller and outer raceway,then

    Heat partition at the interfaces complies with the following principles.

    (1)Roller and inner raceway

    The tapered roller contacts with the inner raceway under the normal load P,roller speed is u1,and the speed of inner raceway is u2,heat generated in the contact area is Q.Under rolling and sliding condition,the ratio of heat into the roller,Q1,and heat into the inner raceway,Q2,isas follows[25]:

    where ρ1and ρ2are densities of roller and inner raceway respectively(kg/m3),c is specific heat(J/(kg?K)),k is thermal conductivity(W/(m?K)),u is linear velocity of contact area(m/s),subscripts 1 and 2 represent roller and inner raceway respectively.

    (2)Roller and outer raceway

    The tapered roller is in contact with the outer raceway under the normal load P,and the roller speed is1u,heat generated in the contact zone is Q.Under pure sliding condition,the contact surface of outer raceway will continue to receive a portion heat λQ,and other(1-λ)Q will flow into tapered roller.The value of λ depends on the heat transfer characteristics of contact bodies.It can be assumed λ only depends on thermal diffusivities of tapered roller and outer raceway[26],written as

    where α1=k1(ρ1c1),α3=k3(ρ3c3),α1und α3are thermal diffusivities of roller and outer raceway respectively(m2/s),ρ3is the density of outer raceway(kg/m3),subscript 3 represents outer raceway.

    3 Scuffing Failure

    3.1 Scuffing assessing criterion

    WATKINS[27]proposed to evaluate seizure load with corresponding Hertzian contact dimension.If the wear scar is larger than the Hertzian contact width,mild scuffing occurs at the contact zone.The influence of original radial clearance is ignored in our calculation.Firstly,the thermal expansion of tapered rollers,inner raceways and outer raceways are calculated,and then the elastic approach of tapered roller-inner raceway contact pair and tapered roller-outer raceway contact pair are numerically analyzed.Finally,with the ratio of radial clearance to elastic approach,the scuffing possibility in the contact area is examined.

    δHstands for the elastic approach of taperedroller bearing under load,and after thermal expansion roller radial increment is u1,radial increment of raceway is u2.When

    the scuffing will occur in contact area of tapered roller and inner raceway,if Eq.(13)is satisfied.Otherwise,tapered roller and raceway contact area is safe in terms of adhesion wear.In Eq.(13),amount of thermal expansion of inner raceway is positive,and that of outer raceway is negative because it is a hole in geometry.

    3.2 Thermal expansion

    Recently,Assuming that inner raceway is free to expand,thermal deformation can be calculated by the next equation proposed by TIMOSHENKO,et al[28]:

    where αhis thermal expansivity of inner raceway,Riois outer radius of inner raceway,Riiis inner radius of inner raceway,Ts(r)is cross-sectional temperature,Trefis reference temperature.

    With the above method,thermal distortion of outer raceway can be calculated by the next Eq.(15):

    whereRoois outer radius of outer raceway,Roiis inner radius of outer raceway.

    4 Results and Discussions

    The widely used tapered roller bearing 30308 is selected as the object for numerical simulation,and its parameters are shown in Table 1 and Table 2.Many rolling bearings are manufactured with bearing steel GCr15,the rapid developments of high-temperature and high-speed bearings demand the usage of ceramic materials that have the low density,high strength,high hardness,good toughness,and the advantage of small thermal expansion coefficient,compared with rolling bearing steel.The distributions of contact stress,temperature and scuffing possibility are analyzed,when tapered rollers are produced with GCr15 or Si3N4are in contacted with inner ring and outer ring manufactured with GCr15.

    Table 1.Parameters of tapered roller bearing

    Table 2.Thermal parameters and elastic property

    The surface heat convection coefficient is closely related to factors such as bearings surface size and shape,fluid viscosity and density,thermal conductivity and speed in heat transfer process,thus it is difficult to generally describe surface heat convection coefficient.An approximation calculating equation of convection coefficient is proposed in Ref.[24].If higher precision data of surface heat convection coefficient is needed,it can only be obtained with experiments.The convection coefficient is 600 W?m–2?K–1in this analysis,it is chosen based on mixed lubrication condition and lubricated with greases.

    4.1 Contact stress distribution

    As shown in Fig.2,under normal load 300 N,contact stress between the GCr15 tapered roller at its small end,middle point,and big end with inner races of GCr15 are 515.1 MPa,402.5 MPa and 489.4 MPa,respectively.The edge stress concentration between tapered roller and inner race occurs at tapered roller ends,and stress concentration is more serious at small roller end than that at big roller end.As shown in Fig.3,under normal load 300 N,contact stress between the Si3N4tapered roller and inner raceway of GCr15 at small end,middle point,and big end of tapered roller is respectively 561.8 MPa,440.1 MPa and 533.6 MPa.Compared to contact stress of GCr15 tapered roller with inner race,contact stresses of Si3N4tapered roller with inner race are higher,because the elasticity module of material Si3N4is larger than that of material GCr15,and the Poisson ratio of Si3N4is smaller than that of GCr15 bearing steel.

    Fig.2.Contact stress between GCr15 tapered roller and GCr15 inner race under 300 N load

    Fig.3.Contact stress between Si3N4tapered roller and GCr15 inner race under 300 N load

    4.2 Temperature distribution

    The contact area between tapered roller and raceways are divided along the tapered roller axis into ten slices,the maximum contact stresses occur on both ends of the tapered roller,the smallest occurs at the central point of the contact area,thus if the temperature at the three sections,that i=1,7,10,from the small end to its big end,are calculated,the temperature range of the whole contact area can be obtained.

    Fig.4 and Fig.5 show the temperature distributions between GCr15 tapered roller and inner raceway,under the load is 300 N,the rotation speed is 5600 r/min and the convection coefficient is 600 W?m–2?K–1.In this case,the average bulk temperatures of small end,middle point and big end of tapered roller are accordingly TB1=23.8 ℃,TB2=20.9 ℃ and TB3=22.8 ℃.Eq.(6)indicates that the highest surface temperature appears at φ=φ0.

    Fig.4.Temperature rise of GCr15 roller contacted with inner race

    Fig.5.Temperature rise of GCr15 inner race contacted with GCr15 tapered roller

    When the normal load,rotating speed and heat convection coefficient are changed,the temperature distributions at small end,middle point and big end of tapered roller are shown in Fig.6,Fig.7 and Fig.8.

    Fig.6.Temperature rise of GCr15 roller contacted with inner race when load is 200 N,rotation speed is 5600 r/min,convection coefficient is 600 W?m–2?K–1

    Fig.7.Temperature rise of GCr15 roller contacted with inner race when load is 300 N,rotation speed is 2000 r/min,convection coefficient is 600 W?m–2?K–1

    Fig.8.Temperature rise of GCr15 roller contacted with inner race when load is 300 N,rotation speed is 5600 r/min,convection coefficient is 1200 W?m–2?K–1

    These figures indicate that when the heat is evenly distributed between the tapered roller and the inner raceway,small end of the tapered roller has biggest temperature rise,temperature at rollers’big end is secondly high,and the temperature rise of rollers’middle section is minimal.The normal load is associated with thermal power,when the load is low,the thermal power value is smaller,when the rotational speed reduces,thermal power value is also smaller.From the physical definition of heat convection coefficient h,it reflects the capability of heat transfer between fluid and solid surface.For higher heat convection coefficient h,more heat is taken away by lubricants,therefore the temperature rise of bearing components is much less.The above results can explain the changes of temperature rise of tapered rollers when normal load,rotational speed and convection coefficient change.

    Fig.9 and Fig.10 show respectively the temperature rise of Si3N4tapered roller and inner raceway,when the normal load is 300 N,the rotation speed is 5600 r/min and heat convection is 600 W?m–2?K–1.The figures demonstrate,compared with the case of contacted with GCr15 inner raceway under same operation conditions,temperature rise of Si3N4tapered roller is higher than that of GCr15 tapered roller,and temperature rise of the inner race in contact with Si3N4tapered roller is lower than that of the inner race in contact with GCr15 tapered roller,because GCr15 tapered roller and GCr15 inner raceway receive equal heat flux,however,Si3N4tapered roller receives more heat flux than GCr15 inner raceway,according to the principle of heat distribution.

    Fig.9.Temperature rise of Si3N4tapered roller contacted with inner race

    Fig.10.Temperature rise of inner raceway contacted with Si3N4roller

    4.3 Assessing of scuffing possibility

    The elastic approach between GCr15 tapered roller and GCr15 inner raceway can be obtained with numerical method,which was described in detail in Ref.[12].If the biggest thermal expansion of GCr15 tapered roller is noted as u1i,and u2istands for the biggest thermal expansion of GCr15 inner raceway,the calculated results are listed in Table 3.

    Table 3 demonstrates that when the normal load is 300 N,the rotation speed is 2000 r/min and the heat convection coefficient is 600 W?m–2?K–1,the big end of the tapered roller has the largest thermal expansion,and the small end of the inner ring has the highest thermal expansion.Scuffing failure appears at section 2,section 3,section 4,section 5,section 6 and section 7,however,the big end of the roller/inner raceway contact pair is safer than that of the small end of the tapered roller.

    When the normal load is 300 N,the rotation speed is 2000 r/min and the heat convection coefficient is 600 W?m–2?K–1,the elastic approach δHobetween GCr15 tapered roller and GCr15 outer raceway,the biggest thermal expansion u1oof GCr15 tapered roller and the biggest thermal expansion u2oof GCr15 outer raceway are listed in Table 4.The biggest thermal expansion of the tapered roller occurs at its big end,and the biggest thermal expansion of the outer ring occurs at its small end.Scuffing does not appear between tapered roller and outer raceway in this case.

    Table 5 shows the biggest expansions of Si3N4tapered roller and GCr15 inner raceway.Compared with the data in Table 3,the thermal expansion of Si3N4tapered roller is much smaller than that of GCr15 tapered roller,and the thermal expansion of GCr15 inner raceway contacted with Si3N4tapered roller is also smaller than that of GCr15 inner raceway in contact with GCr15 tapered roller,under same condition in terms of normal load,speed and convection coefficient,which explains the advantages of hybrid rolling bearings.The ceramic materials are used a lot in high temperature bearings.The biggest thermal expansion of the tapered roller occurs at its big end,and the biggest thermal expansion of the inner ring occurs at its small end.Scuffing failure does not appear between Si3N4tapered roller and GCr15 inner raceway.Furthermore,the big end of the tapered roller/inner raceway contact pair is safer than the contact pair of the small end of tapered roller/inner ring with respect to scuffing possibility.

    Table 3.The biggest expansion and elastic deformation of GCr15 roller and GCr15 inner raceway μm

    Table 4.The biggest expansion and elastic deformation of GCr15 roller and GCr15 outer raceway μm

    5 Conclusions

    The contact mechanics model,temperature model and scuffing failure model were synthesized to study the effects of normal load,speed,thermal conductivity and materials of tapered rollers on scuffing possibility.The scuffing possibility of tapered roller can be examined with our developed program.Based on the numerical results,several conclusions can be summarized.

    (1)The increases of bearing load or rotational speed result in the increase of temperature of tapered roller surface and raceways.However,the increase of thermal conductivity leads to the decreases of temperatures of tapered roller and raceways.

    (2)Compared with the bulk temperatures of tapered roller and raceways,their flash temperatures are smaller.

    (3)When tapered roller of GCr15 or Si3N4are in contacted with inner ring of GCr15,the temperature of Si3N4roller is higher than that of GCr15 tapered roller,but the temperature of the inner ring contacted with Si3N4tapered roller is lower than the temperature of the inner ring in contact with GCr15 tapered roller.

    (4)Under the same operation condition,the thermal expansion of Si3N4tapered roller is remarkably less than that of GCr15 rollers,this reveals the mechanism in which ceramic materials are widely used for high temperature rolling bearings.

    (5)When the tapered roller contacts with the inner ring,the big end of the tapered roller has the biggest thermal expansion,and the small end of the inner ring also has the largest thermal expansion.At the tapered roller/outer ring interface,the biggest thermal expansion of the tapered roller occurs at its big end,and the biggest expansion of outer ring occurs at its small end.

    (6)In the contact zone between tapered roller and the inner ring,complete scuffing,partial scuffing and no scuffing are all possible along the generator line,and the contact area of the big end of tapered roller is safer than that of its small end.At the tapered roller/outer ring interface,scuffing possibility is very smaller than that of the tapered roller/inner ring interface.

    [1]ZANTOPULOS H.Some observations on scuffing in tapered roller bearings[J].Journal of Tribology,1998,120(3):427–435.

    [2]TARAWNEH C M,COLE K D.Experiments and models for the thermal response of railroad tapered-roller bearings[J].International Journal of Heat and Mass Transfer,2008,51(25–26):5794–5803.

    [3]MURATORE C,BULTMAN J E,AOUADI S M,et al.In situ Raman spectroscopy for examination of high temperature tribological processes[J].Wear,2011,270(3):140–145.

    [4]HIMMEL D,MANSOT J L,BERCION Y,et al.In situ Raman microspectrometry of lubricated tribologic contacts.Part two:simultaneous measurements of pressure,lubricant film thickness and temperature distributions in a running EHD contact[J].Tribology Letters,2011,41(1):131–144.

    [5]LING F F,MOW V C.Surface displacement of a convective elastic half-space under an arbitrarily distributed fast-moving heat source[J].Journal of Basic Engineering,1965,87(3):729–734.

    [6]FLOQUET A,PLAY D,GODET M.Surface temperatures in distributed contacts-application to bearing design[J].Journal of Lubrication Technology,1977,99(2):277–283.

    [7]FLOQUET A,PLAY D.Contact temperature in dry bearings-three dimensional theory and verification[J].Journal of Lubrication Technology,1981,103(2):243–251.

    [8]GECIM B,WINER W O.Steady temperature in a rotating cylinder subject to surface heating and convective cooling[J].Journal of Tribology,1984,106(1):120–127.

    [9]KENNEDY F E.Thermomechanical phenomena in high speed rubbing[J].Wear,1980,59(1):149–163.

    [10]GECIM B,WINER W O.Tansient temperature in the vicinity of an asperity contact[J].Journal of Tribology,1985,107(3):333–342.

    [11]GECIM B,WINER W O.Steady temperature in a rotating cylinder-some variations in the geometry and the thermal boundary conditions[J].Journal of Tribology,1986,108(3):446–453.

    [12]YEVTUSHENKO A,TOLSTOJ-SIENKIEWICZ J.Temperature in a rotating ring subject to frictional heating from two stationary pins[J].Numerical Heat Transfer,Part A,2006,49(8):785–801.

    [13]WANG Jiugen,YUAN Jing,XUE Zheng.Experimental investigation of scuffing failure with four-ball machine,part 2:theoretical models[J].Scientific Research Monthly,2007,35(11):40–43.

    [14]WANG Jiugen,YUAN Jing,XUE Zheng.Experimental investigation of scuffing failure with four-ball machine,part 3:influence factors[J].Scientific Research Monthly,2007,35(11):44–47.

    [15]WINER W O,BAIR S,GECIM B.Thermal resistance of a tapered roller bearing[J].ASLE Transactions,1986,29(4):539–547.

    [16]BRYANT M D.Thermoelastic solutions for thermal distributions moving over half space surfaces and application to the moving heat source[J].Journal of Applied Mechanics,1988,55(1):87–92.

    [17]JANG J Y,KHONSARI M M,PASCOVICI M D.Thermohydrodynamic seizure:experimental and theoretical analysis[J].Journal of Tribology,1998,120(1):8–15.

    [18]JANG J Y,PASCOVICI M D.Modeling aspects of a rate-controlled seizure in an unloaded journal bearing[J].Tribology Transactions,1998,41(4):481–488.

    [19]ZHAI X,CHANG L.Some insights into asperity temperatures in mixed film lubrication[J].Tribology International,2001,34(6):381–387.

    [20]BHUSHAN B,NOSONOVSKY M.Scale effects in dry and wet friction,wear and interface temperature[J].Nanotechnology,2004,15(7):749–761.

    [21]DUFRANE K F,KANNEL J W.Thermally induced seizures of journal bearings[J].Journal of Tribology,1989,111(2):288–292.

    [22]KHONSARI M M,KIM H J.On thermally induced seizure in journal bearings[J].Journal of Tribology,1989,111(4):661–667.

    [23]WANG Ailin,WANG Qingjiu,WANG Jiugen.Contact of tapered roller with logarithmic profile[J].Mechanical Science and Technology For Aerospace Enginnering,2012,31(5):836–841.

    [24]HARRIS T A.Rolling bearing analysis[M].New York:John Wiley&Sons,Inc.,2001.

    [25]WANG Jiugen,TAN Jianrong.Numerical simulation of traction in rolling/sliding contact[J].Journal of Tribology,1997,119(4):869–874.

    [26]HALLING J.Principles of tribology[M].London:The Macmillan Press,1975.

    [27]WATKINS R C.The use of the Hertzian dimension in wear scar analyses(application to four ball results)[J].Wear,1983,91(3):349–354.

    [28]TIMOSHENKO S P,GOODIER J N.Theory of elasticity[M].Beijing:Tsinghua University Press,2004.

    一级av片app| 欧美zozozo另类| 国产永久视频网站| 国产成人精品福利久久| 精品视频人人做人人爽| 99热这里只有是精品在线观看| 国产亚洲91精品色在线| 男人舔奶头视频| 高清视频免费观看一区二区| 久久久久久人妻| 99久国产av精品国产电影| 搡老乐熟女国产| 久久久午夜欧美精品| 中文资源天堂在线| 乱码一卡2卡4卡精品| 国产亚洲一区二区精品| 国产综合精华液| 国产伦精品一区二区三区视频9| av网站免费在线观看视频| 国产探花极品一区二区| 老女人水多毛片| 婷婷色av中文字幕| 亚洲综合精品二区| 激情 狠狠 欧美| 麻豆国产97在线/欧美| 久久人妻熟女aⅴ| 欧美人与善性xxx| 亚洲国产毛片av蜜桃av| 天堂俺去俺来也www色官网| 午夜福利影视在线免费观看| 一级毛片久久久久久久久女| 亚州av有码| 亚洲天堂av无毛| 亚洲一区二区三区欧美精品| 亚洲第一区二区三区不卡| 在线观看一区二区三区激情| 在线免费观看不下载黄p国产| 日日摸夜夜添夜夜爱| 亚洲一级一片aⅴ在线观看| 这个男人来自地球电影免费观看 | 毛片一级片免费看久久久久| 亚洲综合色惰| 欧美最新免费一区二区三区| 亚洲人成网站在线观看播放| 精品一品国产午夜福利视频| 免费黄网站久久成人精品| 国产精品国产三级国产专区5o| 美女cb高潮喷水在线观看| 亚洲婷婷狠狠爱综合网| 超碰av人人做人人爽久久| 日本vs欧美在线观看视频 | www.av在线官网国产| 欧美老熟妇乱子伦牲交| 中文字幕免费在线视频6| 国产片特级美女逼逼视频| 黄色怎么调成土黄色| 国产成人精品婷婷| 日韩中字成人| 成人毛片60女人毛片免费| 日本黄色日本黄色录像| 免费少妇av软件| 国产v大片淫在线免费观看| 在线 av 中文字幕| 啦啦啦中文免费视频观看日本| 777米奇影视久久| 精品人妻视频免费看| 国产成人精品久久久久久| 国产精品国产av在线观看| 超碰97精品在线观看| 夫妻午夜视频| 日本猛色少妇xxxxx猛交久久| 精品人妻视频免费看| 在线看a的网站| 国产精品一区二区三区四区免费观看| 亚洲三级黄色毛片| 久久久久久久大尺度免费视频| 在线免费十八禁| 热99国产精品久久久久久7| 欧美xxxx黑人xx丫x性爽| 舔av片在线| 国产视频首页在线观看| 日韩中文字幕视频在线看片 | 好男人视频免费观看在线| 少妇裸体淫交视频免费看高清| 高清av免费在线| 黑人高潮一二区| 久久久成人免费电影| 在线观看一区二区三区| 欧美日韩视频精品一区| 久久热精品热| 国产精品福利在线免费观看| av播播在线观看一区| 午夜福利高清视频| 两个人的视频大全免费| 纵有疾风起免费观看全集完整版| 国产爱豆传媒在线观看| 在线看a的网站| 五月开心婷婷网| 蜜桃在线观看..| 中文字幕人妻熟人妻熟丝袜美| 婷婷色av中文字幕| 水蜜桃什么品种好| 午夜福利影视在线免费观看| 日本爱情动作片www.在线观看| a级毛片免费高清观看在线播放| www.色视频.com| 看非洲黑人一级黄片| 国产精品国产三级专区第一集| 成年美女黄网站色视频大全免费 | 人人妻人人添人人爽欧美一区卜 | 亚洲av电影在线观看一区二区三区| 美女国产视频在线观看| 黄片wwwwww| 一级毛片 在线播放| 日产精品乱码卡一卡2卡三| 高清午夜精品一区二区三区| 国产黄片美女视频| 大香蕉久久网| 国产成人freesex在线| 亚洲性久久影院| 99re6热这里在线精品视频| 五月开心婷婷网| 网址你懂的国产日韩在线| 日本黄大片高清| freevideosex欧美| 国产精品福利在线免费观看| 亚洲熟女精品中文字幕| 黄片wwwwww| 99热国产这里只有精品6| 国产伦精品一区二区三区视频9| 97超视频在线观看视频| 草草在线视频免费看| 久久精品久久久久久噜噜老黄| 少妇被粗大猛烈的视频| 99热网站在线观看| 成人国产av品久久久| 国产视频首页在线观看| 一级片'在线观看视频| 久久久成人免费电影| 99热网站在线观看| 男女下面进入的视频免费午夜| 亚洲欧美精品专区久久| 观看av在线不卡| 色婷婷av一区二区三区视频| 国产精品福利在线免费观看| 91久久精品电影网| 在线看a的网站| 日韩av不卡免费在线播放| 欧美区成人在线视频| 日本黄大片高清| 国产精品偷伦视频观看了| 男女啪啪激烈高潮av片| 日韩av在线免费看完整版不卡| 汤姆久久久久久久影院中文字幕| 我的老师免费观看完整版| freevideosex欧美| 一区在线观看完整版| 亚洲熟女精品中文字幕| 亚洲av.av天堂| 欧美少妇被猛烈插入视频| av在线播放精品| 啦啦啦中文免费视频观看日本| 啦啦啦中文免费视频观看日本| 久久99热这里只频精品6学生| 免费观看性生交大片5| 啦啦啦视频在线资源免费观看| 亚洲色图综合在线观看| 久久精品久久精品一区二区三区| 观看美女的网站| 国产黄片视频在线免费观看| 午夜福利视频精品| av国产久精品久网站免费入址| 一区二区三区免费毛片| 午夜福利影视在线免费观看| 熟女人妻精品中文字幕| 亚洲精品日本国产第一区| 国产人妻一区二区三区在| 亚洲欧美一区二区三区国产| 51国产日韩欧美| 三级国产精品片| 美女高潮的动态| 在线亚洲精品国产二区图片欧美 | 在线天堂最新版资源| av在线蜜桃| 亚洲一区二区三区欧美精品| 婷婷色综合大香蕉| 99久久精品热视频| 国产精品免费大片| 亚洲色图综合在线观看| 麻豆成人午夜福利视频| 免费观看无遮挡的男女| 毛片一级片免费看久久久久| 丰满少妇做爰视频| 国产精品久久久久久精品电影小说 | 久久精品久久久久久久性| 欧美成人午夜免费资源| 亚洲三级黄色毛片| 成人高潮视频无遮挡免费网站| 国产成人精品久久久久久| 91午夜精品亚洲一区二区三区| 国产精品秋霞免费鲁丝片| 亚洲精品国产色婷婷电影| 99九九线精品视频在线观看视频| 97热精品久久久久久| 国产片特级美女逼逼视频| 麻豆乱淫一区二区| 老熟女久久久| 日韩在线高清观看一区二区三区| av.在线天堂| 国产黄色免费在线视频| 在线观看免费日韩欧美大片 | 亚洲精品日本国产第一区| 免费在线观看成人毛片| 嘟嘟电影网在线观看| 久久精品国产a三级三级三级| 亚洲第一av免费看| 另类亚洲欧美激情| 伊人久久精品亚洲午夜| 夫妻性生交免费视频一级片| 男女免费视频国产| 亚洲av中文av极速乱| 日本午夜av视频| 丰满人妻一区二区三区视频av| 色哟哟·www| 亚洲精品久久午夜乱码| 成人无遮挡网站| a 毛片基地| 亚洲国产成人一精品久久久| 国产乱人偷精品视频| 男人添女人高潮全过程视频| 国产毛片在线视频| 色网站视频免费| 91午夜精品亚洲一区二区三区| 亚洲精品日韩av片在线观看| 国产成人免费观看mmmm| 日韩强制内射视频| 国产免费一区二区三区四区乱码| 三级国产精品片| 免费少妇av软件| 少妇高潮的动态图| 国产在线免费精品| 肉色欧美久久久久久久蜜桃| av在线观看视频网站免费| 十分钟在线观看高清视频www | 男的添女的下面高潮视频| 一区二区av电影网| 日韩强制内射视频| 大片免费播放器 马上看| 少妇熟女欧美另类| 最近最新中文字幕大全电影3| 亚洲在久久综合| 欧美日韩一区二区视频在线观看视频在线| 国产精品福利在线免费观看| 丰满人妻一区二区三区视频av| 亚洲,一卡二卡三卡| 少妇 在线观看| av在线老鸭窝| 在线精品无人区一区二区三 | 校园人妻丝袜中文字幕| 免费在线观看成人毛片| 日韩欧美一区视频在线观看 | 在线免费观看不下载黄p国产| 欧美高清性xxxxhd video| 亚洲av中文字字幕乱码综合| 亚洲色图av天堂| 在线观看av片永久免费下载| 成人国产麻豆网| 黑人猛操日本美女一级片| 六月丁香七月| 少妇人妻精品综合一区二区| 老熟女久久久| 熟女av电影| 欧美日韩一区二区视频在线观看视频在线| 欧美亚洲 丝袜 人妻 在线| 久久久久精品久久久久真实原创| 少妇的逼好多水| 大片免费播放器 马上看| 99热全是精品| 亚洲av成人精品一区久久| 伊人久久精品亚洲午夜| 中文天堂在线官网| 日本wwww免费看| 丰满迷人的少妇在线观看| 国产精品熟女久久久久浪| 国产一级毛片在线| 久久婷婷青草| 日本免费在线观看一区| 久久精品久久久久久噜噜老黄| 伦理电影免费视频| 丝袜脚勾引网站| 久久久久久久亚洲中文字幕| av天堂中文字幕网| 国产极品天堂在线| 国产成人91sexporn| 少妇裸体淫交视频免费看高清| 最近的中文字幕免费完整| 一个人免费看片子| 成人亚洲欧美一区二区av| 精品久久久久久电影网| 18禁在线无遮挡免费观看视频| 久久精品久久久久久久性| 亚洲av中文字字幕乱码综合| 永久免费av网站大全| 各种免费的搞黄视频| 国产黄片视频在线免费观看| 成年免费大片在线观看| 午夜视频国产福利| 亚洲国产高清在线一区二区三| 色婷婷av一区二区三区视频| 日韩欧美精品免费久久| 高清毛片免费看| 精品酒店卫生间| 久久99精品国语久久久| 在线观看三级黄色| 国模一区二区三区四区视频| 国产日韩欧美在线精品| 欧美三级亚洲精品| 国产精品成人在线| 精品久久国产蜜桃| 我要看黄色一级片免费的| 久久久久久人妻| 国产在线视频一区二区| 国产午夜精品久久久久久一区二区三区| 欧美精品国产亚洲| 日韩 亚洲 欧美在线| 亚洲av成人精品一区久久| 黑丝袜美女国产一区| 欧美日韩精品成人综合77777| 日韩强制内射视频| 久久久久国产精品人妻一区二区| 久久这里有精品视频免费| 国产乱人视频| 草草在线视频免费看| 亚洲色图综合在线观看| 色视频www国产| 久久毛片免费看一区二区三区| 三级国产精品欧美在线观看| 国产伦精品一区二区三区视频9| 国产免费视频播放在线视频| 美女视频免费永久观看网站| 国产精品国产av在线观看| 蜜臀久久99精品久久宅男| 舔av片在线| 在线免费观看不下载黄p国产| 又爽又黄a免费视频| 亚洲av二区三区四区| 精华霜和精华液先用哪个| 18禁在线播放成人免费| 免费黄色在线免费观看| 欧美变态另类bdsm刘玥| 久久热精品热| 国产精品爽爽va在线观看网站| 51国产日韩欧美| 国产成人午夜福利电影在线观看| 男人舔奶头视频| 中国国产av一级| 国产精品一二三区在线看| 中文在线观看免费www的网站| 国产在线免费精品| av免费观看日本| 欧美成人a在线观看| 免费黄网站久久成人精品| 大香蕉久久网| 99热网站在线观看| 丰满少妇做爰视频| 在线观看一区二区三区激情| 亚洲av欧美aⅴ国产| 最近最新中文字幕免费大全7| 大片免费播放器 马上看| 亚洲不卡免费看| 成人免费观看视频高清| 国产一区二区在线观看日韩| 黄色怎么调成土黄色| 国产无遮挡羞羞视频在线观看| 人人妻人人看人人澡| 亚洲精品亚洲一区二区| 国产视频首页在线观看| 青春草国产在线视频| 亚洲无线观看免费| 国产真实伦视频高清在线观看| 一级毛片久久久久久久久女| 干丝袜人妻中文字幕| 日韩国内少妇激情av| 一区在线观看完整版| 久久6这里有精品| 狠狠精品人妻久久久久久综合| 在线观看国产h片| 亚洲精品国产av成人精品| 国产一区有黄有色的免费视频| 日韩人妻高清精品专区| 丰满乱子伦码专区| 久久久久国产精品人妻一区二区| 18+在线观看网站| 欧美日韩视频精品一区| 国产免费视频播放在线视频| 最近最新中文字幕大全电影3| 夜夜看夜夜爽夜夜摸| 一本—道久久a久久精品蜜桃钙片| 少妇猛男粗大的猛烈进出视频| 纯流量卡能插随身wifi吗| 一个人看的www免费观看视频| 爱豆传媒免费全集在线观看| 国产美女午夜福利| 在线精品无人区一区二区三 | 18禁在线无遮挡免费观看视频| 日本欧美视频一区| 久久99精品国语久久久| 免费观看无遮挡的男女| 亚洲av成人精品一区久久| 欧美亚洲 丝袜 人妻 在线| 美女内射精品一级片tv| 国产伦精品一区二区三区四那| 午夜日本视频在线| 校园人妻丝袜中文字幕| 亚洲国产精品国产精品| 亚洲av欧美aⅴ国产| 色视频在线一区二区三区| 如何舔出高潮| 亚洲最大成人中文| 国产精品人妻久久久影院| 男人爽女人下面视频在线观看| 国产伦理片在线播放av一区| 草草在线视频免费看| 成年人午夜在线观看视频| 91狼人影院| 七月丁香在线播放| 乱系列少妇在线播放| 亚洲久久久国产精品| 国产精品av视频在线免费观看| 国产精品久久久久成人av| 国产在线男女| 最黄视频免费看| 毛片女人毛片| 97超碰精品成人国产| 哪个播放器可以免费观看大片| 18禁在线无遮挡免费观看视频| 精品久久久噜噜| 亚洲激情五月婷婷啪啪| 免费观看性生交大片5| 国产大屁股一区二区在线视频| 国内少妇人妻偷人精品xxx网站| 青春草亚洲视频在线观看| 国产爽快片一区二区三区| av天堂中文字幕网| 麻豆国产97在线/欧美| 美女视频免费永久观看网站| 黑丝袜美女国产一区| 国产亚洲午夜精品一区二区久久| 热re99久久精品国产66热6| 老司机影院毛片| 亚洲国产欧美人成| 国产成人精品福利久久| 中文欧美无线码| 亚洲精品国产av成人精品| 欧美老熟妇乱子伦牲交| 亚洲av男天堂| 国产淫片久久久久久久久| 亚洲最大成人中文| 国产精品欧美亚洲77777| 精品亚洲乱码少妇综合久久| 这个男人来自地球电影免费观看 | 搡老乐熟女国产| 国产久久久一区二区三区| 久久久亚洲精品成人影院| 日日摸夜夜添夜夜爱| 国产在线男女| 精品国产乱码久久久久久小说| 五月天丁香电影| 大香蕉久久网| 欧美另类一区| 极品少妇高潮喷水抽搐| 国产亚洲5aaaaa淫片| 丰满少妇做爰视频| 午夜免费男女啪啪视频观看| 视频区图区小说| 亚洲欧美一区二区三区国产| 大香蕉久久网| 欧美国产精品一级二级三级 | 国产乱来视频区| 最近中文字幕2019免费版| 激情五月婷婷亚洲| 久久久久久人妻| 久久人妻熟女aⅴ| 国产精品女同一区二区软件| 最近最新中文字幕大全电影3| 91久久精品电影网| 天堂8中文在线网| videos熟女内射| 亚洲欧美日韩无卡精品| 我要看黄色一级片免费的| 亚洲在久久综合| 日韩av免费高清视频| 内地一区二区视频在线| 亚洲精品自拍成人| 丰满少妇做爰视频| 伦精品一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 三级国产精品片| 国产av码专区亚洲av| 美女xxoo啪啪120秒动态图| 亚洲av成人精品一区久久| 免费观看a级毛片全部| 国产人妻一区二区三区在| h日本视频在线播放| 综合色丁香网| 小蜜桃在线观看免费完整版高清| 国产精品一及| 中文字幕亚洲精品专区| 国产精品偷伦视频观看了| 精品久久久精品久久久| 九草在线视频观看| 久久影院123| 久久这里有精品视频免费| 99久久中文字幕三级久久日本| 一级av片app| 男人舔奶头视频| 91久久精品国产一区二区成人| 亚洲av成人精品一区久久| 最新中文字幕久久久久| 天堂俺去俺来也www色官网| 国产免费福利视频在线观看| 久久国产亚洲av麻豆专区| 免费人成在线观看视频色| 亚洲国产精品专区欧美| 婷婷色av中文字幕| 久久精品人妻少妇| 国内精品宾馆在线| 少妇高潮的动态图| 国产视频首页在线观看| 国产日韩欧美在线精品| 国产精品秋霞免费鲁丝片| 国产无遮挡羞羞视频在线观看| 22中文网久久字幕| 亚洲欧美清纯卡通| 五月开心婷婷网| 18禁在线播放成人免费| 国产欧美日韩精品一区二区| 国产成人免费观看mmmm| 中文字幕制服av| 在线观看免费日韩欧美大片 | 国产精品.久久久| 舔av片在线| 99久久精品一区二区三区| 一本—道久久a久久精品蜜桃钙片| 午夜精品国产一区二区电影| 免费人妻精品一区二区三区视频| 国产人妻一区二区三区在| av.在线天堂| 国模一区二区三区四区视频| 久久久久国产网址| 超碰av人人做人人爽久久| 少妇的逼水好多| 精品久久国产蜜桃| 国产色婷婷99| 国产成人精品婷婷| 国产日韩欧美在线精品| 亚洲综合色惰| 亚洲不卡免费看| 日韩精品有码人妻一区| 18禁动态无遮挡网站| 一区在线观看完整版| 免费看日本二区| 亚洲熟女精品中文字幕| 久热久热在线精品观看| 一区在线观看完整版| 国产69精品久久久久777片| 这个男人来自地球电影免费观看 | 久久久久性生活片| 亚洲av中文av极速乱| 国产成人aa在线观看| 中文天堂在线官网| 简卡轻食公司| 成人毛片a级毛片在线播放| 成年人午夜在线观看视频| 我的老师免费观看完整版| 国产老妇伦熟女老妇高清| 亚洲精品aⅴ在线观看| 久久久久网色| 交换朋友夫妻互换小说| 黄色视频在线播放观看不卡| 天天躁夜夜躁狠狠久久av| 51国产日韩欧美| 日日啪夜夜撸| 麻豆精品久久久久久蜜桃| 国产精品成人在线| 欧美丝袜亚洲另类| 只有这里有精品99| 国产精品一二三区在线看| 国产精品国产三级专区第一集| 午夜激情福利司机影院| 国产黄色免费在线视频| 韩国av在线不卡| 91午夜精品亚洲一区二区三区| 国产 精品1| 日韩一本色道免费dvd| a 毛片基地| 男女啪啪激烈高潮av片| 一级黄片播放器| 国产精品成人在线| 久热久热在线精品观看| 少妇丰满av| 在线观看人妻少妇| 色哟哟·www| 尾随美女入室| 国产免费视频播放在线视频| 久久久久久久久久久免费av| av卡一久久| 熟女电影av网| 日本欧美国产在线视频| 日韩欧美 国产精品| 水蜜桃什么品种好| 亚洲av国产av综合av卡| 天堂俺去俺来也www色官网| 国产精品无大码| 亚洲av不卡在线观看|