姚樹桐,秦樹存
(泰山醫(yī)學院1動脈粥樣硬化研究所,山東省高校動脈粥樣硬化重點實驗室,2基礎醫(yī)學院,山東泰安 271000)
·綜述·
內質網應激在動脈粥樣硬化發(fā)生、發(fā)展和防治中的作用*
姚樹桐1,2,秦樹存1△
(泰山醫(yī)學院1動脈粥樣硬化研究所,山東省高校動脈粥樣硬化重點實驗室,2基礎醫(yī)學院,山東泰安 271000)
內質網(endoplasmic reticulum,ER)是真核細胞內蛋白合成、折疊修飾及轉運的重要細胞器和鈣離子儲存庫,并與脂質合成和氧化還原平衡的維持密切相關。ER對多種刺激非常敏感,例如氧化應激、鈣穩(wěn)態(tài)失衡、膽固醇超負荷和糖基化改變等理化環(huán)境變化均可導致ER的功能紊亂,出現(xiàn)以未折疊和/或錯誤折疊蛋白積聚以及鈣穩(wěn)態(tài)失衡為主要特征的內質網應激(ER stress,ERS)反應。未折疊和/或錯誤折疊蛋白在ER腔內大量積聚會導致一系列細胞內信號轉導途徑的激活稱為未折疊蛋白反應(unfolded protein response,UPR)。一定程度的UPR有利于維持ER功能和細胞生存,但是過強或過久應激則通過激活ERS相關信號途徑誘發(fā)細胞凋亡[1]。以動脈粥樣硬化(atherosclerosis,AS)為病理基礎的心腦血管疾病嚴重危害人類健康,近年來大量基礎和臨床研究表明ERS在AS發(fā)生發(fā)展中起著重要作用,并有望成為AS治療的新靶點[2]。本文主要針對近年來ERS反應在AS發(fā)病及防治機制中的研究做一綜述。
1 未折疊蛋白反應
UPR是目前研究最為透徹的ERS信號通路,由3種ER跨膜蛋白感知和介導,即雙鏈RNA依賴的蛋白激酶樣ER激酶(PKR-like ER kinase,PERK)、肌醇需求酶1(inositol-requiring enzyme 1,IREl)和活化轉錄因子6(activating transcription factor 6,ATF6)。在靜息狀態(tài)下,上述3種蛋白均與ER常駐分子伴侶葡萄糖調節(jié)蛋白78(glucose-regulated protein 78,GRP78)結合處于非活化狀態(tài),當未折疊/錯誤折疊蛋白在ER腔內大量積聚而競爭性與GRF78結合時,則促使其與GRP78解離而得以激活。
PERK是I型ER跨膜蛋白,具有絲氨酸/蘇氨酸激酶活性。ERS時,活化的PERK促使真核生物翻譯起始因子2α(eukaryotic translation initiation factor 2α,eIF2α)磷酸化,從而降低蛋白整體翻譯水平,減輕ER未折疊蛋白負荷。該過程是暫時性的,可被GADD34所激活的1型蛋白磷酸酶(type 1 protein serine/threonine phosphatase,PP1)所逆轉[3]。除了暫時性抑制蛋白翻譯外,磷酸化的eIF2α也可特異性促進活化轉錄因子4(activating transcription factor 4,ATF4)的表達。ATF4進入細胞核可激活ER分子伴侶、轉錄因子以及參與抗氧化、自噬、蛋白運輸分泌等相關基因的表達以促使細胞生存。持久的ERS也會通過ATF4激活CCAAT/增強子結合蛋白同源蛋白(CCAAT/enhancer-binding protein homologous protein,CHOP)的表達,使細胞進入ERS相關凋亡程序[1]。
IRE1是I型ER跨膜蛋白,具有絲氨酸/蘇氨酸蛋白激酶和核糖核酸內切酶雙重活性。與GRP78解離后,IRE1形成二聚體,激活其蛋白激酶活性并發(fā)生自身磷酸化,進而激活其核酸內切酶活性,剪切X盒結合蛋白1(X box-binding proterin 1,XBP1)前體mRNA的一個26 bp內含子,翻譯生成有活性的轉錄因子XBP1s(spliced XBP1)。XBP1s進入細胞核與ERS反應元件(ER-stress response element,ERSE)的啟動子結合,誘導GRP78、GRP94等分子伴侶和折疊酶基因的表達,上調ER相關蛋白降解(ER associated degradation,ERAD)途徑相關蛋白,以促進蛋白正確折疊和成熟及錯誤折疊蛋白的降解。除了啟動XBP1的mRNA剪切外,IRE1也可通過降解micro-RNAs激活凋亡和炎癥反應信號途徑[4]。另外IRE1可通過磷酸化腫瘤壞死因子受體相關因子2(TNF receptor-associated factor 2,TRAF2)進而活化JNK和NF-κB信號途徑啟動炎癥反應[1]。
ATF6為II型ER跨膜蛋白,在哺乳動物有ATF6α和ATF6β 2種構型,僅前者參與UPR相關基因的誘導。與GRP78解離后,ATF6從ER轉位至高爾基體,并被高爾基體內S1P與S2P蛋白酶切割,產生活化型ATF6 p50。ATF6 p50作為轉錄因子進入細胞核,與含有ERSE的啟動子結合,誘導ER分子伴侶和XBP1、CHOP等轉錄因子以及ERAD相關蛋白的基因表達[1]。
2 內質網應激介導的凋亡途徑
URP反應是組織細胞的一種重要適應性代償防御機制,但是過強或長時間ERS則通過激活CHOP、c-Jun氨基末端激酶(c-Jun amino-terminal kinase, JNK)和caspase-12等信號通路觸發(fā)細胞凋亡。(1) CHOP通路:CHOP又稱生長停滯及DNA損傷蛋白153(growth arrest and DNA damage-inducible protein 153,GADD153),是ERS特異的轉錄因子,可被PERK、IRE1及ATF6通路誘導轉錄,其中PERK-eIF2α-ATF4是誘導其表達的主要途徑[5]。過量表達的CHOP由胞漿轉位至細胞核,進而通過下調抗凋亡蛋白Bcl-2、誘導促凋亡蛋白Bim等途徑促進細胞凋亡[6]。另外,CHOP可通過上調ER氧化酶1α(ER oxidase 1α,ERO1α)誘導三磷酸肌醇受體(inositol 1,4,5-trisphosphate receptor,IP3R)介導的鈣釋放,激活鈣/鈣調蛋白依賴性蛋白激酶(calcium/calmodulindependent protein kinase II,CaMKII),進而觸發(fā)Fas死亡受體、線粒體凋亡途徑及NADPH氧化酶介導ROS生成等途徑誘導細胞凋亡[7-8]。(2)JNK通路: JNK屬于促分裂原活化蛋白激酶(mitogen-activated protein kinases,MAPKs)家族,可被IRE1、TRAF2和凋亡信號調節(jié)激酶1(apoptosis signal-regulating kinase 1,ASK1)共同形成的IRE1/TRAF2/ASK1復合物激活,進而磷酸化c-Jun、c-Fos、Bcl-2等轉錄因子啟動細胞凋亡[9]。(3)caspase-12通路:caspase-12以酶原形式存在于ER膜胞漿側,在ERS時被特異激活,通過激活caspase-9和caspase-3而誘導細胞凋亡[10]。
線粒體凋亡途徑是公認的經典凋亡信號途徑之一,近年來研究表明,其與ERS凋亡途徑有著密切關系。ERS時,從ER釋放的Ca2+被臨近的線粒體所攝取,進而導致線粒體損傷、活性氧生成及凋亡信號的激活。ER與線粒體通過線粒體相關內質網膜(mitochondria-associated ER membranes,MAMs)在結構和功能上有著密切聯(lián)系,在MAMs上富含IP3R鈣通道和電壓依賴性陰離子通道(voltage-dependent anion channel,VDAC)[11],調控線粒體對Ca2+的攝取。新近研究表明,ERS感受器PERK也是MAMs上的一個組分,在維持ER-線粒體并聯(lián)關系和氧化應激介導的線粒體凋亡途徑中具有重要作用[12]。另外ER膜上的Bax抑制因子1(Bax inhibitor-1,BI-1)調控IRE1的活性,還可通過調節(jié)IP3R依賴性Ca2+釋放調控線粒體的能量代謝、氧化還原狀態(tài)以及細胞自噬作用[13]。
3 內質網應激與動脈粥樣硬化
近年來研究顯示,ERS反應存在于AS發(fā)生發(fā)展的整個過程,參與血管內皮細胞(vascular endothelial cells,VECs)、平滑肌細胞(vascular smooth muscle cells,VSMCs)及巨噬細胞活性的調控與凋亡,在高血脂、高同型半胱氨酸、高血糖等危險因子致AS的過程中均發(fā)揮重要作用。
巨噬細胞是在AS進展中起著關鍵作用的炎癥細胞,具有很強的可塑性,可根據(jù)其不同的表現(xiàn)和功能分為M1型和M2型2種表型,分別具有促炎和抗炎促修復能力[14]。對不同年齡段apoE-/-小鼠AS病變中浸潤的巨噬細胞表型的研究發(fā)現(xiàn),年輕小鼠以M2型(精氨酸酶I陽性)為主,可促進VSMCs增殖,而在年老小鼠則以M1型(精氨酸酶II陽性)為主,與AS斑塊的易損性有關[15],提示促進巨噬細胞向M2型轉化可能有助于增強AS斑塊的穩(wěn)定性。但是最近研究[16-17]發(fā)現(xiàn),與M1型巨噬細胞比較,M2型巨噬細胞對氧化低密度脂蛋白(oxidized low-density lipoprotein,ox-LDL)介導的脂毒性更為敏感,更易于攝取膽固醇,加速巨噬細胞泡沫化,且ERS是調節(jié)巨噬細胞表型轉換和膽固醇蓄積的重要機制。ERS激活時,可通過JNK-PPARγ依賴性途徑使M2型巨噬細胞增多,且上調清道夫受體CD36和清道夫受體A1(scavenger receptor A1,SR-A1)促進泡沫細胞形成;而抑制ERS則促使M2型巨噬細胞向M1型轉化,進而通過增強HDL和apoA-I介導的膽固醇流出抑制細胞泡沫化,提示抑制ERS而促進M2型巨噬細胞向M1型轉化可能減輕泡沫細胞形成和凋亡從而減緩AS斑塊進展。因此巨噬細胞表型在AS病變中的具體轉換機制及其在AS進展中的確切作用有待進一步研究。
巨噬源性泡沫細胞是AS進程中重要的病理學標志,在AS進展中起著重要作用,尤其巨噬細胞凋亡是導致易損斑塊形成、影響其穩(wěn)定性的重要因素。高脂血癥時,巨噬細胞內膽固醇蓄積,ER膜上過量的膽固醇能夠抑制肌漿網/ER鈣ATP酶(sarcoplasmic/endoplasmic reticulum Ca2+ATPase,SERCA),使ER內Ca2+水平降低,激活ERS反應,引起巨噬細胞凋亡[18]。而ERS又會通過介導清道夫受體的上調而促進巨噬細胞攝取更多的脂質。研究報道棕櫚酸酯和ERS誘導劑毒胡蘿卜素均可上調巨噬細胞凝集素樣ox-LDL受體1(lectin-like oxidized LDL receptor 1,LOX-1),而沉默IRE1和PERK則明顯拮抗棕櫚酸酯對LOX-1的誘導作用[19],也有報道另一ERS誘導劑衣霉素可上調巨噬細胞CD36表達,促進泡沫細胞形成[20]。Myoishi等[21]對111例急性冠脈綜合征患者粥樣斑塊的研究發(fā)現(xiàn),凋亡的巨噬細胞主要位于薄弱纖維帽及破裂斑塊處,并伴有GRP78、CHOP等ERS標志分子高表達。敲除CHOP基因可顯著縮小Ldlr-/-和apoE-/-小鼠AS斑塊面積、降低斑塊中巨噬細胞凋亡率和斑塊破裂的發(fā)生率,且分離自CHOP-/-小鼠的腹腔巨噬細胞對7-酮膽甾醇和ox-LDL誘導的凋亡具有更強的抵抗力[22],表明CHOP 與AS斑塊內巨噬細胞凋亡及斑塊易損性密切相關。本課題組既往研究證實,輕度氧化修飾低密度脂蛋白(minimally modified low-density lipoprotein,mm-LDL)[23]和ox-LDL[24]均可誘導巨噬細胞發(fā)生ERS,激活由IRE1所介導的UPR反應,而采用siRNA技術沉默ATF6后明顯抑制ox-LDL所誘導的細胞凋亡和CHOP表達上調,且減輕巨噬細胞內脂質蓄積,提示ATF6介導的ERS信號途徑參與ox-LDL所誘導的巨噬細胞內脂質蓄積和細胞凋亡。
VECs損傷及功能紊亂是AS發(fā)生的始動環(huán)節(jié),且其介導的炎癥反應參與AS發(fā)生發(fā)展過程。來自VECs的研究證實氧化和糖化LDL可通過誘導氧化應激反應和抑制SERCA觸發(fā)持久ERS,顯著上調p-PERK、p-eIF2α、GRP78等ERS標志分子表達[25]。高半胱氨酸可誘導人VECs CHOP表達和細胞凋亡,而抑制IRE1表達可拮抗高半胱氨酸的上述作用[26]。高遷移率族盒蛋白1(high-mobility group box 1 protein,HMGB1)是介導內皮慢性炎癥反應重要因素,研究表明沉默PERK和IRE1表達或抑制eIF-2 α 和JNK活性可明顯拮抗HMGB1所誘導的VECs細胞間黏附分子1(intercellular adhesion molecule-1,ICAM-1)和P-選擇素表達[27]。以上研究表明ERS 在VECs損傷及其所介導的炎癥反應中具有重要的調節(jié)作用,進而參與AS的發(fā)生發(fā)展。
VSMCs增殖、遷移參與AS的進展及術后再狹窄,而其凋亡與AS斑塊易損性密切相關。在體外培養(yǎng)的VSMCs實驗中發(fā)現(xiàn),ox-LDL主要成分7-酮膽甾醇可上調VSMCs上CHOP表達,而沉默CHOP表達可抑制7-酮膽甾醇所誘導的細胞凋亡[28]。ox-LDL 和7-酮膽甾醇也可激活IRE1-JNK信號途徑,進而活化NADPH氧化酶4(NADPH oxidase 4,NOX4)所誘導的氧化應激導致凋亡的發(fā)生,且蛋白激酶Cδ(protein kinase C δ,PKCδ)可能在該過程中起著重要調控作用[29]。
4 內質網應激是動脈粥樣硬化防治的新靶點
鑒于ERS在AS發(fā)生發(fā)展中的重要作用,近年來在體外和動物模型中證實對ERS信號通路進行干預,可減輕心血管細胞損傷,減緩AS進展,可能成為AS防治的重要措施。
化學伴侶是一類能夠非特異性協(xié)助蛋白正確折疊、穩(wěn)定蛋白天然構象的小分子。4-苯丁酸(4-phenylbutyric acid,PBA)和牛黃脫氧膽酸(tauro-ursodeoxycholic acid,TUDCA)是可用于臨床的化學伴侶分子。PBA能夠抑制高脂飼養(yǎng)的apoE-/-小鼠AS斑塊中p-eIF2α、p-PERK等ERS標志分子表達,并減輕AS病變和巨噬細胞凋亡[30]。體外實驗表明PBA可減輕晚期糖化白蛋白、糖化脂蛋白和衣霉素所致的巨噬細胞ERS、ATP結合盒轉運體A1(ATP-binding cassette transporter A1,ABCA1)下調、氧化應激以及細胞凋亡[31-32],并抑制棕櫚酸酯和毒胡蘿卜素對LOX-1的誘導作用[19]。TUDCA是另一個具有ERS調控作用的化學伴侶,不僅在整體實驗中可減緩AS進展[33],而且可拮抗棕櫚酸酯和ERS誘導劑所致的巨噬細胞清道夫受體LOX-1和CD36的上調,抑制泡沫細胞的形成[19-20]。以上結果提示化學伴侶分子通過改善ER功能可能成為治療AS的有效措施,但是其對ERS的調控在AS防治中的確切機制有待進一步闡明。
除化學伴侶分子以外,近年來以ERS作為AS治療靶點的其它研究也有較多報道。eIF-2 α磷酸化抑制劑2-氨基嘌呤可以降低apoE-/-小鼠AS斑塊中p-eIF2α和GRP78水平,同時縮小AS斑塊面積、抑制泡沫細胞形成[34]。Bernal-Mizrachi課題組研究了維生素D(vitamin D,Vit D)與糖尿病患者體內巨噬細胞表型轉換及活性的關系,結果發(fā)現(xiàn)血清Vit D低于30 μg/L的患者巨噬細胞以M2型為主,ERS反應增強,且黏附分子表達和黏附能力增加,若抑制巨噬細胞Vit D受體也可使ERS反應和黏附能力增強,而補充Vit D或給予PBA抑制ERS則可使巨噬細胞表型向M1轉化并降低游走黏附能力,且ERS誘導劑毒胡蘿卜素可抵消Vit D對巨噬細胞游走和黏附分子表達的抑制作用[35-36]。并在Ldlr-/-和apoE-/-AS小鼠模型上也發(fā)現(xiàn),Vit D缺乏可顯著增加AS斑塊面積和巨噬細胞浸潤,以M2型為主,并伴有脂質蓄積和ERS活化,抑制ERS反應則減輕AS斑塊和巨噬源性泡沫細胞形成[37],表明Vit D可通過抑制ERS反應對AS發(fā)揮治療作用。Chen等[38]研究發(fā)現(xiàn)硫化氫(H2S)可抑制Western飲食飼養(yǎng)的apoE-/-小鼠AS斑塊caspase-12表達,縮小斑塊壞死面積,減輕動脈超微結構損傷。一磷酸腺苷激活蛋白激酶(AMP-activated protein kinase,AMPK)活化與eIF2α磷酸化有關,研究顯示阿伐他汀可激活AMPK,降低高同型半胱氨酸誘導的ERS反應,從而減輕血管壁損傷和AS進展[39]。槲皮素是一種黃酮類化合物單體,具有抗氧化、抗炎、降血壓等作用。Derlindati等[14]研究發(fā)現(xiàn),槲皮素代謝產物槲皮素-3-O-葡糖苷酸抑制M1型巨噬細胞促炎基因的表達,而增強M2型巨噬細胞抗炎能力。本課題組既往研究[40]證實槲皮素可顯著抑制ox-LDL誘導的巨噬細胞IRE磷酸化、ATF6核轉位和CHOP表達上調,同時增加細胞活力,降低細胞凋亡率,且在ERS誘導劑衣霉素和毒胡蘿卜素[41]誘導的巨噬細胞ERS模型上也觀察到槲皮素的類似作用,表明槲皮素可通過抑制ERS-CHOP信號途徑減輕ox-LDL對巨噬細胞的損傷。
5 展望
ERS反應是機體對內外環(huán)境刺激的一種自我保護性防御機制,但是過強或過久的ERS則可導致細胞功能失調,誘導細胞凋亡。大量研究顯示ERS參與AS的發(fā)生、發(fā)展。在此基礎上,對ERS反應進行干預,包括上調ERS相關促生存信號分子、抑制過度的ERS及相關凋亡信號通路,已成為AS相關疾病中的研究熱點和治療新靶點。但是由于ERS促生存信號與促凋亡信號在疾病發(fā)展的不同時期并沒有明確的界限,且不同細胞如巨噬細胞、VECs、VSMCs在ERS狀態(tài)下的反應及其在疾病發(fā)展中的意義也不盡相同,因此對于ERS相關信號通路精確的選擇性的調控還有待更廣泛深入的研究。
[1]Hetz C.The unfolded protein response:controlling cell fate decisions under ER stress and beyond[J].Nat Rev Mol Cell Biol,2012,13(2):89-102.
[2]Minamino T,Komuro I,Kitakaze M.Endoplasmic reticulum stress as a therapeutic target in cardiovascular disease [J].Circ Res,2010,107(9):1071-1082.
[3]Ma Y,Hendershot LM.Delineation of a negative feedback regulatory loop that controls protein translation during endoplasmic reticulum stress[J].J Biol Chem,2003,278 (37):34864-34873.
[4]Lerner AG,Upton JP,Praveen PV,et al.IRE1α induces thioredoxin-interacting protein to activate the NLRP3 inflammasome and promote programmed cell death under irremediable ER stress[J].Cell Metab,2012,16(2): 250-264.
[5]Bromati CR,Lellis-Santos C,Yamanaka TS,et al.UPR induces transient burst of apoptosis in islets of early lactating rats through reduced AKT phosphorylation via ATF4/ CHOP stimulation of TRB3 expression[J].Am J Physiol Regul Integr Comp Physiol,2011,300(1):R92-R100.
[6]Ghosh AP,Klocke BJ,Ballestas ME,et al.CHOP potentially co-operates with FOXO3a in neuronal cells to regulate PUMA and BIM expression in response to ER stress [J].PLoS One,2012,7(6):e39586.
[7]Li G,Mongillo M,Chin KT,et al.Role of ERO1-alpha-mediated stimulation of inositol 1,4,5-triphosphate receptor activity in endoplasmic reticulum stress-induced apoptosis[J].J Cell Biol,2009,186(6):783-792.
[8]Timmins JM,Ozcan L,Seimon TA,et al.Calcium/calmodulin-dependent protein kinase II links ER stress with Fas and mitochondrial apoptosis pathways[J].J Clin Invest,2009,119(10):2925-2941.
[9]Kim YH,Joo HS,Kim DS.Nitric oxide induction of IRE1-alpha-dependent CREB phosphorylation in human glioma cells[J].Nitric Oxide,2010,23(2):112-120.
[10]Morishima N,Nakanishi K,Takenouchi H,et al.An endoplasmic reticulum stress-specific caspase cascade in apoptosis.Cytochrome c-independent activation of caspase-9 by caspase-12[J].J Biol Chem,2002,277(37): 34287-34294.
[11]Szabadkai G,Bianchi K,Várnai P,et al.Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+channels[J].J Cell Biol,2006,175(6):901-911.
[12]Verfaillie T,Rubio N,Garg AD,et al.PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress[J].Cell Death Differ,2012,19(11):1880-1891.
[13]Sano R,Hou YC,Hedvat M,et al.Endoplasmic reticulum protein BI-1 regulates Ca2+-mediated bioenergetics to promote autophagy[J].Genes Dev,2012,26(10): 1041-1054.
[14]Derlindati E,Dall'Asta M,Ardigò D,et al.Quercetin-3-O-glucuronide affects the gene expression profile of M1 and M2ahumanmacrophagesexhibitinganti-inflammatory effects[J].Food Funct,2012,3(11):1144-1152.
[15]Khallou-Laschet J,Varthaman A,F(xiàn)ornasa G,et al.Macrophage plasticity in experimental atherosclerosis[J].PLoS One,2010,5(1):e8852.
[16]Isa SA,Ruffino JS,Ahluwalia M,et al.M2 macrophages exhibit higher sensitivity to oxLDL-induced lipotoxicity than other monocyte/macrophage subtypes[J].Lipids Health Dis,2011,10:229.
[17]Oh J,Riek AE,Weng S,et al.Endoplasmic reticulum stress controls M2 macrophage differentiation and foam cell formation[J].J Biol Chem,2012,287(15):11629-11641.
[18]Li Y,Ge M,Ciani L,et al.Enrichment of endoplasmic reticulum with cholesterol inhibits sarcoplasmic-endoplasmic reticulum calcium ATPase-2b activity in parallel with increased order of membrane lipids:implications for depletion of endoplasmic reticulum calcium stores and apoptosis in cholesterol-loaded macrophages[J].J Biol Chem,2004,279(35):37030-37039.
[19]Ishiyama J,Taguchi R,Akasaka Y,et al.Unsaturated FAs prevent palmitate-induced LOX-1 induction via inhibition of ER stress in macrophages[J].J Lipid Res,2011,52(2):299-307.
[20]Hua Y,Kandadi MR,Zhu M,et al.Tauroursodeoxycholic acid attenuates lipid accumulation in endoplasmic reticulum-stressed macrophages[J].J Cardiovasc Pharmacol,2010,55(1):49-55.
[21]Myoishi M,Hao H,Minamino T,et al.Increased endoplasmic reticulum stress in atherosclerotic plaques associated with acute coronary syndrome[J].Circulation,2007,116(11):1226-1233.
[22]Thorp E,Li G,Seimon TA,et al.Reduced apoptosis and plaque necrosis in advanced atherosclerotic lesions of ApoE-/-and Ldlr-/-mice lacking CHOP[J].Cell Metab,2009,9(5):474-481.
[23]Yao S,Yang N,Song G,et al.Minimally modified lowdensity lipoprotein induces macrophage endoplasmic reticulum stress via Toll-like receptor 4[J].Biochim Biophys Acta,2012,1821(7):954-963.
[24]Yao S,Zong C,Zhang Y,et al.Activating transcription factor 6 mediates oxidized LDL-induced cholesterol accumulation and apoptosis in macrophages by up-regulating CHOP expression[J].J Atheroscler Thromb,2013,20 (1):94-107.
[25]Dong Y,Zhang M,Wang S,et al.Activation of AMP-activated protein kinase inhibits oxidized LDL-triggered endoplasmic reticulum stress in vivo[J].Diabetes,2010,59(6):1386-1396.
[26]Zhang C,Cai Y,Adachi MT,et al.Homocysteine induces programmed cell death in human vascular endothelial cells through activation of the unfolded protein response [J].J Biol Chem,2001,276(38):35867-35874.
[27]Luo Y,Li SJ,Yang J,et al.HMGB1 induces an inflammatory response in endothelial cells via the RAGE-dependent endoplasmic reticulum stress pathway[J].Biochem Biophys Res Commun,2013,438(4):732-738.
[28]Myoishi M,Hao H,Minamino T,et al.Increased endoplasmic reticulum stress in atherosclerotic plaques associated with acute coronary syndrome[J].Circulation,2007,116(11):1226-1233.
[29]Larroque-Cardoso P,Swiader A,Ingueneau C,et al.Role of protein kinase C δ in ER stress and apoptosis induced by oxidized LDL in human vascular smooth muscle cells [J].Cell Death Dis,2013,4:e520.
[30]Erbay E,Babaev VR,Mayers JR,et al.Reducing endoplasmic reticulum stress through a macrophage lipid chaperone alleviates atherosclerosis[J].Nat Med,2009,15 (12):1383-1391.
[31]Castilho G,Okuda LS,Pinto RS,et al.ER stress is associated with reduced ABCA-1 protein levels in macrophages treated with advanced glycated albumin:reversal by a chemical chaperone[J].Int J Biochem Cell Biol,2012,44(7):1078-1086.
[32]Lenin R,Maria MS,Agrawal M,et al.Amelioration of glucolipotoxicity-induced endoplasmic reticulum stress by a “chemical chaperone”in human THP-1 monocytes[J].Exp Diabetes Res,2012,2012:356487.
[33]Dong Y,Zhang M,Liang B,et al.Reduction of AMP-activated protein kinase α2 increases endoplasmic reticulum stress and atherosclerosis in vivo[J].Circulation,2010,121(6):792-803.
[34]Zhou L,Yang D,Wu DF,et al.Inhibition of endoplasmic reticulum stress and atherosclerosis by 2-aminopurine in apolipoprotein E-deficient mice[J].ISRN Pharmacol,2013,2013:847310.
[35]Riek AE,Oh J,Sprague JE,et al.Vitamin D suppression of endoplasmic reticulum stress promotes an antiatherogenic monocyte/macrophage phenotype in type 2 diabetic patients[J].J Biol Chem,2012,287(46):38482-38494.
[36]Riek AE,Oh J,Bernal-Mizrachi C.1,25(OH)2vitamin D suppresses macrophage migration and reverses atherogenic cholesterol metabolism in type 2 diabetic patients [J].J Steroid Biochem Mol Biol,2013,136:309-312.
[37]Weng S,Sprague JE,Oh J,et al.Vitamin D deficiency induces high blood pressure and accelerates atherosclerosis in mice[J].PLoS One,2013,8(1):e54625.
[38]Chen ZF,Zhao B,Tang XY,et al.Hydrogen sulfide regulates vascular endoplasmic reticulum stress in apolipoprotein E knockout mice[J].Chin Med J(Engl),2011,124(21):3460-3467.
[39]Jia F,Wu C,Chen Z,et al.Atorvastatin inhibits homocysteine-induced endoplasmic reticulum stress through activation of AMP-activated protein kinase[J].Cardiovasc Ther,2012,30(6):317-325.
[40]Yao S,Sang H,Song G,et al.Quercetin protects macrophages from oxidized low-density lipoprotein-induced apoptosis by inhibiting the endoplasmic reticulum stress-C/EBP homologous protein pathway[J].Exp Biol Med(Maywood),2012,237(7):822-831.
[41]岳雯,姚樹桐,鮑穎,等.槲皮素對毒胡蘿卜素誘導的巨噬細胞內質網應激凋亡途徑的抑制作用及機制[J].中國病理生理雜志,2012,28(3):518-523.
The role of endoplasmic reticulum stress in pathogenesis,development,prevention and treatment of atherosclerosis
YAO Shu-tong1,2,QIN Shu-cun1
(1Institute of Atherosclerosis,Key Laboratory of Atherosclerosis in Universities of Shandong,2College of Basic Medical Sciences,Taishan Medical University,Taian 271000,China.E-mail:shucunqin@hotmail.com)
Endoplasmic reticulum(ER)is a multifunctional organelle responsible for the synthesis and folding of proteins and regulation of calcium homeostasis.Multiple stimuli,such as oxidative stress,glycosylation change and so on,lead to ER dysfunction characterized by the accumulation of unfolded and/or misfolded proteins and calcium homeostasis imbalance(ER stress).Mode-rate ER stress is an important cytoprotective mechanism against stressors.However,severe and/ or prolonged ER stress can trigger apoptotic signaling including CHOP,caspase-12 and JNK pathways.Recent studies have shown that ER stress plays a critical role in the development of atherosclerosis and it can bring about inhibitory effects on the progression of atherosclerosis through the intervention of the relevant pathways,which may be a new therapeutic target for atherosclerosis.
內質網應激;細胞凋亡;動脈粥樣硬化;治療靶點
Endoplasmic reticulum stress;Apoptosis;Atherosclerosis;Therapeutic target
1000-4718(2014)02-0364-06
R363
A
10.3969/j.issn.1000-4718.2014.02.032
2013-10-07
2013-12-12
國家自然科學基金資助項目(No.81202949;No.81370381);山東省泰山學者崗專項基金資助項目(No.zd056; No.zd057)
△通訊作者Tel:0538-6237252;E-mail:shucunqin@hotmail.com