程 毅 王麗萍 楊文紅 王鸝麟 喻 茜 趙 倩 張 羿 嚴(yán)衛(wèi)麗
·論著·
超重孕婦低生糖負(fù)荷膳食干預(yù)對(duì)新生兒DNA甲基化影響的探索性研究
程 毅1王麗萍2楊文紅3王鸝麟2喻 茜3趙 倩4張 羿1嚴(yán)衛(wèi)麗4
目的 通過對(duì)超重孕婦實(shí)施低血糖生成指數(shù)(GI)膳食的干預(yù),探討胎盤組織和臍血中與體重增長(zhǎng)有關(guān)基因的甲基化的改變。方法 采用隨機(jī)化單盲對(duì)照干預(yù)試驗(yàn)設(shè)計(jì),研究對(duì)象為初次產(chǎn)檢孕周≤12周且體重超重的孕婦。以研究對(duì)象納入的順序號(hào)為隨機(jī)序列號(hào),采用簡(jiǎn)單隨機(jī)化的方法隨機(jī)分為干預(yù)組和對(duì)照組。干預(yù)組在中國孕婦保健規(guī)范的基礎(chǔ)上結(jié)合國家對(duì)孕婦的膳食和體力活動(dòng)規(guī)范實(shí)施低GI膳食指導(dǎo)干預(yù) ,對(duì)照組僅按照國家規(guī)范給予指導(dǎo),不給予低GI膳食的指導(dǎo)。兩組分別在孕早期、中期和晚期干預(yù)3次。干預(yù)組和對(duì)照組各納入25例。孕婦分娩時(shí)收集胎盤組織和臍血,提取DNA,采用Illumina甲基化芯片進(jìn)行兩步法全基因組甲基化測(cè)定。結(jié)果 孕婦孕期相關(guān)暴露因素在干預(yù)組與對(duì)照組差異無統(tǒng)計(jì)學(xué)意義;胎兒出生體重干預(yù)組高于對(duì)照組[(3.7±0.5)vs(3.5±0.4) kg],但差異無統(tǒng)計(jì)學(xué)意義(P=0.248)。本研究結(jié)果結(jié)合生物信息數(shù)據(jù)庫分析,篩選出19個(gè)基因位點(diǎn),所屬18個(gè)基因,其中5個(gè)基因位于1號(hào)染色體,2個(gè)基因位于7號(hào)染色體,其余基因分布分散。比較干預(yù)組與對(duì)照組甲基化的改變,發(fā)現(xiàn)臍血中2個(gè)差異的甲基化CpG位點(diǎn),分別位于TEKT5和MIR378C基因上,胎盤組織中1個(gè)差異的甲基化CpG位點(diǎn),所屬PGBD5基因。結(jié)論 通過對(duì)超重孕婦采取低GI膳食干預(yù),胎盤組織和臍血中基因的甲基化可以發(fā)生改變,為中國超重、肥胖孕婦疾病的預(yù)防提供新的方法,對(duì)子代的健康成長(zhǎng)有重要的意義。
膳食干預(yù); 血糖生成指數(shù); 超重孕婦; 甲基化
心腦血管疾病是中國的第一位死因,而肥胖是其最危險(xiǎn)因素之一。根據(jù)2002年全國營(yíng)養(yǎng)與健康調(diào)查數(shù)據(jù)顯示,中國人群超重率為17.6%,肥胖率高達(dá)5.6%[1]。中國18~44歲女性(包括大部分育齡婦女)超重/肥胖率達(dá)29%[2]。食物血糖生成指數(shù)(glycemic index,GI)是以服用50 g葡萄糖的血糖升高數(shù)值作為100%,再與食入含50 g碳水化合物的其他食物后血糖升高數(shù)值比較的結(jié)果。近年來低GI膳食干預(yù)除對(duì)體重的控制作用外,其降低胰島素抵抗、改善胰島素敏感性的健康效應(yīng)受到廣泛關(guān)注。目前有關(guān)孕婦低GI膳食干預(yù)研究報(bào)道有限,研究對(duì)象分別為健康孕婦[3]、妊娠糖尿病孕婦和超重孕婦,發(fā)現(xiàn)低GI膳食有助于降低大胎齡兒比例和胎兒出生體重,低GI膳食干預(yù)的妊娠糖尿病孕婦需要胰島素治療的比例亦大為降低[4],其代謝性危險(xiǎn)因素水平也降低[5]。孕前或者孕期環(huán)境因素通過生殖細(xì)胞,或者是胎盤、臍帶組織的基因組甲基化,影響子代的表型和表觀基因組。如育齡期婦女長(zhǎng)期不合理(高GI)膳食、體力活動(dòng)減少,可能引起其本身的生殖細(xì)胞基因組某些基因的甲基化改變,或者作用于胎盤和臍帶組織發(fā)生甲基化改變,從而影響新生兒基因組甲基化狀態(tài),隨年齡的變化,產(chǎn)生相應(yīng)的亞臨床或臨床表型。那么具有危險(xiǎn)因素的孕婦,接受良性膳食干預(yù),可能也會(huì)出現(xiàn)某些相關(guān)基因甲基化的變化?;诖思僭O(shè),本文通過對(duì)超重孕婦低GI膳食干預(yù),收集孕婦分娩時(shí)臍血和胎盤組織,觀察膳食干預(yù)組與對(duì)照組差異的甲基化位點(diǎn),為超重孕婦膳食干預(yù)探索性研究提供一定依據(jù)。
1.1 研究設(shè)計(jì) 接受常規(guī)體檢的孕婦,根據(jù)自愿、知情同意的原則,選取符合課題研究條件的孕婦,按照研究對(duì)象納入的順序號(hào)為序列號(hào),采用簡(jiǎn)單隨機(jī)化的方法將研究對(duì)象隨機(jī)分為干預(yù)組和對(duì)照組。分娩時(shí)收集臍血和胎盤組織,提取DNA,檢測(cè)候選基因位點(diǎn)甲基化改變程度,比較兩組差異的甲基化位點(diǎn)。
1.2 納入標(biāo)準(zhǔn) 同時(shí)滿足以下6項(xiàng):①初產(chǎn)婦,單胎;②孕婦年齡20~45歲;③孕前BMI≥24 kg·m-2;④初次產(chǎn)檢孕周≤12周;⑤初次產(chǎn)檢信息數(shù)據(jù)完整;⑥可定期進(jìn)行常規(guī)產(chǎn)檢。
1.3 排除標(biāo)準(zhǔn) 符合以下之一者:①人工受孕者;②在懷孕前或懷孕時(shí)患有下列疾病之一者:高血壓、糖尿病、冠心病、精神疾??;③特殊飲食習(xí)慣者(如素食主義/純素食主義)。
1.4 分組及干預(yù)措施 根據(jù)接受干預(yù)措施分為干預(yù)組和對(duì)照組,對(duì)照組給予每天膳食總能量規(guī)范化攝入和孕期體重合理增長(zhǎng)的指導(dǎo);干預(yù)組在對(duì)照組的基礎(chǔ)上,從低GI食物的選擇、膳食搭配和烹調(diào)加工方法3個(gè)方面給予低GI膳食指導(dǎo)。
1.5 低出生體重兒和巨大兒 按照臨床的定義,出生體重<2 500 g為低出生體重兒,~4 000 g為正常出生體重兒,≥ 4 000 g為巨大兒。
1.6 生物學(xué)樣本的收集和DNA提取 臍血和胎盤組織中DNA均使用QIAamp DNA Mini Kit試劑盒提取。①臍血收集:胎兒娩出并結(jié)扎臍帶后,取近胎盤端臍血2~4 mL,非抗凝,室溫靜置,在血樣采集3 h內(nèi)2 000·min-1離心15 min,將血清分裝于200 μL EP管后置-20℃保存。②胎盤組織收集:在胎兒娩出后30 min內(nèi),以胎盤上臍帶為中心,4 cm為半徑的圓周上,用一致的采樣方法采6個(gè)點(diǎn)胎盤組織,裝入50 mL錐形管內(nèi),干冰處理后置-80℃保存。
1.7 候選基因選取 對(duì)獨(dú)立的10例1周歲嬰兒外周血進(jìn)行全基因組甲基化檢測(cè),其中5例母親孕期體重增長(zhǎng)>18 kg,5例母親孕期體重增長(zhǎng)<15 kg,采用Illumina Human Methylation 450K Beadchip芯片進(jìn)行檢測(cè),結(jié)合Biological Process,Cellular Component,KEGG Pathways等15種生物信息學(xué)數(shù)據(jù)庫分析。
1.8 DNA甲基化檢測(cè) ①亞硫酸鹽處理基因組,將胞嘧啶C轉(zhuǎn)換成尿嘧啶U,甲基化的C (Methylcytosine)不反應(yīng),保持不變;②將處理后的DNA與芯片雜交掃描后,甲基化狀態(tài)可通過計(jì)算熒光信號(hào)比例來確定;③根據(jù)Illumina甲基化定制芯片每探針甲基化位點(diǎn)原始數(shù)據(jù)分別進(jìn)行平均數(shù)值標(biāo)準(zhǔn)化(average normalization)預(yù)處理;④計(jì)算探針?biāo)降募谆潭?Beta score)[6],其取值范圍[0,1],表示甲基化探針相對(duì)非甲基化探針信號(hào)的比率,作為衡量樣品各CpG位點(diǎn)甲基化程度的指標(biāo)。
1.9 統(tǒng)計(jì)學(xué)分析 使用Access 2003數(shù)據(jù)庫軟件進(jìn)行雙人雙遍數(shù)據(jù)錄入,邏輯核對(duì)無誤,進(jìn)入統(tǒng)計(jì)分析。采用Stata 11.0軟件(Stata Corp., College Station, TX) 進(jìn)行數(shù)據(jù)整理和描述性統(tǒng)計(jì)分析。研究對(duì)象基本資料分析時(shí)計(jì)量資料比較經(jīng)正態(tài)性、方差齊性檢驗(yàn)后采用獨(dú)立樣本t檢驗(yàn),構(gòu)成比和率的比較采用χ2檢驗(yàn)。分析差異化甲基化時(shí),主要分析探針?biāo)降腂eta score,采用兩組樣本的Wilcox非參數(shù)檢驗(yàn),根據(jù)Pe ≤0.05篩選差異位點(diǎn),同時(shí)使用M值[6]方法,對(duì)篩選的位點(diǎn)進(jìn)行驗(yàn)證。采用Benjamini & Hochberg方法[7]進(jìn)行多重檢驗(yàn)糾正計(jì)算假陽性率 (false discovery rate,F(xiàn)DR)。使用Gene Ontology(GO)[8]對(duì)差異的甲基化位點(diǎn)臨近基因進(jìn)行GO功能富積分析。GO功能富積分析是利用超幾何分布檢驗(yàn)計(jì)算代表GO功能集在差異基因轉(zhuǎn)錄本列表中是否顯著富積的P值, 再對(duì)P值經(jīng)Benjamini & Hochberg多重檢驗(yàn)糾正后得到FDR。
2.1 母親和新生兒一般情況 2012年5月至2013年9月符合本研究納入標(biāo)準(zhǔn)并經(jīng)排除標(biāo)準(zhǔn)檢驗(yàn)的50名孕婦進(jìn)入分析,干預(yù)組和對(duì)照組各25例,研究現(xiàn)場(chǎng)為上海市國際和平婦幼保健院(31例)和江蘇省昆山市婦幼保健院(19例)。孕婦基本信息:年齡(28.4±2.9)歲,孕前體重(72.2±9.7)kg,孕前BMI(27.6±3.5)kg·m-2,孕周(38.9±1.1)周,孕期體重增長(zhǎng)(15.9±7.6)kg;孕婦學(xué)歷:高中6例,大專18例,大學(xué)以上26例;剖腹產(chǎn)74%(37例),產(chǎn)次為(1.58±0.8)次。孕婦分娩時(shí)采集新生兒基本信息:男女嬰分別為30和20例,出生體重(3.6±0.4) kg,巨大兒24%(12例),身長(zhǎng)(50.1±3.0)cm; Apgar評(píng)分(9.6±0.7)分。
2.2 干預(yù)組與對(duì)照組母親孕期相關(guān)暴露因素的單因素分析 表1顯示,干預(yù)組和對(duì)照組在母親孕期暴露因素、新生兒出生基本資料方面差異無統(tǒng)計(jì)學(xué)意義。
Notes GA: gestational weeks; LMP: last menstrual period; BMI: body mass index of LMP
2.3 甲基化檢測(cè)位點(diǎn)基因信息 10例1周歲嬰兒外周血全基因組甲基化差異分析, 篩選出19個(gè)與孕期體重增長(zhǎng)有關(guān)的甲基化位點(diǎn),涉及18個(gè)基因,甲基化程度升高和降低的位點(diǎn)分別有9個(gè)和10個(gè)。cg27481428位點(diǎn)位于SHH基因的CpG島上,其余位點(diǎn)均不在所屬基因的CpG島上;18個(gè)基因中有5個(gè)基因位于1號(hào)染色體,2個(gè)基因位于7號(hào)染色體,其余基因分布分散(表2)。
Notes GWG1:gestational weight gain>18 kg;GWG2:gestational weight gain<15 kg; Beta_change: average change in beta value between GWG1 and GWG2 group. FDR: false discovery rate
2.4 臍血和胎盤組織DNA差異的甲基化位點(diǎn)分析 干預(yù)組和對(duì)照組臍血中13個(gè)位點(diǎn)甲基化程度降低,其中2個(gè)位點(diǎn)差異有統(tǒng)計(jì)學(xué)意義,分別為cg12682323(MIR378C,P=0.011,FDR=0.811)和cg26477117(TEKT5,P=0.002 9,FDR=0.811);6個(gè)位點(diǎn)甲基化程度升高,差異均無統(tǒng)計(jì)學(xué)意義。 干預(yù)組和對(duì)照組胎盤組織中5個(gè)位點(diǎn)甲基化程度升高,其中1個(gè)位點(diǎn)差異有統(tǒng)計(jì)學(xué)意義(cg03347632,PGBD5,P=0.041,FDR=0.811);14個(gè)位點(diǎn)甲基化程度降低,差異均無統(tǒng)計(jì)學(xué)意義。經(jīng)M值驗(yàn)證,本文所得結(jié)果與應(yīng)用beta score進(jìn)行檢驗(yàn)所得結(jié)果不一致。M值分析發(fā)現(xiàn),臍血中有1個(gè)位點(diǎn)(cg13949713)在兩組間差異有統(tǒng)計(jì)學(xué)意義(P=0.036)。
Go Term分析顯示,TEKT5基因參與細(xì)胞組成,主要與細(xì)胞纖毛形成和細(xì)胞質(zhì)的形成有關(guān)。MIR378C基因是一種具有調(diào)控功能的非編碼RNA, 參與MicroRNAs的轉(zhuǎn)錄和穩(wěn)定性,調(diào)控轉(zhuǎn)錄后基因的表達(dá)。而PGBD5是一種由455個(gè)氨基酸組成的Ⅰ型跨膜蛋白,是PGBD家族成員之一,主要參與分子的跨膜運(yùn)輸。
Notes Intervention_mean: average beta value of treat group;Control_mean: average beta value of control group;Beta_change:average change in beta value minus intervention and control groups;P1:the test ofPvalue of two groups usingMvalue[6]
國外大量研究表明母親宮內(nèi)環(huán)境因素將導(dǎo)致表觀遺傳學(xué)調(diào)控機(jī)制改變,從而影響胎兒的出生體重,還有可能對(duì)某些胎源性疾病發(fā)展產(chǎn)生一定的影響[9,10]。研究證實(shí),母親孕期營(yíng)養(yǎng)能夠改變后代DNA的甲基化,從而對(duì)胎兒的結(jié)局有重要的影響[11]。胎兒早期發(fā)育營(yíng)養(yǎng)受限可能增大兒童期或成人期心血管疾病患病的風(fēng)險(xiǎn),營(yíng)養(yǎng)過剩是兒童期或成人期發(fā)生肥胖的危險(xiǎn)因素。母親孕前超重、糖尿病與后代的肥胖有一定關(guān)聯(lián),這可能與遺傳和子宮內(nèi)環(huán)境有關(guān)[12, 13]。母親孕期體重增長(zhǎng)過高能夠增加后代2~14歲兒童超重的風(fēng)險(xiǎn)[14~16]。基于上述研究結(jié)果本研究提出了假設(shè),孕期不良營(yíng)養(yǎng)因素可導(dǎo)致胎盤和臍血的某些基因的甲基化改變,與此相比較而言,給予良性營(yíng)養(yǎng)因素的刺激(如低GI膳食),是否可以觀察到相同基因的甲基化改變呢?其方向如何?已有臨床研究證據(jù)表明,超重孕婦的膳食管理,包括低GI 膳食干預(yù)可改善新生兒的結(jié)局和孕婦妊娠結(jié)局[17,18]。低GI膳食干預(yù),是在每天膳食總能量的規(guī)范化攝入、指導(dǎo)孕期體重合理增長(zhǎng)的基礎(chǔ)上,從低GI食物的選擇、膳食搭配和烹調(diào)加工方法3個(gè)方面給予指導(dǎo),對(duì)膳食中碳水化合物的種類進(jìn)行科學(xué)的調(diào)整,如果研究證實(shí)了本文的假設(shè),低GI膳食指導(dǎo)可作為預(yù)防中國特殊人群(孕婦)疾病“溫和的干預(yù)”提供理論依據(jù)。
本研究臍血的差異基因?yàn)門EKT5和MIR378C,差異基因在干預(yù)組中甲基化程度比對(duì)照組略低(Beta score差值分別為-0.022和-0.042),而在母親孕期體重增長(zhǎng)過多和對(duì)照組之間兩位點(diǎn)的差別分別為-0.326和-0.243,組間的甲基化程度差異明顯縮小。似乎支持本研究假設(shè),即良性營(yíng)養(yǎng)因素與不良營(yíng)養(yǎng)因素的同一位點(diǎn)甲基化的作用是相反的。胎盤組織中差異基因?yàn)镻GBD5,干預(yù)組中甲基化程度比對(duì)照組略高(Beta score差值為0.032),而在母親孕期體重增長(zhǎng)過多和對(duì)照組嬰兒之間該位點(diǎn)的甲基化差異為0.201,方向相同,亦支持本研究的假設(shè)。
本研究發(fā)現(xiàn)的幾個(gè)差異甲基化的基因與孕期的營(yíng)養(yǎng)因素的關(guān)系目前尚不清楚。人類的TEKT5基因由7個(gè)外顯子組成,位于16號(hào)染色體長(zhǎng)臂端13區(qū)13帶。TEKT5 mRNA的表達(dá)在正常組織被限定在特殊的器官,但這種基因在多種癌癥組織(肝癌、肺癌、結(jié)腸癌)被檢測(cè)到。TEKT5基因還被用于癌癥患者診斷和免疫治療的靶點(diǎn)[22]。MIR378C是一種具有調(diào)控功能的非編碼RNA,能夠轉(zhuǎn)染細(xì)胞,使腫瘤細(xì)胞具有癌細(xì)胞的特性,還具有增強(qiáng)細(xì)胞生存、腫瘤生長(zhǎng)和血管形成作用[23]。一項(xiàng)關(guān)于胃癌相關(guān)微小RNA表達(dá)的表觀遺傳學(xué)調(diào)控機(jī)制的研究,證實(shí)了基因啟動(dòng)子區(qū)高甲基化是導(dǎo)致胃癌細(xì)胞中miR-195和miR-378低表達(dá)的主要原因。PGBD5是piggyBac 轉(zhuǎn)座子蛋白家族基因,PGBD5是一種貫穿生物膜兩端的蛋白,作為通道允許或拒絕特定物質(zhì)跨過生物膜運(yùn)輸,進(jìn)入細(xì)胞。PGBD5不同于其他人類piggyBac 轉(zhuǎn)座子獲得的基因,該基因有9個(gè)內(nèi)含子,均勻分散在基因上[24]。TEKT5基因參與纖毛和鞭毛的形成,可能會(huì)影響細(xì)胞運(yùn)動(dòng)功能。MIR378C基因甲基化改變,可能促進(jìn)腫瘤細(xì)胞的生長(zhǎng)和血管的形成,而PGBD5基因甲基化改變可能會(huì)改變跨膜蛋白的轉(zhuǎn)運(yùn)功能。而這些基因甲基化改變與本研究的干預(yù)因素和臨床結(jié)局的關(guān)系還無法闡明。本研究通過“溫和的干預(yù)”可以導(dǎo)致某些和重要生物學(xué)功能相關(guān)的基因甲基化的改變,這為深入研究提供了一定的基礎(chǔ),但為了闡明甲基化的改變與臨床結(jié)局之間的關(guān)系,也還需更大樣本量進(jìn)一步證實(shí)。
本研究未發(fā)現(xiàn)干預(yù)組與對(duì)照組的新生兒出生體重有明顯差異,可能與當(dāng)前納入的樣本量較小有關(guān)。而新生兒出生體重的基線資料在兩組中差異無統(tǒng)計(jì)學(xué)意義,干預(yù)組母親的孕前BMI比對(duì)照組略高。此外,雖然對(duì)照組孕婦未接受低GI膳食指導(dǎo),但隨著大眾傳媒的發(fā)展,孕婦可通過網(wǎng)絡(luò)或電視,了解有關(guān)飲食知識(shí),可導(dǎo)致兩組間孕婦的膳食GI差異縮小。隨著研究的進(jìn)行,樣本量進(jìn)一步擴(kuò)大,待完成隨機(jī)化設(shè)計(jì)的所有樣本后, 這些基線因素的差異會(huì)達(dá)到平衡。
[1] Wu YF(武陽豐), Ma GS, Hu YH, et al. The current prevalence status of body overweight and obesity in China: data from the China National Nutrition and Health Survey. Chin J Prev Med(中華預(yù)防醫(yī)學(xué)雜志), 2005,39(5):316-320
[2] Ji CY. Report on childhood obesity in China (4) prevalence and trends of overweight and obesity in Chinese urban school-age children and adolescents, 1985-2000. Biomed Environ Sci, 2007,20(1):1-10
[3] Godfrey KM, Sheppard A, Gluckman PD, et al. Epigenetic gene promoter methylation at birth is associated with child's later adiposity. Diabetes, 2011,60(5):1528-1534
[4] Suter M, Ma J, Harris A, et al. Maternal tobacco use modestly alters correlated epigenome-wide placental DNA methylation and gene expression. Epigenetics, 2011,6(11):1284-1294
[5] Louie JC, Markovic TP, Perera N, et al. A randomized controlled trial investigating the effects of a low-glycemic index diet on pregnancy outcomes in gestational diabetes mellitus. Diabetes Care, 2011,34(11):2341-2346
[6] Du P, Zhang X, Huang CC, et al. Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis. BMC Bioinformatics, 2010,11:587
[7] Benjamini Y, Hochberg Y. Controlling the false discovery rate:A practical and powerful approach to mutiple testing. Journal of Royal Statistical Society :Series B, 1995,57(1):103-289
[8] Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet, 2000,25(1):25-29
[9] Nafee TM, Farrell WE, Carroll WD, et al. Epigenetic control of fetal gene expression. BJOG, 2008,115(2):158-168
[10] Waterland RA, Michels KB. Epigenetic epidemiology of the developmental origins hypothesis. Annu Rev Nutr, 2007,27:363-388
[11] Symonds ME, Stephenson T, Gardner DS, et al. Long-term effects of nutritional programming of the embryo and fetus: mechanisms and critical windows. Reprod Fertil Dev, 2007,19(1):53-63
[12] Dabelea D, Hanson RL, Lindsay RS, et al. Intrauterine exposure to diabetes conveys risks for type 2 diabetes and obesity: a study of discordant sibships. Diabetes, 2000,49(12):2208-2211
[13] Fetita LS, Sobngwi E, Serradas P, et al. Consequences of fetal exposure to maternal diabetes in offspring. J Clin Endocrinol Metab, 2006,91(10):3718-3724
[14] Oken E, Taveras EM, Kleinman KP, et al. Gestational weight gain and child adiposity at age 3 years. Am J Obstet Gynecol, 2007,196(4):321-322
[15] Li C, Goran MI, Kaur H, et al. Developmental trajectories of overweight during childhood: role of early life factors. Obesity (Silver Spring), 2007,15(3):760-771
[16] Oken E, Rifas-Shiman SL, Field AE, et al. Maternal gestational weight gain and offspring weight in adolescence. Obstet Gynecol, 2008,112(5):999-1006
[17] Crowther CA, Hiller JE, Moss JR, et al. Effect of treatment of geatational diabetes mellitus on pregnancy outcomes . N Eng J Med ,2005,352(24):2477-2486
[18] Zhang LX(張連香). Pregnancy intervention nutrition reduce pregnancy analyze the effect of high blood pressure disease morbidity. Medical Innovation of China(中國醫(yī)學(xué)創(chuàng)新), 2012, 9(16):20-21
[19] Fajcsak Z, Gabor A, Kovacs V, et al. The effects of 6-week low glycemic load diet based on low glycemic index foods in overweight/obese children--pilot study. J Am Coll Nutr, 2008,27(1):12-21
[20] Clapp JR, Capeless E. Cardiovascular function before, during, and after the first and subsequent pregnancies. Am J Cardiol, 1997,80(11):1469-1473
[21] Smith AK, Conneely KN, Newport DJ, et al. Prenatal antiepileptic exposure associates with neonatal DNA methylation differences. Epigenetics, 2012,7(5):458-463
[22] Hanafusa T, Mohamed AE, Domae S, et al. Serological identification of Tektin5 as a cancer/testis antigen and its immunogenicity. BMC Cancer, 2012,12:520
[23] Lee DY, Deng Z, Wang CH, et al. MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proc Natl Acad Sci USA, 2007,104(51):20350-20355
[24] Sarkar A, Sim C, Hong YS, et al. Molecular evolutionary analysis of the widespread piggyBac transposon family and related "domesticated" sequences. Mol Genet Genomics, 2003,270(2):173-180
(本文編輯:張崇凡)
Exploratory study on the diet intervention during pregnancy to overweight pregnant women--effect of low glycemic load diet on DNA methylation of placenta tissue and cord blood of neonates
CHENG Yi1, WANG Li-ping2,YANG Wen-hong3,WANG Li-ling2,YU Qian3,ZHAO Qian4,ZHANG Yi1,YAN Wei-li4
( 1 Department of Epidemiology and Statistics, Xinjiang Medical University of Public Health, Urumqi 830001;2 The International Peace Maternity & Child Health Hospital of Shanghai Jiaotong University, Shanghai 200030;3 Kunshan Maternal and Child Health Care Hospital, Jiangsu Province, Kunshan 215300;4 Department of Clinical Epidemiology, Children's Hospital of Fudan University, Shanghai 201102, China)
YAN Wei-li,E-mail:yanwl@fudan.edu.cn
ObjectiveTo evaluate whether the low glycemic load diet intervention during pregnancy to overweight pregnant women have any impact on DNA methylation in placenta tissue and cord blood of their neonates.MethodsRandomized, single blinded, controlled intervention trial was selected. Overweight pregnant women (BMI≥24 kg·m-2) were recruited at first prenatal visit within 12 gestational weeks. Subjects were randomized by simple randomization and allocated into two groups, intervention group and control group. The intervention group was provided 3 times diet consultation about low glycemic load diet combined with the national diet and physical activity recommendations for pregnant women. The control group was given only national diet and physical acitivity recommendations. This paper included the first recruited 50 overweight pregnant women. Placenta tissue and cord blood sample were collected at delivery and properly treated according to standard protocol. The methylation of the placenta tissue DNA and umbilical cord blood DNA was detected by two-step genome wide methylation-based association analysis strategy. Illumina 450K whole genome Beadchip was applied for the first stage differential methylation analysis, and Illumina custom designed Goldengate methylation chip was used for the second stage methylation association analysis.ResultsBirth weight of intervention group was heavier than control group, (3.7±0.5)vs(3.5±0.4) kg, but the difference was not significant(P=0.248). The meathylation of 2 of 19 CpG sites was significantly different in umbilical cord blood between two groups, locating inTEKT5 andMIR378 gene, respectively. However, there was 1 of 19 CpG sites significantly different in placenta tissue which located inPGBD5.ConclusionThese novel data provided evidence that neonatal DNA methylation varied with low glycemic index diet intervention during pregnancy to overweight pregnant women. The long-term stablity and potential contribution of these changes to clinical postnatal outcomes need further investigation.
Diet intervention; Glycemic index; Overweight pregnant women; Methylation
國家自然科學(xué)基金:81273168
1 新疆醫(yī)科大學(xué)公共衛(wèi)生學(xué)院流行病學(xué)與衛(wèi)生統(tǒng)計(jì)學(xué)教研室 新疆,830001;2 上海交通大學(xué)醫(yī)學(xué)院附屬國際和平婦幼保健院 上海,200030;3 江蘇省昆山市婦幼保健所 昆山,215300;4 復(fù)旦大學(xué)附屬兒科醫(yī)院臨床流行病學(xué)研究室 上海,201102
嚴(yán)衛(wèi)麗,E-mail: yanwl@fudan.edu.cn
10.3969/j.issn.1673-5501.2014.01.003
2014-01-03
2014-01-30)