胡佳佳 李淑德 高軍
胰腺導(dǎo)管腺癌(簡稱胰腺癌)是消化系統(tǒng)常見的惡性腫瘤,占胰腺惡性腫瘤的90%以上,近年來發(fā)病率呈逐年上升趨勢,居歐美國家癌癥致死病因的第4位。近年來研究發(fā)現(xiàn),Hedgehog信號通路(HH信號通路)在胰腺癌中有不同程度的異常活化,可能是胰腺癌的核心致病機(jī)制之一[1-2]。同時(shí),該通路的異?;罨瘜σ认侔┑膼盒陨飳W(xué)特性的維持極為重要[3-6],為研究胰腺癌的發(fā)生機(jī)制和治療方案提供了全新的方向。目前已經(jīng)發(fā)現(xiàn)或合成的多種化合物,可以在不同的環(huán)節(jié)阻斷HH信號通路。本文就HH信號通路的阻斷劑及其在胰腺癌治療中的應(yīng)用做一綜述。
Smo抑制劑是目前HH信號通路阻斷劑研究的熱點(diǎn)?,F(xiàn)分別就其在胰腺癌細(xì)胞株、胰腺癌干細(xì)胞、胰腺癌原位異種移植小鼠及藥物臨床試驗(yàn)方面的研究進(jìn)行概括。
1.胰腺癌細(xì)胞株:作為Smo特異性抑制劑,環(huán)巴明是第一個(gè)被發(fā)現(xiàn),也是目前臨床最常用的HH信號通路拮抗劑。環(huán)巴明是一種從百合類植物中提取的甾體生物堿,通過與Smo的7次跨膜螺旋結(jié)合,靶向抑制Smo的活性,從而阻斷HH信號通路的轉(zhuǎn)導(dǎo)[7]。Thayer等[8]用環(huán)巴明與5株人胰腺癌細(xì)胞株進(jìn)行共培養(yǎng),結(jié)果2株Smo高表達(dá)細(xì)胞株的細(xì)胞密度和形態(tài)發(fā)生顯著變化,與對照組相比凋亡增加2.5~3.5倍,增殖率下降75%~80%。研究還顯示,HH信號通路非依賴的胰腺癌細(xì)胞株P(guān)ANC1、BxPC-3,在給予環(huán)巴明干預(yù)后,并不能顯著抑制細(xì)胞增殖;而HH信號通路依賴的胰腺癌細(xì)胞株CFPAC-1,在對吉西他濱不敏感的情況下,環(huán)巴明仍然可以顯著抑制細(xì)胞增殖[8-9]。因此,環(huán)巴明可以引起高表達(dá)HH信號通路的胰腺癌細(xì)胞發(fā)生凋亡,然而對于不表達(dá)HH信號通路的胰腺癌細(xì)胞則無明顯作用,進(jìn)一步證實(shí)環(huán)巴明對HH信號通路的特異性抑制作用,同時(shí)提示對環(huán)巴明不敏感的胰腺癌細(xì)胞可能是通過Smo下游通路發(fā)生激活性突變而維持其增殖的。Hu等[10]研究表明,環(huán)巴明能使胰腺癌細(xì)胞株中表皮生長因子受體(EGFR)的表達(dá)減少,單用環(huán)巴明,或聯(lián)合應(yīng)用易瑞沙可抑制胰腺癌細(xì)胞系PANC1、SUIT 2和ASPC-1的細(xì)胞生長,誘導(dǎo)細(xì)胞凋亡,使細(xì)胞周期阻滯于G0/G1期。兩者在抗胰腺癌細(xì)胞增殖中起協(xié)同作用。環(huán)巴明還能增強(qiáng)紫杉醇和放療對胰腺癌細(xì)胞的殺傷作用[11]。
KAAD-cyclopamine是環(huán)巴明的衍生物,同樣通過抑制Smo發(fā)揮抗HH信號通路的作用。胰腺癌MiaPaCa-2細(xì)胞經(jīng)KAAD-Cyclopamine處理后,細(xì)胞中bax蛋白表達(dá)顯著上調(diào),Glil蛋白及bcl-2蛋白表達(dá)顯著下調(diào),細(xì)胞生長受限,凋亡增加,證實(shí)胰腺癌細(xì)胞內(nèi)HH信號活性明顯受抑制。目前動物實(shí)驗(yàn)中尚未發(fā)現(xiàn)其存在明顯不良反應(yīng)。AZD8542是一種新型的Smo拮抗劑,Hwang等[12]研究表明,伴隨著HH信號通路下游核轉(zhuǎn)錄因子Gli1 mRNA表達(dá)上調(diào),HH信號通路的激活,可促進(jìn)胰腺星形細(xì)胞增殖。與胰腺癌細(xì)胞相反,胰腺星形細(xì)胞中Smo受體高表達(dá),而HH配體低表達(dá),AZD8542可抑制胰腺星形細(xì)胞的增殖,進(jìn)而抑制胰腺腫瘤的生長及侵襲轉(zhuǎn)移。
2.胰腺癌干細(xì)胞:腫瘤干細(xì)胞與腫瘤侵襲、轉(zhuǎn)移、復(fù)發(fā)、放化療抗性等密切相關(guān)。胰腺癌干細(xì)胞僅占腫瘤細(xì)胞的0.2%~0.8%,但致瘤性最強(qiáng),最早由Li等[13]分離鑒定(CD44+CD24+ESA+)。研究發(fā)現(xiàn)只需接種100個(gè)腫瘤干細(xì)胞即可在裸鼠形成移植瘤,與原發(fā)瘤在病理學(xué)上十分類似,并且在連續(xù)傳代中比例保持不變。胰腺癌干細(xì)胞中Shh表達(dá)較正常胰腺上皮上調(diào)46.3倍,而非干細(xì)胞僅上調(diào)4倍。HH信號通路在胰腺癌干細(xì)胞的維持和自我更新中起至關(guān)重要的作用。環(huán)巴明可顯著減少胰腺癌干細(xì)胞[9,13-15]。Jimeno等[14]的研究還發(fā)現(xiàn)單用吉西他濱治療敏感性胰腺癌,雖然出現(xiàn)腫瘤退縮,但同時(shí)會引起腫瘤干細(xì)胞聚集,停藥后腫瘤又迅速生長。而聯(lián)合環(huán)巴明治療后,可誘導(dǎo)持續(xù)性的腫瘤退縮,清除腫瘤干細(xì)胞。Mueller等[15]的研究亦證實(shí)環(huán)巴明聯(lián)合雷帕霉素和吉西他濱可以使胰腺癌干細(xì)胞減少至檢測不到的水平,腫瘤轉(zhuǎn)移能力完全消失,存活細(xì)胞株亦完全失去致瘤性。
3.胰腺癌原位異種移植小鼠:Thayer等[8]用對環(huán)巴明敏感的胰腺癌細(xì)胞株接種裸鼠,并用環(huán)巴明進(jìn)行瘤內(nèi)注射治療,1周后治療組50%~60%腫瘤的生長受到抑制,腫瘤體積也明顯縮小。Feldmann等[9]研究發(fā)現(xiàn),環(huán)巴明可通過下調(diào)Snail、Angl和IGF1的表達(dá),上調(diào)E-eadherin的表達(dá),抑制腫瘤新生血管形成,抑制上皮間質(zhì)轉(zhuǎn)化,進(jìn)而抑制異種移植胰腺癌的生長、侵襲與轉(zhuǎn)移。在胰腺癌原位異種移植小鼠中,吉西他濱治療組中3只發(fā)生脾轉(zhuǎn)移、1只發(fā)生淋巴結(jié)轉(zhuǎn)移;環(huán)巴明治療組中只有1只出現(xiàn)肺的微轉(zhuǎn)移灶;環(huán)巴明和吉西他濱聯(lián)合用藥組的所有小鼠均未出現(xiàn)轉(zhuǎn)移灶,并且原發(fā)性腫瘤顯著縮??;而單純對照組的7只小鼠均發(fā)生多器官轉(zhuǎn)移[9]。他們的研究還發(fā)現(xiàn),胰腺癌異種移植小鼠經(jīng)環(huán)巴明治療后,中位生存期由原來的61 d延長至67 d,而且腫瘤侵襲轉(zhuǎn)移能力明顯受抑制[16]。IPI-926是人工合成的Smo拮抗劑,亦通過抑制Smo發(fā)揮作用。研究證實(shí)胰腺癌移植小鼠經(jīng)IPI-926處理后,腫瘤細(xì)胞明顯密集,間質(zhì)結(jié)締組織顯著減少,Ⅰ型膠原含量下降,腫瘤平均血管密度(MVD)顯著增高,幾乎達(dá)正常胰腺組織水平,腫瘤組織中吉西他濱代謝產(chǎn)物濃度增加了60%[17]。
4.藥物臨床試驗(yàn):GDC-0449是第一個(gè)進(jìn)入臨床Ⅰ期試驗(yàn)的Smo拮抗劑,其治療因進(jìn)展或轉(zhuǎn)移而不適合手術(shù)或放療的基底細(xì)胞癌33例,2例得到完全緩解,16例部分緩解,有效率達(dá)55%,并未見劑量限制性毒性發(fā)生[18]。Lorusso等[19]的Ⅰ期臨床試驗(yàn)證實(shí),68例腫瘤患者中,33例基底細(xì)胞癌對GDC-0449有反應(yīng),2例患者完全緩解,而且不良反應(yīng)輕微,如厭食、消瘦、脫發(fā)、低鈉血癥等。1例手術(shù)、放療、化療后發(fā)生全身廣泛轉(zhuǎn)移的髓母細(xì)胞瘤患者,給予誘導(dǎo)化療、自體干細(xì)胞移植、替莫唑胺和bevaeizumab等治療后依然不斷進(jìn)展,采用GDC-0449治療2個(gè)月后,PET檢查示病灶幾乎完全消失,遺憾的是,1個(gè)月后復(fù)查,部分原有病灶復(fù)發(fā)并出現(xiàn)新病灶,提示腫瘤對HH抑制劑出現(xiàn)耐藥。這是由于Smo基因發(fā)生突變,保守的天冬氨酸殘基被替代,使GDC-0449無法和Smo結(jié)合抑制HH信號通路[20-21]。到目前為止已經(jīng)開展了關(guān)于GDC-0449對胰腺癌治療療效評估的Ⅰ期、Ⅱ期臨床試驗(yàn),但結(jié)果尚未見報(bào)道[22-23]。IPI-926亦在進(jìn)展期實(shí)體腫瘤的Ⅰ期臨床試驗(yàn)中取得良好療效[24]。
HH蛋白拮抗劑通過與HH蛋白結(jié)合阻斷信號通路的轉(zhuǎn)導(dǎo),其主要包括Robotnikinin及SHH蛋白抗體5E1。5E1通過與SHH蛋白結(jié)合,阻斷SHH誘導(dǎo)的HH信號通路的活化,進(jìn)而抑制胰腺癌細(xì)胞的生長。Bailey等[25]報(bào)道,用5E1處理小鼠的人胰腺癌原位移植瘤后,腫瘤體積明顯縮小,轉(zhuǎn)移率明顯下降。
Lauth等[26]報(bào)道,在HEK293細(xì)胞中通過瞬時(shí)轉(zhuǎn)染編碼Glil基因和Gli調(diào)控的熒光素酶報(bào)告基因的質(zhì)粒cDNA,發(fā)現(xiàn)兩個(gè)小分子化合物128(GANT61)和129(GANT58)可以抑制NIH 3T3細(xì)胞通過Smo激動劑激活的內(nèi)源性HH信號通路。此外,這兩個(gè)化合物可以降低SuFu-/-細(xì)胞中Glil和Hip1的表達(dá),提示它們作用于SuFu的下游通路。Glil+細(xì)胞系(如胰腺腺癌PANC1)比低Glil細(xì)胞系(如肝細(xì)胞癌HepG2和白血病Jurkat)對GANT61/GANT58要敏感得多,前兩者抑制率為40%~50%,后兩者僅0~10%。用5 μmmol/L GANT61或GANT58處理PANC1細(xì)胞48 h可導(dǎo)致Glil和Ptch表達(dá)下降,Gli的抑制尤其明顯。而同樣濃度的環(huán)巴明只是輕微抑制Gli1/Ptch的表達(dá),提示該細(xì)胞系HH信號通路活化發(fā)生在Smo下游。Fu等[27]研究表明,GANT61可以抑制胰腺癌細(xì)胞增殖,抑制Gli-DNA結(jié)合和轉(zhuǎn)錄活性,并通過激活caspase-3,裂解多聚ADP核糖聚合酶(PARP),誘導(dǎo)細(xì)胞凋亡。此外,GANT61通過上調(diào)E-cadherin,下調(diào)N-鈣黏蛋白、轉(zhuǎn)錄因子(包括Snail、Slug、Zeb1),從而抑制上皮間質(zhì)轉(zhuǎn)化。
SFN是十字花科植物的活性成分。Rodova等[28]研究發(fā)現(xiàn),SFN通過抑制Gli1、Gli2、Smo的表達(dá),抑制HH信號通路的活性。SFN可以抑制SHH信號通路成分Nanog和Oct-4,抑制胰腺癌干細(xì)胞的自我更新。同時(shí)通過下調(diào)Bcl-2、Cyclin D2的表達(dá)及激活caspase-3和caspase-7,誘導(dǎo)胰腺癌細(xì)胞的凋亡。
除上述拮抗劑外,HH信號通路其他成員的干預(yù)對胰腺癌也有抑制作用,如抗Ptch l抗體能抑制HH信號通路和胰腺癌細(xì)胞增殖[29]。CUR61414作為Ptch 1抗體,經(jīng)Williams等[30]研究證實(shí),在皮膚基底細(xì)胞癌中,可抑制基底細(xì)胞腫瘤的生長,而對正常細(xì)胞無影響。但在胰腺癌中的研究尚未見此類報(bào)道。構(gòu)建表達(dá)反義Smo的腺病毒載體也能抑制胰腺癌細(xì)胞生長[31]。Kim等[32]發(fā)現(xiàn)特異性激活肝X受體(1iver X receptors,LXR)可以抑制多能骨髓基質(zhì)細(xì)胞和顱蓋骨細(xì)胞對Shh的反應(yīng)性,降低Gli1的轉(zhuǎn)錄活性,從而抑制HH靶基因(Gill、Ptch1)表達(dá)。采用siRNA技術(shù)沉默LXR基因,可以減弱對HH靶基因表達(dá)的抑制作用,在不存在LXR的小鼠胚胎成纖維細(xì)胞中,LXR配體并不能抑制Hh信號通路,而把LXR基因?qū)脒@些細(xì)胞中即可重建這種抑制關(guān)系。由此提示,LXR或許可以成為HH信號通路的一個(gè)新的調(diào)控靶點(diǎn)。
HH信號通路與胰腺癌的發(fā)生、發(fā)展密切相關(guān),以HH信號通路為靶標(biāo)的治療成為胰腺癌治療的新方法,然而盡管部分HH信號通路拮抗劑在胰腺癌的實(shí)驗(yàn)治療中顯示出良好的應(yīng)用前景,但亦給我們帶來許多新的思考。Morton等[33]報(bào)道由K-ras和HH聯(lián)合誘導(dǎo)的腫瘤細(xì)胞株,在應(yīng)用HH信號通路拮抗劑后,盡管上述的信號通路被抑制,而腫瘤細(xì)胞仍可繼續(xù)增殖。又如應(yīng)用HH信號通路拮抗劑后出現(xiàn)的快速耐藥現(xiàn)象,HH信號通路抑制劑的毒性問題等。因此深入探討胰腺癌發(fā)生的分子機(jī)制,以及HH信號通路與其他信號通路之間的相互作用,相信以HH信號通路為靶標(biāo)的治療,仍然具有較為廣闊的應(yīng)用前景。
[1] Hidalgo M. Pancreatic cancer[J]. N Engl J Med,2010, 362(17):1605-1617.
[2] Hidalgo M, Maitra A. The hedgehog pathway and pancreatic cancer[J]. N Engl J Med,2009,361(21):2094-2096.
[3] Lau J, Kanahira H, Hebrok M. Hedgehog signaling in pancreas development and disease[J]. Cell Mol,2006,63(6):642-652.
[4] Kayed H, Kleeff I, Osman T, et al. Hedgehog signaling in the normal and diseased pancreas[J]. Pancreas, 2006,32(2):119-129.
[5] Hezel AF,Kimmelman AC,Stanger BZ,et al. Genetics and biology of pancreatic ductal adenocarcinoma[J]. Genes Dev, 2006,20(10):1218-1249.
[6] Furukawa T, Sunamura M, Horii A. Molecula rmechanisms of pancreatic carcinogenesis[J]. Cancer Science,2006,97(1):1-7.
[7] Chen J, KTaipale J, Cooper MK, et al. Inhibition of hedgehog signaling by direct binding of cyclopamine to Smoothened[J]. Genes Dev, 2002, 16(21):2743-2748.
[8] Thayer SP, di Magliano MP, Heiser Pw, et al. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis[J]. Nature, 2003, 425(6960):851-856.
[9] Feldmann G, Dhara S, Fendrich V, et al. Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: a new paradigm for combination therapy in solid cancers[J]. Cancer Res, 2007, 67(5):2187-2196.
[10] Hu WG, Liu T, Xiong JX, et al. Blockade of sonic hedgehog signal pathway enhances antiproliferative effect of EGFR inhibitor in pancreatic cancer cells[J]. Acta Pharmacol Sin, 2007, 28(8):1224-1230.
[11] Shafaee Z, Schmidt H, Du W, et al. Cyclopamine increases the cytotoxic efects of paelitaxel and radiation but not cisplatin and gemcitabin in Hedgehog expressing pancreatic cancer cells[J]. Cancer Chemother Pharmacol, 2006, 58(6):765-770.
[12] Hwang RF, Moore TT, Hattersley MM, et al. Inhibition of the hedgehog pathway targets the tumor-associated stroma in pancreatic cancer[J]. Mol Cancer Res, 2012, 10(9):1147-1157.
[13] Li C, Heidt DG,Dalerba P,et al. Identification of panereatic cancer stem cells[J]. Cancer Res, 2007, 67(3):1030-1037.
[14] Jimeno A, Feldmann G, Suárez-Gauthier A, et al. A direct pancreatic cancer xenograft model as a platform for cancer stem cell therapeutic development[J]. Mol Cancer Ther, 2009, 8(2):310-314.
[15] Mueller MT, Hermann PC, Witthauer J, et al. Combined targeted treatment to eliminate tumorigenic cancer stem cells in human pancreatic cancer[J]. Gastroenterology, 2009, 137(3):1102-1113.
[16] Feldmann G, Dhara S, Fendrich V. Hedgehog inhibition prolongs survival in a genetically engineered mouse model of pancreatic cancer[J]. Gut, 2008, 57(10):1420-1430.
[17] Olive KP, Jacobetz MA, Davidson CJ, et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer[J]. Science, 2009, 324(5933):1457-1461.
[18] Von Hof DD, Lorusso PM, Rudin CM, et al. Inhibition of the hedgehog pathway in advanced basa1 cell carcinoma[J]. N Engl J Med,2009,361(12):1164-1172.
[19] Lorusso PM, Rudin CM, Reddy JC, et al. Phase I trial of hedgehog pathway inhibitor vismodegib(GDC-0449) in patients with refractory,locally advanced or metastatic solid tumors[J]. Clin Cancer Res, 2011, 17(8):2502-2511.
[20] Metcalfe C, de Sauvage FJ. Hedgehog fights back: mechanisms of acquired resistance against Smoothened antagonists[J]. Cancer Res, 2011, 71(5):5057-5061.
[21] Yauch RL, Dijkgraaf GJ, Alicke B, et al. Smoothened mutation confers resistance to a Hedgehog pathway inhibitor in medulloblastoma[J]. Science, 2009, 326(5952):572-574.
[22] Merchant AA, Matsui W. Targeting Hedgehog-a cancer stem cell pathway[J]. Clin Cancer Res, 2010, 16(12):3130-3140.
[23] Kelleher FC. Hedgehog signaling and therapeutics in pancreatic cancer[J]. Carcinogenesis, 2011, 32(4):445-451.
[24] Rudin C, Jimeno A, Miller W Jr, et al. A phase 1 study of IPI-926, a novel hedgehog pathway inhibitor in patients with advanced or metastatic solid tumors[J]. Surgery, 2011, 32:94.
[25] Bailey JM, Mohr AM, Hollingsworth MA. Sonic hedgehog paracrine signaling regulates metastasis and lymphangiogenesis in pancreatic cancer[J]. Oncogene,2009,28(40):3513-3525.
[26] Lauth M, Bergstrom A, Shimokawa T, et al. Inhibition of GLI-mediated transcription and tumor cell growth by small-molecule antagonists[J]. Pro Natl Acad Sci U S A,2007,104(20):8455-8460.
[27] Fu J, Rodova M, Roy SK, et al. GANT-61 inhibits pancreatic cancer stem cell growth in vitro and in NOD/SCID/IL2R gamma null mice xenograft[J]. Cancer Lett,2013,330(1):22-32.
[28] Rodova M, Fu J, Watkins DN, et al. Sonic hedgehog signaling inhibition provides opportunities for targeted therapy by Sulforaphane in regulating pancreatic cancer stem cell self-renewal[J]. PLoS One,2012, 7(9): e46083.
[29] Nakamum M,Kubo M,Yanai K,et al.Anti-patched-1 antibodies suppress hedgehog signaling pathway and pancreatic cancer proliferation[J].Anticancer Res,2007,27(6A):3743-3747.
[30] Williams JA, Guicherit OM, Zaharian BI, et al. Identification of a small molecule inhibitor of the hedgehog signaling pathway:effects on based cell carcinoma-like lesions[J]. Proc Natl Acad Sci U S A, 2003, 100(8):4616-4621.
[31] Gao J, Li Z, Cben Z, et al. Antisense Smo under the coatrol of the PTCH1 promoter delivered by an adenoviral vector inhibits the growth of human pancreatic cancer[J]. Gene Ther,2006,13(22):1587-1594.
[32] Kim WK, Meliton V, Park KW, et al. Negative regulation of hedgehog signaling by liver X receptors[J]. Mol Endocrinol, 2009, 23(10):1532-1543.
[33] Morton JP, Mongeau ME, Klimstra DS, et al. Sonic hedgehog acts at multiple stages during pancreatic tumorigenesis[J]. Proc Natl Acad Sci U S A, 2007, 104(12):5103-5108.