• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      ABA 相關(guān)基因抗旱基因工程研究進(jìn)展

      2014-01-14 04:39:52田孝威彭守華尉繼強(qiáng)姜勇王志強(qiáng)王化琪
      生物技術(shù)通報(bào) 2014年5期
      關(guān)鍵詞:抗旱性脯氨酸擬南芥

      田孝威 彭守華 尉繼強(qiáng) 姜勇 王志強(qiáng) 王化琪

      (1.威海市農(nóng)業(yè)科學(xué)院,威海 264200;2.煙臺(tái)市福山區(qū)植保站,煙臺(tái) 265500;3.中國農(nóng)業(yè)大學(xué),北京 100193)

      干旱嚴(yán)重影響著作物的生長發(fā)育,造成作物減產(chǎn),威脅著人類的生存發(fā)展。培育抗旱高產(chǎn)作物是全世界生物學(xué)家面臨的亟待解決的課題。隨著分子生物學(xué)等相關(guān)學(xué)科的發(fā)展,植物抗旱機(jī)理研究已經(jīng)取得長足的進(jìn)展,結(jié)合植物基因工程可以培育出抗旱轉(zhuǎn)基因作物。脫落酸(Abscisic acid,ABA)合成和信號(hào)通路的基因在植物抗旱過程中發(fā)揮了巨大作用,目前已經(jīng)有許多基因工程方面的相關(guān)研究(表1)。本文綜述了近幾年ABA 相關(guān)基因抗旱基因工程研究的一些進(jìn)展。

      1 ABA 與植物的抗旱性

      植物內(nèi)源激素之一的脫落酸,在胚胎發(fā)育、種子休眠、葉片衰老等過程中起調(diào)節(jié)作用,同時(shí),在植物干旱等逆境脅迫過程中起著調(diào)節(jié)因子的作用。在逆境條件下,植物體內(nèi)合成大量的ABA,可以促進(jìn)氣孔關(guān)閉,抑制氣孔開放;降低葉片伸展率,調(diào)整保衛(wèi)細(xì)胞離子通道;促進(jìn)植物根吸收水分,增加共質(zhì)體途徑水流,誘導(dǎo)一系列基因的表達(dá),增強(qiáng)植物的抗逆性[1]。逆境期間,植物體內(nèi)的ABA 來源于束縛ABA 的釋放和新的大量合成的ABA。干旱初期,束縛型ABA 為ABA 的主要來源,干旱期間,ABA主要來自新合成的ABA。ABA 主要在根部合成,干旱時(shí),植物的根系感知土壤水分,誘導(dǎo)ABA 合成酶系統(tǒng),合成大量ABA,然后運(yùn)輸?shù)降厣喜浚偈贡Pl(wèi)細(xì)胞關(guān)閉,降低蒸騰作用,減少水分丟失。干旱脅迫時(shí),外源噴施ABA 可以增強(qiáng)抗氧化酶活性,降低活性氧含量,防止葉綠素降解,增大葉片相對(duì)含水量,減小質(zhì)膜透性及丙二醛含量,增強(qiáng)PSII 的修復(fù)功能[2-5]。

      2 ABA 合成相關(guān)基因基因工程

      高等植物體內(nèi)的ABA 的生物合成主要有兩種途徑,包括直接途徑和間接途徑。直接途徑,即3 個(gè)異戊烯單位聚合成C15 前體法呢基焦磷酸(Farnesyl pyrophospate,F(xiàn)PP), 由FPP 經(jīng) 環(huán) 化和氧化直接形成15 碳的ABA。間接途徑,即先由甲羥戊酸(MVA)聚合成C40 前體——類胡蘿卜素,再由類胡蘿卜素裂解成C15 的化合物,如黃質(zhì)醛(Xanthoxin,XAN),最后由黃質(zhì)醛轉(zhuǎn)變成ABA。在高等植物體內(nèi)主要通過間接途徑合成ABA。反應(yīng)過程中的玉米黃質(zhì)環(huán)氧化酶(Zeaxanthin epoxidase,ZEP)[6]、9-順式環(huán)氧類胡蘿卜素雙加氧酶(9-cisepoxycarotenoid dioxygenase,NCED)[7]、醛 氧 化 酶(Abscisic aldehyde oxidase,AAO)[8]及鉬輔因子硫化 酶(Molybdenum cofactor sulfurase,MCSU)[9,10]可能是關(guān)鍵調(diào)控酶。

      Park 等[11]在擬南芥中過表達(dá)AtZEP 基因,在鹽脅迫和旱脅迫條件下轉(zhuǎn)基因植株生長更旺盛,在鹽脅迫條件下,轉(zhuǎn)基因植株的RD29A 和Rab18 基因的表達(dá)量更高。Iuchi 等[12]在擬南芥中過表達(dá)AtNCED3 基因,增加了內(nèi)源ABA 含量,降低蒸騰速率,增加了轉(zhuǎn)基因植株的抗旱性。Qin 和Zeevaart[13]將菜豆PvNCED 基因轉(zhuǎn)化煙草,增加了煙草植株的抗旱性。徐春英等[14]將35S 啟動(dòng)子、誘導(dǎo)型RD29A 啟動(dòng)子以及氣孔特異表達(dá)KST1 啟動(dòng)子與AtNCED3 基因轉(zhuǎn)化煙草,得到了抗旱性增強(qiáng)的轉(zhuǎn)基因植株,其中35S 啟動(dòng)子連接AtNCED3 基因轉(zhuǎn)化煙草,轉(zhuǎn)基因植株生長矮小,發(fā)育滯后;RD29 轉(zhuǎn)基因植株生長比野生型慢一點(diǎn),而KST1 轉(zhuǎn)基因植株表型最好,在正常條件下生長旺盛。Aswath 等[15]將豇豆VuNCED1 基因轉(zhuǎn)化匍匐剪股穎,鹽和旱脅迫增加了內(nèi)源ABA 的含量,轉(zhuǎn)基因植株在鹽脅迫和旱脅迫處理后具有較高的存活率。Wan 等[16]將花生AhNCED1 基因轉(zhuǎn)化擬南芥增強(qiáng)了轉(zhuǎn)基因植株的ABA含量和耐旱性。賈娟娟等[17]將誘導(dǎo)型啟動(dòng)子rd29A和AtNCED3 基因轉(zhuǎn)化水稻,增強(qiáng)了轉(zhuǎn)基因水稻的抗旱性。Zhang 等[18]將SgNCED1 基因轉(zhuǎn)化煙草,發(fā)現(xiàn)降低了轉(zhuǎn)基因植株的氣孔導(dǎo)度,蒸騰速率,增強(qiáng)了其抗氧化酶活性,增加了其H2O2和NO 濃度,增強(qiáng)了其耐旱性和耐鹽性。Zhang 等[19]將SgNCED1基因轉(zhuǎn)化煙草增加了轉(zhuǎn)基因植株的抗旱性和耐鹽性。Hwang[20]將水稻OsNCED3 基因轉(zhuǎn)化擬南芥,增加ABA 的積累,降低水分丟失,推遲種子萌發(fā),增強(qiáng)了抗旱性。Xiao 等[21]將LOS5 基因與Actin1 啟動(dòng)子和HVA22 脅迫誘導(dǎo)啟動(dòng)子連接轉(zhuǎn)化水稻發(fā)現(xiàn),在大田和PVC 管道旱脅迫條件下,Actin1∶LOS5 和HVA22P:LOS5 轉(zhuǎn)基因植株的相對(duì)產(chǎn)量和穗育性高于對(duì)照。Yue 等[22]將擬南芥LOS5/ABA3 基因轉(zhuǎn)化煙草,在正常條件下,轉(zhuǎn)基因植株離體葉片蒸騰失水率低于對(duì)照,在缺水條件下,與對(duì)照相比轉(zhuǎn)基因植株萎蔫程度更低,保持更高的水含量,具有更好的細(xì)胞膜完整性,積累較多的ABA 和脯氨酸,具有較高的抗氧化物酶(超氧化物歧化酶、過氧化氫酶、過氧化物酶和抗壞血酸過氧化物酶)活性。Yue等[23]在棉花中過表達(dá)擬南芥AtLOS5 基因,該基因編碼的鉬輔因子為醛氧化酶(AAO)所必須,在旱脅迫條件下,增加了轉(zhuǎn)基因植株體內(nèi)的ABA 和脯氨酸含量,增強(qiáng)了旱反應(yīng)基因P5CS 和RD22 的表達(dá),提高了抗氧化脅迫酶的活性和膜的完整性,以及生物產(chǎn)量。Li 等[24]將擬南芥LOS5/ABA3 基因轉(zhuǎn)化大豆發(fā)現(xiàn),在干旱條件下增加了AAO 活性和ABA 的積累,降低氣孔大小和蒸騰速率,減小葉片萎蔫,維持較高的水含量,通過降低電解質(zhì)滲出率和MDA含量減小了細(xì)胞膜的損害,促進(jìn)脯氨酸積累,增加了抗氧化酶活性,增強(qiáng)脅迫相關(guān)基因表達(dá),增加了大田干旱條件下籽粒產(chǎn)量。Lu 等[25]在玉米中過表達(dá)擬南芥LOS5 基因,增加ZmAO 和AO 活性,增加ABA 的積累,減少水分丟失,維持較高的水含量和葉片水勢(shì),在干旱條件下,轉(zhuǎn)基因植株表現(xiàn)出較低的葉片萎蔫度,較低的電解質(zhì)滲出率,較低的MDA和H2O2含量,較高的抗氧化酶活性和脯氨酸含量,同時(shí),也增加了脅迫調(diào)控基因的表達(dá),復(fù)水后增加根的生物產(chǎn)量(表1)。

      3 ABA 信號(hào)通路相關(guān)基因的基因工程

      ABA 通過與受體結(jié)合發(fā)揮作用。在擬南芥中,PYR/PYL/RCARs,蛋白磷酸酶2C(protein phosphatase type-2c,PP2Cs)和SNF1 相關(guān)蛋白激酶2(Suc-rose non-fermenting 1-related protein kinase 2,SnRK2s)3 個(gè)蛋白家族組成ABA 的核心信號(hào)模式[26]。PYR/PYL/RCARs 是ABA 受體,PP2Cs 是信號(hào)通路的負(fù)調(diào)控者,SnRK2s 是下游信號(hào)的正調(diào)控者[27,28]。PP2Cs抑 制SnRK2s 活 性,ABA 與PYR/PYL/RCARs 結(jié)合抑制PP2Cs 的活性,進(jìn)而SnRK2s 的活性增強(qiáng),SnRK2s 活性增強(qiáng)可以磷酸化下游bZIP 轉(zhuǎn)錄因子[29]。

      表1 ABA 相關(guān)基因與抗旱基因工程

      Saavedra 等[30]研究發(fā)現(xiàn)過表達(dá)PYL8/RCAR3 基因?qū)е聰M南芥種子對(duì)ABA 超敏感,增強(qiáng)了種子的休眠,在低濃度的甘露醇、NaCl 或多效唑處理下不能正常萌發(fā),在植物組織中,轉(zhuǎn)基因植株表現(xiàn)耐旱反應(yīng)和早期根生長的抑制,35S∶FsPP2C1 轉(zhuǎn)基因植株中出現(xiàn)相反的表型,說明PYL8/RCAR3 在萌發(fā)和非生物脅迫反應(yīng)中起正調(diào)控作用。Zhang 等[31]將黃花蒿AaPYL9 基因轉(zhuǎn)化黃花蒿增強(qiáng)了其抗旱性和ABA處理后青蒿素的含量。Liu 等[32]將玉米ZmPP2C基因轉(zhuǎn)化擬南芥,降低了植物對(duì)鹽脅迫和旱脅迫的抗性,表現(xiàn)為較低的凈光合速率和脯氨酸含量,較高的MDA 水平和相對(duì)膜透性,脅迫相關(guān)基因轉(zhuǎn)錄水平下降,對(duì)ABA 不敏感。Umezawa 等[33]將一個(gè)SnRK2 基因SRK2C 轉(zhuǎn)化擬南芥發(fā)現(xiàn),誘導(dǎo)了一系列脅迫應(yīng)答基因的表達(dá),增強(qiáng)了轉(zhuǎn)基因植株的耐旱性。Xu 等[34]將小麥中SnRK2 家族的一個(gè)成員W55a 轉(zhuǎn)化擬南芥增強(qiáng)了轉(zhuǎn)基因植株的抗旱性。Mao 等[35]將小麥TaSnRK2.4 基因轉(zhuǎn)化擬南芥,發(fā)現(xiàn)轉(zhuǎn)基因植株在正常條件下幼苗推遲發(fā)育,有較長的初生根,有較高的產(chǎn)量;具有較強(qiáng)的耐旱性、耐鹽性、耐冷性,表現(xiàn)為降低水分丟失,增強(qiáng)相對(duì)水含量和膜的穩(wěn)定性,增強(qiáng)光合勢(shì),顯著增強(qiáng)滲透勢(shì)。Zhang 等[36]將小麥的SnRK2 家族的一個(gè)成員TaSnRK2.8 轉(zhuǎn)化擬南芥,增強(qiáng)了轉(zhuǎn)基因植株的耐旱性、耐鹽性及耐冷性,表現(xiàn)為脅迫下轉(zhuǎn)基因植株具有較長的初生根,較高的相對(duì)含水量,更強(qiáng)的細(xì)胞膜穩(wěn)定性,顯著更低的滲透勢(shì),更多的葉綠素含量,增強(qiáng)的PSII 活性。Ying 等[37]發(fā)現(xiàn)玉米中SnRK2 家族的一個(gè)成員ZmSAPK8 在玉米植株的很多器官中表達(dá)并且在高鹽和干旱處理被上調(diào)表達(dá),轉(zhuǎn)化擬南芥發(fā)現(xiàn)可以顯著增強(qiáng)抗鹽性,在鹽脅迫下,轉(zhuǎn)基因植株具有更高的萌發(fā)率和脯氨酸含量,并且未發(fā)現(xiàn)生長異常的轉(zhuǎn)基因植株。Zou 等[38]將玉米中SnRK2 家族的一個(gè)成員ZmSPK1 轉(zhuǎn)化擬南芥發(fā)現(xiàn),在鹽脅迫條件下,轉(zhuǎn)基因植株生長較好,有較高的幼苗鮮重和干重,脯氨酸含量以及SOD 活性,有較低的MDA 含量和較低的相對(duì)電導(dǎo)率,增強(qiáng)了其耐鹽性。Du 等[39]將小麥SnRK2 基因——TaSRK2C1 轉(zhuǎn)化煙草,發(fā)現(xiàn)上調(diào)了調(diào)控因子RD29a、DREB1A 和DREB2 的表達(dá),增加了自由脯氨酸和可溶性碳水化合物的含量,增強(qiáng)了對(duì)鹽脅迫、脫水脅迫和低溫脅迫的抗性。Tian 等[40]發(fā)現(xiàn)將小麥TaSnRK2 基因轉(zhuǎn)化擬南芥促進(jìn)了轉(zhuǎn)基因植株根系的發(fā)育,增強(qiáng)了對(duì)干旱脅迫、鹽脅迫、冷脅迫的抗性,增加了非生物脅迫相應(yīng)基因的表達(dá),改善了生理指標(biāo),包括降低水分丟失,增加細(xì)胞膜的穩(wěn)定性,提高光合勢(shì),顯著增強(qiáng)滲透勢(shì)和游離脯氨酸含量。

      目前,已經(jīng)發(fā)現(xiàn)了許多ABA 調(diào)節(jié)基因表達(dá)的順式作用元件(ABA-responsive element,ABRE),以及與這些順式作用元件相互作用的轉(zhuǎn)錄因子[41,42]。ABFs(ABRE binding factors)是最近發(fā)現(xiàn)的一種ABRE 結(jié)合bZIP 蛋白[43,44]。過表達(dá)ABF 家族的成員——ABF2[45]、ABF3[46-51]、ABF4[52]、PtrABF[53]、SIAREB1[54]、Wabi5[55]和GmbZIP1[56]增強(qiáng)了擬南芥、萵苣、水稻、番茄、匍匐剪股穎和煙草的抗旱性。

      4 展望

      目前,ABA 相關(guān)抗旱基因工程已取得一定的成績,但同時(shí)存在一些問題。具體的問題和主要對(duì)策有:(1)目前克隆出的ABA 合成和信號(hào)通路的基因有限,今后需要克隆更多的基因用于植物抗旱基因工程;(2)目前植物抗旱基因工程多為單基因轉(zhuǎn)化,而植物的抗旱性是多基因共同作用的數(shù)量性狀,因此多基因轉(zhuǎn)化能更顯著地提高作物的抗旱性;(3)35S 啟動(dòng)子和目的基因轉(zhuǎn)化植物常常產(chǎn)生畸形植株,將脅迫誘導(dǎo)表達(dá)啟動(dòng)子、根特異表達(dá)啟動(dòng)子等連接抗旱基因轉(zhuǎn)化植物可以避免畸形植株的產(chǎn)生,減少能量消耗;(4)目前基因工程抗旱性鑒定多為溫室和實(shí)驗(yàn)室條件下的鑒定,而轉(zhuǎn)基因作物應(yīng)用于生產(chǎn)是在大田自然干旱條件下,因此今后需要進(jìn)行轉(zhuǎn)基因作物大田自然干旱條件下的抗旱性鑒定,同時(shí)植物的抗旱性最終表現(xiàn)在產(chǎn)量上,因此需要對(duì)產(chǎn)量指標(biāo)進(jìn)行鑒定。

      [1] Morillon R, Chrispeels MJ. The role of ABA and the transpiration stream in the regulation of the osmotic water permeability of leaf cells[J]. Proc Natl Acad Sci USA, 2001, 98(24):14138-14143.

      [2] 李長寧, Srivastava MK, 農(nóng)倩, 等. 水分脅迫下外源ABA 提高甘蔗抗旱性的作用機(jī)制[J]. 作物學(xué)報(bào), 2010, 36(5):863-870.

      [3] 木合塔爾·扎熱, 齊曼·尤努斯, 山中典和. 干旱脅迫下外源脫落酸和硅對(duì)沙棗幼苗葉片水勢(shì)及保護(hù)酶活性的影響[J]. 植物研究, 2010, 30(4):468-472.

      [4] 胡秀麗, 楊海榮, 李潮海. ABA 對(duì)玉米響應(yīng)干旱脅迫的調(diào)控機(jī)制[J]. 西北植物學(xué)報(bào), 2009, 29(11):2345-2351.

      [5] 汪月霞, 索標(biāo), 趙騰飛, 等. 外源ABA 對(duì)干旱脅迫下不同品種灌漿期小麥psbA 基因表達(dá)的影響[J]. 作物學(xué)報(bào), 2011, 37(8):1372-1377.

      [6] Marin E, Nussaume L, Quesada A, et al. Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana[J]. EMBO J, 1996, 15(10):2331-2342.

      [7] Schwartz SH, Tan BC, Gage DA, et al. Specific oxidative cleavage of carotenoids by VP14 of maize[J]. Science, 1997, 276(5320):1872-874.

      [8] Seo M, Koiwai H, Akaba S, et al. Abscisic aldehyde oxidase in leaves of Arabidopsis thaliana[J]. Plant J, 2000, 23(4):481-488.

      [9] Bittner F, Oreb M, Mendel RR. ABA3 is a molybdenum cofactor sulfurase required for activation of aldehyde oxidase and xanthine dehydrogenase in Arabidopsis thaliana[J]. J Biol Chem, 2001, 276(44):40381-40384.

      [10] Xiong LM, Ishitani M, Lee HJ, et al. The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress-and osmotic stress-responsive gene expression[J]. Plant Cell, 2001, 13(9):2063-2083.

      [11] Park HY, Seok HY, Park BK, et al. Overexpression of Arabidopsis ZEP enhances tolerance to osmotic stress[J]. Biochem Biophys Res Commun, 2008, 375(1):80-85.

      [12] Iuchi S, Kobayashi M, Taji T, et al. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis[J]. Plant J, 2001, 27(4):325-333.

      [13] Qin XQ, Zeevaart JAD. Overexpression of a 9-cis-epoxycarotenoid dioxygenase gene in Nicotiana plumbaginifolia increases abscisic acid and phaseic acid levels and enhances drought tolerance[J]. Plant Physiol, 2002, 128(2):544-551.

      [14] 徐春英. 應(yīng)用氣孔特異性啟動(dòng)子—KST1 改良植物抗旱性的初步探討[D].北京:中國農(nóng)業(yè)大學(xué), 2004:48-50.

      [15] Aswath CR, Kim SH, Mo SY, et al. Transgenic plants of creeping bentgrass harboring the stress inducible gene, 9-cis-epoxycarotenoid dioxygenase, are highly tolerant to drought and NaCl stress[J]. Plant Growth Regul, 2005, 47(2-3):129-139.

      [16] Wan XR, Li L. Regulation of ABA level and water-stress tolerance of Arabidopsis by ectopic expression of a peanut 9-cisepoxycarotenoid dioxygenase gene[J].Biochem Biophys Res Commun, 2006, 347(4):1030-1038.

      [17] 賈娟娟, 孟秀萍, 劉蕊, 等.擬南芥NCED3 基因在水稻種的過量表達(dá)可以提高水稻的干旱脅迫耐受性[J].復(fù)旦學(xué)報(bào):自然科學(xué)版, 2008, 47(3):288-294.

      [18] Zhang YM, Yang JF, Lu SY, et al. Overexpressing SgNCED1 in tobacco increases ABA level, antioxidant enzyme activities, and stress tolerance[J]. J Plant Growth Regul, 2008, 27(2):151-158.

      [19] Zhang YM, Tan JL, Guo ZF, et al. Increased abscisic acid levels in transgenic tobacco over-expressing 9 cis-epoxycarotenoid dioxygenase influence H2O2 and NO production and antioxidant defences[J]. Plant Cell Environ, 2009, 32(5):509-519.

      [20] Hwang SG, Chen HC, Huang WY, et al. Ectopic expression of rice OsNCED3 in Arabidopsis increases ABA level and alters leaf morphology[J]. Plant Sci, 2010, 178(1):12-22.

      [21] Xiao BZ, Chen X, Xiang CB, et al. Evaluation of seven functionknown candidate genes for their effects on improving drought resistance of transgenic rice under field conditions[J]. Mol Plant, 2009, 2(1):73-83.

      [22] Yue Y, Zhang M, Zhang J, et al. Arabidopsis LOS5/ABA3 overexpression in transgenic tobacco(Nicotiana tabacum cv. Xanthi-nc)results in enhanced drought tolerance[J]. Plant Sci, 2011, 181(4):405-411.

      [23] Yue YS, Zhang MC, Zhang JC, et al. Overexpression of the AtLOS5 gene increased abscisic acid level and drought tolerance in transgenic cotton[J]. J Exp Bot, 2012, 63(10):3741-3748.

      [24] Li YJ, Zhang JC, Zhang J, et al. Expression of an Arabidopsis molybdenum cofactor sulphurase gene in soybean enhances drought tolerance and increases yield under field conditions[J]. Plant Biotechnology J, 2013, 11(6):747-758.

      [25] Lu Y, Li YJ, Zhang JC, et al. Overexpression of Arabidopsis molybdenum cofactor sulfurase gene confers drought tolerance in maize(Zea mays L.)[J]. Plos One, 2013, 8(1):e52126.

      [26] Agarwal PK, Jha B. Transcription factors in plants and ABA dependent and independent abiotic stress signalling[J]. Biologia Plantarum, 2010, 54(2):201-212.

      [27] Phang TH, Shao GH, Lam HM. Salt tolerance in soybean[J]. Joumal of Integrative Plant Biology, 2008, 50(10):1196-1212.

      [28] Katharine EH, Noriyuki N, Kenichi H, et al. Early abscisic acid signal transduction mechanisms:newly discovered components and newly emerging questions[J]. Genes Dev, 2010, 24(16):1695-1708.

      [29] Raghavendra AS, Gonugunta VK, Christmann A, et al. ABA perception and signalling[J]. Trends Plant Sci, 2011(15):395-401.

      [30] Saavedra X, Modrego A, Rodriguez D, et al. The nuclear interactor PYL8/RCAR3 of Fagus sylvatica FsPP2C1 is a positive regulator of abscisic acid signaling in seeds and stress[J]. Plant Physiol, 2010, 152(1):133-150.

      [31] Zhang FY, Lu X, Lv ZY, et al. Overexpression of the Artemisia orthologue of ABA receptor, AaPYL9, enhances ABA sensitivity and improves artemisinin content in Artemisia annua L.[J]. Plos One, 2013, 8(2):e56697.

      [32] Liu, LX, Hu, XL, Song, JA, et al. Over-expression of a Zea mays L. protein phosphatase 2C gene(ZmPP2C)in Arabidopsis thaliana decreases tolerance to salt and drought[J]. J Plant Physiol, 2009, 166(5):531-542.

      [33] Umezawa T, Yoshida R, Maruyama K, et al. SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana[J]. Proc Natl Acad Sci USA, 2004, 101(49):17306-17311.

      [34] Xu ZS, Liu L, Ni ZY, et al. W55a Encodes a novel protein kinase that is involved in multiple stress responses[J]. J Integr Plant Biol, 2009, 51(1):58-66.

      [35] Mao XG, Zhang HY, Tian SJ, et al. TaSnRK2.4, an SNF1-type serine/threonine protein kinase of wheat(Triticum aestivum L.), confers enhanced multistress tolerance in Arabidopsis[J]. J Exp Bot, 2010, 61(3):683-696.

      [36] Zhang HY, Mao XG, Wang CS, et al. Overexpression of a common wheat gene TaSnRK2.8 enhances tolerance to drought, salt and low temperature in Arabidopsis[J]. Plos One, 2010, 5(12):e16041.

      [37] Ying S, Zhang DF, Li HY, et al. Cloning and characterization of a maize SnRK2 protein kinase gene confers enhanced salt tolerance in transgenic Arabidopsis[J]. Plant Cell Rep, 2011, 30(9):1683-1699.

      [38] Zou HW, Li CH, Liu HF, et al. Zmspk1, a member of plant snrk2 subfamily in maize enhances tolerance to salt in transgenic Arabidopsis[J]. Aust J Crop Sci, 2011, 5(10):1179-1184.

      [39] Du XM, Zhao XL, Li XJ, et al. Overexpression of TaSRK2C1, a wheat SNF1-related protein kinase 2 gene, increases tolerance to dehydration, salt, and low temperature in transgenic tobacco[J]. Plant Mol Biol Rep, 2013, 31(4):810-821.

      [40] Tian SJ, Mao XG, Zhang HY, et al. Cloning and characterization of TaSnRK2.3, a novel SnRK2 gene in common wheat[J]. J Exp Bot, 2013, 64(7):2063-2080.

      [41] Busk PK, Pages M. Regulation of abscisic acid-induced transcription[J]. Plant Mol Biol, 1998, 37(3):425-435.

      [42] Rock C. Pathways to abscisic acid-regulated gene expression[J]. New Phytol, 2000, 148(3):357-396.

      [43] Choi HI, Hong JH, Ha JO, et al. ABFs, a family of ABA-responsive element binding factors[J]. Biol Chem, 2000, 275(3):1723-1730.

      [44] Uno Y, Furihata T, Abe H, et al. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions[J]. Proc Natl Acad Sci USA, 2000, 97(21):11632-11637.

      [45] Kim S, Kang SY, Cho DI, et al. ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance[J]. Plant J, 2004, 40(1):75-87.

      [46] Kang JY, Choi HI, Im MY, et al. Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling[J]. Plant Cell, 2002, 14(2):343-357.

      [47] Vanjildorj E, Bae TW, Riu KZ, et al. Overexpression of Arabidopsis ABF3 gene enhances tolerance to drought and cold in transgenic lettuce(Lactuca sativa)[J]. Plant Cell Tiss Org Cult, 2005, 83(1):41-50.

      [48] Oh SJ, Song SI, Kim YS, et al. Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth[J]. Plant Physiol, 2005, 138(1):341-351.

      [49] Vanjildorj E, Bae TW, Riu KZ, et al. Transgenic Agrostis mongolica Roshev. with enhanced tolerance to drought and heat stresses obtained from Agrobacterium-mediated transformation[J]. Plant Cell Tiss Org, 2006, 87(2):109-120.

      [50] Abdeen A, Schnell J, Miki B. Transcriptome analysis reveals absence of unintended effects in drought-tolerant transgenic plants overexpressing the transcription factor ABF3[J]. BMC Genomics, 2010, 11:69.

      [51] Choi YS, Kim YM, Hwang OJ, et al. Overexpression of Arabidopsis ABF3 gene confers enhanced tolerance to drought and heat stress in creeping bentgrass[J]. Plant Biotechnol Rep, 2013, 7(2):165-173.

      [52] Huang XS, Liu JH, Chen XJ. Overexpression of PtrABF gene, a bZIP transcription factor isolated from Poncirus trifoliata, enhances dehydration and drought tolerance in tobacco via scavenging ROS and modulating expression of stress-responsive genes[J]. BMC Plant Biol, 2010, 10:230.

      [53] Orellana S, Yanez M, Espinoza A, et al. The transcription factor SIAREB1 confers drought, salt stress tolerance and regulate biotic and abiotic stress-related genes in tomato[J]. Plant, Cell and Environ, 2010, 33(12):2191-2208.

      [54] Kobayashi F, Maeta E, Terashima A, et al. Positive role of a wheat HvABI5 ortholog in abiotic stress response of seedlings[J]. Physiol Plant, 2008, 134(1):74-86.

      [55] Gao SQ, Chen M, Xu ZS, et al. The soybean GmbZIP1 transcription factor enhances multiple abiotic stress tolerances in transgenic plants[J]. Plant Mol Biol, 2011, 75(6):537-553.

      猜你喜歡
      抗旱性脯氨酸擬南芥
      擬南芥:活得粗糙,才讓我有了上太空的資格
      國家藥監(jiān)局批準(zhǔn)脯氨酸恒格列凈片上市
      中老年保健(2022年3期)2022-11-21 09:40:36
      植物體內(nèi)脯氨酸的代謝與調(diào)控
      反式-4-羥基-L-脯氨酸的研究進(jìn)展
      尿黑酸對(duì)擬南芥酪氨酸降解缺陷突變體sscd1的影響
      不同光質(zhì)對(duì)黃瓜幼苗抗旱性的影響
      兩種LED光源作為擬南芥生長光源的應(yīng)用探究
      干旱脅迫對(duì)馬尾松苗木脯氨酸及游離氨基酸含量的影響
      擬南芥干旱敏感突變體篩選及其干旱脅迫響應(yīng)機(jī)制探究
      基于稱重法的煙草伸根期抗旱性鑒定
      南安市| 古交市| 冷水江市| 康定县| 资源县| 富平县| 正定县| 崇礼县| 治多县| 通州市| 同江市| 东宁县| 弥勒县| 信宜市| 安福县| 嵊州市| 志丹县| 长汀县| 綦江县| 偏关县| 新乡县| 迭部县| 沭阳县| 韶山市| 扶风县| 吉林省| 祁门县| 遂溪县| 武平县| 池州市| 马鞍山市| 景德镇市| 宜都市| 景泰县| 榆树市| 关岭| 肃宁县| 汝南县| 会泽县| 方正县| 正安县|