徐立明,張振葆,梁曉玲,盧文,張辰路,黃鳳珠,王雷,張素芝*
(1.四川農(nóng)業(yè)大學(xué)玉米所 農(nóng)業(yè)部西南玉米生物學(xué)與遺傳育種重點(diǎn)實(shí)驗(yàn)室,四川 成都611130;2.日照市五蓮縣農(nóng)業(yè)局,山東 日照262300)
*在自然條件下生長(zhǎng)的植物,經(jīng)常會(huì)面臨干旱、澇害、鹽堿、高溫、低溫、冷害、營(yíng)養(yǎng)匱乏、重金屬污染等非生物脅迫,嚴(yán)重影響了植物的正常生長(zhǎng)和發(fā)育。在這些逆境脅迫中,干旱是最為突出的限制因素之一[1-20]。近年來(lái),基因工程的誕生使人類的農(nóng)業(yè)生產(chǎn)史發(fā)生了巨大的變化。通過(guò)轉(zhuǎn)基因技術(shù)提高植物抗旱性,具備并已展現(xiàn)了巨大的應(yīng)用價(jià)值和經(jīng)濟(jì)價(jià)值,但其前提是必須了解植物抗旱的分子機(jī)制。植物受到干旱脅迫后會(huì)誘發(fā)植物體內(nèi)其他多種不良反應(yīng),如活性氧爆炸、滲透壓的變化等,因而植物必須迅速啟動(dòng)對(duì)這些不良反應(yīng)的應(yīng)答而存活下來(lái)(圖1)。干旱通常能觸發(fā)植物基因表達(dá)增強(qiáng)或減弱、代謝產(chǎn)物增加或減少、特異蛋白合成等應(yīng)答活動(dòng)[2,21-30]。此外,隨著基因芯片、數(shù)字表達(dá)譜、轉(zhuǎn)錄組等分子生物學(xué)技術(shù)的發(fā)展,多個(gè)干旱應(yīng)答基因已被鑒定。這些鑒定的基因中,一些為調(diào)節(jié)基因,如編碼信號(hào)因子、轉(zhuǎn)錄因子的功能基因;一些為編碼功能性蛋白和有機(jī)分子合成酶的基因,如編碼合成調(diào)滲分子、多胺類分子,活性氧清除分子的功能基因;還有一些為編碼microRNA的功能基因。將這些干旱應(yīng)答基因根據(jù)其作用方式轉(zhuǎn)化植物而增強(qiáng)抗旱性成為最佳策略[3-4,31-35]。本文著重從分子水平上闡述有關(guān)抗旱方面最前沿的研究,并且特別闡述了植物抗旱基因工程的發(fā)展近況。
當(dāng)逆境脅迫發(fā)生時(shí),植物能通過(guò)各種不同的信號(hào)轉(zhuǎn)導(dǎo)活動(dòng),如蛋白的磷酸化和去磷酸化、對(duì)Ca2+的感知、蛋白的降解等途徑對(duì)脅迫進(jìn)行應(yīng)答[4,36-47]。盡管這些復(fù)雜的信號(hào)途徑如何進(jìn)行整體調(diào)控仍然不十分明確[5,48-63],但是已有研究證實(shí)一些信號(hào)分子能通過(guò)參與干旱脅迫相關(guān)的信號(hào)轉(zhuǎn)導(dǎo)途徑,來(lái)調(diào)控植物抗旱性。例如,煙草(Nicotianatabacum)促分裂原活化蛋白激酶的激酶基因NPK1能夠調(diào)節(jié)干旱所誘發(fā)的氧化脅迫的信號(hào)轉(zhuǎn)導(dǎo)活動(dòng)。在干旱條件下,過(guò)量表達(dá)NPK1的轉(zhuǎn)基因煙草比野生型生長(zhǎng)狀況更好[6]。
通過(guò)激活因子或抑制因子調(diào)控信號(hào)轉(zhuǎn)導(dǎo)途徑,是植物應(yīng)答干旱脅迫的一種主要方式。例如,擬南芥(Arabidopsisthaliana)的法呢基轉(zhuǎn)移酶ERA1作為負(fù)調(diào)節(jié)因子能抑制脫落酸(abscisic acid,ABA)信號(hào)轉(zhuǎn)導(dǎo),從而降低擬南芥對(duì)干旱脅迫的耐受性。相反,反義抑制ERA1的轉(zhuǎn)基因擬南芥對(duì)ABA信號(hào)的應(yīng)答增強(qiáng),致使擬南芥的部分葉片氣孔關(guān)閉、蒸騰作用減弱、水分蒸發(fā)減少,最終表現(xiàn)為擬南芥抗旱性增強(qiáng)[7]。另外,激活因子能通過(guò)蛋白激酶正調(diào)控植物的抗旱途徑。在干旱條件下,擬南芥蛋白激酶SnRK2s(SNF1-related protein kinase 2)家族的9個(gè)成員(SRK2A-J/SnRK2.1-10)幾乎都被誘導(dǎo)表達(dá)[8]。其中,在正常的生長(zhǎng)條件下SRK2C(SnRK2.8)低水平表達(dá),但在干旱條件下SRK2C(SnRK2.8)被誘導(dǎo)激活,表達(dá)量顯著提高,擬南芥抗旱性增強(qiáng)[9]。此外,擬南芥中類SOS3的Ca2+結(jié)合蛋白CBL(SOS3-like calcium-binding protein)與蛋白激酶CIPK/PKS能相互作用形成活性復(fù)合體,調(diào)控干旱、鹽或冷脅迫條件下的信號(hào)轉(zhuǎn)導(dǎo)活動(dòng)。CBL1是CBL蛋白家族成員,在干旱條件下被誘導(dǎo)激活。轉(zhuǎn)基因擬南芥過(guò)量表達(dá)CBL1時(shí),一些脅迫應(yīng)答基因上調(diào)表達(dá),擬南芥的抗旱性隨之增強(qiáng)[10]。
最近的研究發(fā)現(xiàn)一些信號(hào)調(diào)節(jié)因子通常參與多個(gè)信號(hào)轉(zhuǎn)導(dǎo)途徑的調(diào)控,如AtMPK6至少調(diào)節(jié)MKK2-MPK6和MKK4/MKK5-MPK6這2個(gè)不同的MAPK信號(hào)級(jí)聯(lián)活動(dòng),并且每個(gè)信號(hào)級(jí)聯(lián)活動(dòng)都能夠傳遞或轉(zhuǎn)導(dǎo)不同的脅迫應(yīng)答信息[11],這說(shuō)明了信號(hào)轉(zhuǎn)導(dǎo)網(wǎng)絡(luò)的復(fù)雜性。
圖1 在干旱脅迫下的遺傳路徑Fig.1 A genetic pathway under drought stress
轉(zhuǎn)錄組分析發(fā)現(xiàn),AP2、bZIP、NAC、MYB、Cys2/His2鋅指等不同類型的轉(zhuǎn)錄因子都能調(diào)控植物應(yīng)答干旱脅迫(表1)[22-25,64-71],這些轉(zhuǎn)錄因子通過(guò)激活或抑制下游干旱應(yīng)答基因的表達(dá),來(lái)調(diào)節(jié)植物的抗旱性[4,12,14,16]。
植物的bZIP轉(zhuǎn)錄因子能通過(guò)參與ABA信號(hào)轉(zhuǎn)導(dǎo)途徑調(diào)控植物對(duì)干旱脅迫的反應(yīng)。在干旱條件下,植物體內(nèi)ABA水平會(huì)有所增加,ABA信號(hào)轉(zhuǎn)導(dǎo)活動(dòng)增強(qiáng),一些干旱脅迫應(yīng)答基因也被ABA誘導(dǎo)激活[13]。Fujita等[14]發(fā)現(xiàn)與 ABA順式作用元件 ABRE(ABA-responsive element)結(jié)合的蛋白 AREB(ABA-responsive element binding protein)屬于bZIP轉(zhuǎn)錄因子家族。這類基因如AREB1/ABF2、AREB2/ABF4和ABF3/DPBF5,能在干旱、ABA和鹽脅迫的誘導(dǎo)下增強(qiáng)表達(dá),在擬南芥中過(guò)量表達(dá)時(shí)提高了植株對(duì)這些脅迫的耐受性[12,14]。
表1 應(yīng)用轉(zhuǎn)錄因子的抗旱基因工程Table 1 Engineering of drought tolerance using transcription factors
R2R3-MYB類轉(zhuǎn)錄因子也參與了植物對(duì)干旱脅迫的調(diào)控。例如,MYB15在擬南芥中過(guò)量表達(dá)時(shí),ABA合成相關(guān)的基因ABA1上調(diào)表達(dá),擬南芥抗旱性隨之增強(qiáng)[15]。AtMYB60也是一個(gè)R2R3-MYB類轉(zhuǎn)錄因子,在擬南芥中能調(diào)控氣孔的開合。AtMYB60基因在擬南芥葉片保衛(wèi)細(xì)胞中特異性表達(dá),并在干旱條件下其表達(dá)受到抑制[16]。在干旱條件下,其功能缺失性突變體的部分氣孔關(guān)閉,蒸騰作用減弱,抗旱性增強(qiáng)。
水稻42個(gè)APETELA2(AP2)類轉(zhuǎn)錄因子分屬于6個(gè)亞家族(I-VI),能被不同的脅迫條件和ABA所誘導(dǎo)激活,其中亞家族I的AP37和亞家族Ⅱ的AP59能被干旱和高鹽脅迫誘導(dǎo)激活。啟動(dòng)子OsCc1驅(qū)動(dòng)AP37和AP59基因在水稻中過(guò)量表達(dá)時(shí),對(duì)干旱脅迫表現(xiàn)出比野生型更強(qiáng)的耐受性。在嚴(yán)重的干旱條件下,過(guò)量表達(dá)AP37的轉(zhuǎn)基因水稻比過(guò)量表達(dá)AP59的轉(zhuǎn)基因水稻產(chǎn)量提高了16%~57%[17]。此外,DREB1/CBF(dehydration-responsive element-binding factors 1)也屬于 AP2類轉(zhuǎn)錄因子[18-19]。在干旱、鹽、冷的脅迫條件下,擬南芥DREB1/CBF上調(diào)表達(dá),致使擬南芥對(duì)這些脅迫的耐受性增強(qiáng)[19]。用脅迫誘導(dǎo)型啟動(dòng)子Atrd29A驅(qū)動(dòng)At-DREB1A/CBF基因表達(dá)的轉(zhuǎn)基因花生(Arachishypogaea),能比野生型合成更多的抗氧化酶(antioxidant enzymes)和脯氨酸,表現(xiàn)出更強(qiáng)的抗旱性[20]。Dubouzet等[21]從水稻中也分離出4個(gè)與擬南芥DREB1A/CBF同源的水稻基因OsDREB1A、OsDREB1B、OsDREB1C和OsDREB1D。在水稻中過(guò)量表達(dá)OsDREB1時(shí),轉(zhuǎn)基因株系對(duì)干旱、鹽和冷脅迫耐受性增強(qiáng)。
NAC類蛋白是植物中另一類重要的轉(zhuǎn)錄因子,能調(diào)控植物的生長(zhǎng)發(fā)育和增強(qiáng)植物對(duì)脅迫環(huán)境的適應(yīng)能力。ANAC019、ANAC055和ANAC072是從擬南芥中分離到的3個(gè)不同的NAC基因,在干旱條件下這些基因被誘導(dǎo)激活。在擬南芥中過(guò)量表達(dá)這些基因時(shí),轉(zhuǎn)基因株系的抗旱性增強(qiáng)[22]。在水稻中也分離到NAC類型的轉(zhuǎn)錄因子,如SNAC1能被干旱脅迫所誘導(dǎo),過(guò)量表達(dá)SNAC1的轉(zhuǎn)基因水稻抗旱性比野生型明顯地增強(qiáng)[23]。
除此之外,一些鋅指轉(zhuǎn)錄因子(如STZ)能通過(guò)負(fù)調(diào)控基因表達(dá)而增強(qiáng)植物抗旱性。在擬南芥中,受干旱、高鹽、冷等脅迫條件的誘導(dǎo),編碼C2H2型鋅指轉(zhuǎn)錄因子的STZ基因上調(diào)表達(dá)。同時(shí),過(guò)量表達(dá)STZ基因的轉(zhuǎn)基因擬南芥抗旱性增強(qiáng)[24]。此外,在擬南芥中過(guò)量表達(dá)STZ的直系同源基因CAZFP1時(shí),除了能增強(qiáng)擬南芥抗旱性之外,抵御病原菌侵染的能力也增強(qiáng)[25]。
在水分匱乏的情況下,植物為抵御干旱脅迫,細(xì)胞內(nèi)可以大量合成甜菜堿(glycine betaine,GB)、脯氨酸(proline)、海藻糖(trehalose)、甘露醇(mannitol)等滲透性的有機(jī)小分子物質(zhì),增加細(xì)胞的滲透勢(shì),縮小與周圍環(huán)境的滲透勢(shì)差,從而使植物避免因高滲透勢(shì)差導(dǎo)致細(xì)胞過(guò)度失水死亡[26](表2)。
植物可通過(guò)大量合成甜菜堿來(lái)應(yīng)答干旱脅迫[27]。在高等植物里,膽堿單加氧酶(choline monooxygenase,CMO)和甜菜堿醛基脫氫酶(betaine aldehyde dehydrogenase,BADH)是GB生物合成的2個(gè)關(guān)鍵酶。在煙草中過(guò)量表達(dá)COM基因時(shí),能導(dǎo)致甜菜堿高水平的積累和煙草抗旱性的提高[28]。
與GB類似,脯氨酸也是一種重要的滲透調(diào)節(jié)分子。脯氨酸是水溶性很強(qiáng)的氨基酸,它的疏水端與蛋白質(zhì)聯(lián)結(jié)而親水端與水分子結(jié)合,從而使得蛋白通過(guò)脯氨酸能束縛更多的水分子,因此提高脯氨酸的合成能力能夠增強(qiáng)植物的抗旱性。吡咯啉-5-羧酸鹽還原酶(pyrroline-5-carboxylate synthetase,P5CR)是脯氨酸生物合成的一個(gè)關(guān)鍵酶[29]。P5CR基因在大豆(Glycinemax)、矮牽牛(Petuniahybrida)和煙草里已經(jīng)被鑒定,并且發(fā)現(xiàn)幾乎所有的轉(zhuǎn)化P5CR基因的植物都表現(xiàn)出脯氨酸的過(guò)量積累并伴隨其抗旱性的增強(qiáng)[30-31]。
海藻糖也是一個(gè)重要的滲透調(diào)節(jié)因子,轉(zhuǎn)化海藻糖生物合成的關(guān)鍵酶基因能提高植物的抗旱性。例如,轉(zhuǎn)化大腸桿菌海藻糖-6-磷酸合成酶(trehalose-6-phosphate synthase)TPS1基因能使海藻糖在轉(zhuǎn)基因煙草體內(nèi)大量積累,同時(shí)伴隨其抗旱性的增強(qiáng)。轉(zhuǎn)基因煙草還呈現(xiàn)出植株矮小、葉片呈柳葉刀型等抗旱性表型[32]。此外,過(guò)量表達(dá)酵母TPS1-TPS2融合基因的煙草比野生型的抗旱性更強(qiáng),而且比僅過(guò)量表達(dá)TPS1的煙草在干旱條件下表現(xiàn)出更好的生長(zhǎng)狀況[33-34]。另外,用脅迫誘導(dǎo)型啟動(dòng)子rd29A驅(qū)動(dòng)大腸桿菌海藻糖合成的調(diào)控基因otsA、otsB與海藻糖-6-磷酸合成酶的磷酸化酶(trehalose-6-phosphate synthase phosphatase)基因TPSP在水稻中融合過(guò)量表達(dá)時(shí),此融合基因otsA-otsB-TPSP僅在脅迫條件下被誘導(dǎo)激活,隨后轉(zhuǎn)基因水稻體內(nèi)的海藻糖能大量積累,對(duì)干旱、高鹽等非生物脅迫的耐受性也隨之提高[35-36]。
甘露醇也參與了滲透調(diào)節(jié)干旱脅迫。小麥的甘露醇-1-磷酸脫氫酶(mannitol-1-phosphate dehydrogenase)基因mt1D過(guò)量表達(dá)時(shí),轉(zhuǎn)基因小麥體內(nèi)的甘露醇含量增加,對(duì)干旱和鹽脅迫的耐受性增強(qiáng)[37]。然而,將大腸桿菌的mt1D基因?qū)霟煵輹r(shí),雖然在轉(zhuǎn)基因煙草體內(nèi)甘露醇也有積累,但轉(zhuǎn)基因煙草對(duì)脅迫的耐受性并未隨之提高[38]。據(jù)此,在通過(guò)轉(zhuǎn)化甘露醇生物合成相關(guān)基因提高植物的抗旱等脅迫的基因工程開始前,需首先確定這些基因是否與干旱等脅迫耐受性相關(guān)。
表2 應(yīng)用有機(jī)滲透分子的抗旱基因工程Table 2 Engineering of drought tolerance using organic osmolytes
經(jīng)研究發(fā)現(xiàn),干旱通常會(huì)導(dǎo)致植物體內(nèi)活性氧(reactive oxygen species,ROS)如 O22-、O、H2O2、OH-等過(guò)量積累。高等植物具有ROS的清除系統(tǒng),包括一些抗氧化酶,如超氧化物歧化酶(superoxide dismutase,SOD)、抗壞血酸超氧化酶(ascorbic acid oxidase,APX)、過(guò)氧化氫酶(catalase,CAT)和一些抗氧化的小分子,如抗壞血酸(ascorbic acid,AsA)、谷胱甘肽(glutathione,GSH)、維生素 E等[39,42]。通常植物體內(nèi) ROS清除系統(tǒng)能將ROS轉(zhuǎn)換為無(wú)氧化活性的化合物,使ROS得以清除,從而避免細(xì)胞膜脂的過(guò)氧化、新陳代謝酶類的氧化失活。
在干旱條件下,植物過(guò)量表達(dá)SOD和APX基因時(shí),對(duì)干旱誘發(fā)生成的過(guò)量H2O2和O22-清除能力增強(qiáng),轉(zhuǎn)基因植物表現(xiàn)出抗旱性增強(qiáng)。例如,過(guò)量表達(dá)葉綠體MnSOD基因的轉(zhuǎn)基因水稻比野生型表現(xiàn)出更強(qiáng)的抗旱性[41]。受干旱條件誘導(dǎo),豌豆APX基因的轉(zhuǎn)錄水平提高,此時(shí)豌豆體內(nèi)的APX含量和活性都有所增加,呈現(xiàn)出抗旱性增強(qiáng)的表型[42]。此外,用脅迫誘導(dǎo)型啟動(dòng)子rd29A驅(qū)動(dòng)高羊茅(Festucaarundinacea)的APX-Cu/Zn-SOD融合基因在葉綠體里過(guò)量表達(dá)時(shí),能有效地減輕干旱等脅迫條件所導(dǎo)致的氧化損傷,致使高羊茅抗干旱等脅迫的能力增強(qiáng)[43]。
植物體內(nèi)CAT活性的強(qiáng)弱與植物受脅迫的程度相關(guān)。Luna等[44]研究發(fā)現(xiàn),在輕度的干旱脅迫條件下,煙草CAT的活性很低,但是在嚴(yán)重的干旱條件下CAT的活性增強(qiáng)。一些研究發(fā)現(xiàn)在嚴(yán)重干旱條件下,過(guò)量表達(dá)大腸桿菌CAT基因的轉(zhuǎn)基因煙草比野生型具有更強(qiáng)的抗旱性[45]。而且,研究還發(fā)現(xiàn)APX和CAT缺失的雙突變體煙草能通過(guò)抑制光合作用和提高參與磷酸戊糖途徑的基因、單脫氫抗壞血酸還原酶(monodehydroascorbate reductase)基因的表達(dá)水平,來(lái)緩解和降低干旱誘導(dǎo)的過(guò)量ROS對(duì)其造成的傷害,從而增強(qiáng)其抗旱性[46]。
抗氧化小分子的積累也能提高植物的抗旱性。例如,擬南芥和結(jié)縷草(Zoysia)能通過(guò)積累AsA/GSH和維生素E,清除體內(nèi)的OH-和O22-,減輕ROS所造成的損傷,使其在干旱條件下能夠正常的生長(zhǎng)和發(fā)育[47-48]。此外,西瓜(Citrullus)還能通過(guò)積累瓜氨酸和金屬硫蛋白來(lái)調(diào)節(jié)體內(nèi)的OH-和O22-的水平,使體內(nèi)的蛋白和DNA免受ROS的氧化損傷,使西瓜的抗旱性增強(qiáng)[49-50]。
植物能通過(guò)積累多胺類化合物(polyamines,PAs),如腐胺(putrescine,Put)、亞精胺(spermidine,Spd)、精胺(spermine,Spm),來(lái)應(yīng)答干旱、冷、熱、重金屬等逆境脅迫。然而,這些PAs應(yīng)答脅迫的分子機(jī)制仍然不明確,因此分析增加的PAs的水平是脅迫誘導(dǎo)的結(jié)果或脅迫應(yīng)答的結(jié)果十分必要[51-52]。
最近,通過(guò)對(duì)功能獲得性和功能缺失性突變體的研究,證實(shí)了PAs具有應(yīng)答干旱等非生物脅迫的功能[53]。通過(guò)對(duì)不同植物調(diào)控PAs合成的基因ADC、SAMDC等進(jìn)行異源表達(dá),發(fā)現(xiàn)這些基因能響應(yīng)干旱等非生物脅迫。擬南芥S-腺苷甲硫氨酸脫羧酶(S-Adenosyl methionine decaboxylase)SAMDC1基因過(guò)量表達(dá)時(shí),轉(zhuǎn)基因株系體內(nèi)的Spm水平升高,對(duì)干旱、鹽等非生物脅迫的耐受性增強(qiáng)。同時(shí),SAMDC1基因過(guò)量表達(dá)時(shí),還能使ABA生物合成基因NCED3(9-cis-epoxycarotenoid dioxygenase)上調(diào)表達(dá),轉(zhuǎn)基因株系體內(nèi)的ABA水平增加,ABA信號(hào)轉(zhuǎn)導(dǎo)途徑增強(qiáng),抗旱性也隨之顯著增強(qiáng),說(shuō)明Spm能與ABA協(xié)同提高植物對(duì)干旱的耐受性,但Spm合成水平是否與ABA信號(hào)途徑有關(guān)尚無(wú)報(bào)道[54]。此外,在擬南芥中過(guò)量表達(dá)ADC2(arginine decarboxylase 2)基因時(shí)轉(zhuǎn)基因株系體內(nèi)的Put水平增加,擬南芥的抗旱性也隨之增強(qiáng)[55]。另外,對(duì)調(diào)控PAs生物合成相關(guān)基因的功能缺失性突變體進(jìn)行研究,也證實(shí)了PAs調(diào)控植物應(yīng)答干旱等非生物脅迫的功能。例如,擬南芥T-DNA插入突變體adc2對(duì)干旱高度敏感[56],突變體acl5/spms(不能合成Spm)對(duì)干旱和鹽脅迫高度敏感。但是,在施加外源的PAs時(shí),這些突變體對(duì)逆境脅迫的敏感表型能部分恢復(fù)。
植物能編碼、剪切和積累21~24個(gè)核苷酸左右的小RNAs[57],基于不同的生成機(jī)制可將其分類為miRNAs(microRNAs),ta-siRNAs(trans-acting siRNAs),nat-siRNAs(natural antisense siRNAs)和ra-siRNAs(repeatassociated siRNAs)。這些小RNAs通過(guò)對(duì)目的mRNA的降解、翻譯活動(dòng)的抑制和染色質(zhì)的修飾,調(diào)控目的基因的表達(dá)[58]。
通過(guò)高通量的生物技術(shù)(如基因芯片)對(duì)干旱條件下植物進(jìn)行轉(zhuǎn)錄組分析,除發(fā)現(xiàn)了大量的差異表達(dá)基因,還發(fā)現(xiàn)miRNAs的表達(dá)也存在差異[58-60]。例如,在干旱條件下,擬南芥通過(guò)上調(diào)表達(dá)miR157、miR167、miR168、miR171、miR408、miR393、miR396、miR319和 miR397應(yīng)答干旱脅迫[58,61]。但是,三角葉楊(Populustrichocarpa)miR1446a-e、miR1444a、miR1447和 miR1450在干旱條件下表達(dá)水平下調(diào),并且 miR1711-a、miR482.2、miR530a、miR827、miR1445和miR1448的表達(dá)也輕度下調(diào)來(lái)應(yīng)答干旱脅迫[62]。此外,在干旱、鹽等非生物脅迫條件下,菜豆(Phaseolusvulgaris)能通過(guò)輕度上調(diào)表達(dá)miR2118,適度上調(diào)表達(dá)miR159.2、miR393和miR1514應(yīng)答干旱等非生物脅迫[59-60]。這些研究表明,在干旱脅迫下,植物能通過(guò)上調(diào)或下調(diào)表達(dá)特異的miRNAs而增強(qiáng)對(duì)干旱等脅迫的耐受性。
目前,一些應(yīng)答干旱脅迫的基因已經(jīng)被鑒定,一些重要的基因已經(jīng)通過(guò)轉(zhuǎn)基因技術(shù)成功地改善了植物的耐旱性。基因芯片、數(shù)字表達(dá)譜、轉(zhuǎn)錄組等高通量生物技術(shù)的應(yīng)用使得抗旱相關(guān)的候選基因的鑒定進(jìn)一步加快,這為植物抗旱基因工程的研究提供了強(qiáng)大的技術(shù)支持。同樣,運(yùn)用最前沿的基因工程技術(shù)轉(zhuǎn)化抗旱性的基因,這對(duì)于發(fā)現(xiàn)新的抗旱相關(guān)的基因,并且研究其功能具有重要意義[4]。然而,目前植物抗旱基因工程的研究?jī)H僅是一個(gè)開始,在植物抗旱性的研究中還存在很多的問(wèn)題[5,12,26]。抗旱是由多基因控制的數(shù)量性狀,其生理生化過(guò)程是各基因間以及基因和環(huán)境間相互作用、共同調(diào)節(jié)的結(jié)果。植物抗旱分子機(jī)制十分復(fù)雜,了解還不夠全面深入,基因轉(zhuǎn)化獲得抗旱性植株還有很大的盲目性,因而必須加強(qiáng)對(duì)抗旱分子機(jī)制的研究。植物轉(zhuǎn)入單基因提高植物的抗旱性對(duì)有的基因和植物有效,對(duì)有的基因和植物卻無(wú)效,然而植物轉(zhuǎn)入復(fù)合基因能夠更好地提高植物的抗旱性,但這方面的研究在先前的報(bào)道中很少,可能是多個(gè)外源基因的滲入給植物帶來(lái)比較多的副作用[26]。為了避免給植物生長(zhǎng)和發(fā)育帶來(lái)影響,了解候選基因在植物生長(zhǎng)不同的時(shí)期和不同的部位表達(dá)也是轉(zhuǎn)基因技術(shù)中一個(gè)必須考慮的因素。轉(zhuǎn)基因的過(guò)量表達(dá)體系中普遍應(yīng)用的組成型表達(dá)啟動(dòng)子,如CaMV35S啟動(dòng)子,并不適用于每一個(gè)物種,并且消耗太多的植物能量而影響植物生長(zhǎng)和發(fā)育。對(duì)于植物應(yīng)答脅迫而不消耗太多的植物能量,脅迫誘導(dǎo)特異型啟動(dòng)子是一個(gè)不錯(cuò)的選擇。轉(zhuǎn)基因植物的研究,通常在實(shí)驗(yàn)室受控的環(huán)境條件下,而田間的生長(zhǎng)環(huán)境多樣性,植物可能要在多種脅迫的環(huán)境條件下生存,成功地在田間運(yùn)用轉(zhuǎn)基因技術(shù)增強(qiáng)植物對(duì)多種脅迫環(huán)境的抗性還需要進(jìn)一步的研究。因此,深入研究各種脅迫之間的相互關(guān)系是非常重要而且必要的[26,63]。
最近的研究常常關(guān)注一些調(diào)節(jié)因子響應(yīng)脅迫應(yīng)答的機(jī)制。一些重要的脅迫應(yīng)答調(diào)節(jié)因子,通常彼此之間相互作用并且具有內(nèi)在的相互關(guān)系,如一些信號(hào)因子和轉(zhuǎn)錄因子能夠廣泛地調(diào)控植物應(yīng)答脅迫[63],但其之間的相互關(guān)系十分復(fù)雜。近來(lái),分子系統(tǒng)學(xué)和基因組學(xué)的分析已使復(fù)雜的基因調(diào)節(jié)網(wǎng)絡(luò)變得更加清晰,并且輔助發(fā)現(xiàn)了一些新的脅迫應(yīng)答因子和脅迫應(yīng)答調(diào)節(jié)機(jī)制,這些進(jìn)步使得利用基因工程技術(shù)改善植物抗旱性能獲得更好的結(jié)果。此外,一些新的基因工程的研究領(lǐng)域,如功能性蛋白、調(diào)控元件和RNA調(diào)節(jié),在未來(lái)也將凸顯出它的重要性[4-5]。因此,根據(jù)不同的植物生長(zhǎng)發(fā)育周期和環(huán)境條件,運(yùn)用基因工程技術(shù)改善植物抗旱性將擁有越來(lái)越好的前景。
[1]Boyer J S.Plant productivity and environment[J].Science,1982,218:443-448.
[2]Ramachandra Reddy A,Chaitanya K V,Vivekanandan M.Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants[J].Journal of Plant Physiology,2004,161:1189-1202.
[3]Shinozaki K,Yamaguchi-Shinozaki K,Seki M.Regulatory network of gene expression in the drought and cold stress responses[J].Current Opinion In Plant Biology,2003,6:410-417.
[4]Umezawa T,F(xiàn)ujita M,F(xiàn)ujitam Y,etal.Engineering drought tolerance in plants:discovering and tailoring genes to unlock the future[J].Current Opinion in Biotechnology,2006,17:113-122.
[5]Vinocur B,Altman A.Recent advances in engineering plant tolerance to abiotic stress:achievements and limitations[J].Cur-rent Opinion in Biotechnology,2005,16:123-132.
[6]Shou H,Bordallo P,Wang K.Expression of the Nicotiana protein kinase(NPK1)enhanced drought tolerance in transgenic maize[J].Journal of Experimental Botany,2004,55:1013-1019.
[7]Cutler S,Ghassemian M,Bonetta D,etal.A protein farnesyl transferase involved in abscisic acid signal transduction inArabidopsis[J].Science,1996,273:1239-1241.
[8]Boudsocq M,Barbier-Brygoo H,Laurière C.Identification of nine sucrose nonfermenting 1-related protein kinases 2activated by hyperosmotic and saline stresses inArabidopsisthaliana[J].Journal of Biological Chemistry,2004,279:41758-41766.
[9]Umezawa T,Yoshida R,Maruyama K,etal.SRK2C,a SNF1-related protein kinase 2,improves drought tolerance by controlling stress-responsive gene expression inArabidopsisthaliana[J].Proceedings of the National Academy of Sciences of the United States of America,2004,101:17306-17311.
[10]Cheong Y H,Kim K N,Pandey G K,etal.CBL1,a calcium sensor that differentially regulates salt,drought,and cold responses inArabidopsis[J/OL].The Plant Cell Online,2003,15:1833-1845.
[11]Posas F,Saito H.Osmotic activation of the HOG MAPK pathway via Ste11p MAPKKK:scaffold role of Pbs2p MAPKK[J].Science,1997,276:1702-1705.
[12]Bartels D,Sunkar R.Drought and salt tolerance in plants[J].Critical Reviews in Plant Sciences,2005,24:23-58.
[13]Finkelstein R R,Gampala S S,Rock C D.Abscisic acid signaling in seeds and seedlings[J].Plant Cell,2002,14(Suppl):15-45.
[14]Fujita Y,F(xiàn)ujita M,Satoh R,etal.AREB1is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance inArabidopsis[J/OL].The Plant Cell Online,2005,17:3470-3488.
[15]Ding Z,Li S,An X,etal.Transgenic expression of MYB15confers enhanced sensitivity to abscisic acid and improved drought tolerance inArabidopsisthaliana[J].Journal of Genetics and Genomics,2009,36:17-29.
[16]Cominelli E,Galbiati M,Vavasseur A,etal.A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance[J].Current Biology,2005,15:1196-1200.
[17]Oh S J,Kim Y S,Kwon C W,etal.Overexpression of the transcription factor AP37in rice improves grain yield under drought conditions[J].Plant Physiology,2009,150:1368-1379.
[18]王舟,劉建秀.DREB/CBF類轉(zhuǎn)錄因子研究進(jìn)展及其在草坪草和牧草抗逆基因工程中的應(yīng)用[J].草業(yè)學(xué)報(bào),2011,20(1):222-236.
[19]Liu Q,Kasuga M,Sakuma Y,etal.Two transcription factors,DREB1and DREB2,with an EREBP/AP2DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression,respectively,inArabidopsis[J/OL].The Plant Cell Online,1998,10:1391-1406.
[20]Bhatnagar-Mathur P,Devi M J,Vadez V,etal.Differential antioxidative responses in transgenic peanut bear no relationship to their superior transpiration efficiency under drought stress[J].Journal of Plant Physiology,2009,166:1207-1217.
[21]Dubouzet J G,Sakuma Y,Ito Y,etal.OsDREB genes in rice,OryzasativaL.,encode transcription activators that function in drought-,high-salt-and cold-responsive gene expression[J].The Plant Journal,2003,33:751-763.
[22]Tran L S P,Nakashima K,Sakuma Y,etal.Isolation and functional analysis ofArabidopsisstress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1promoter[J/OL].The Plant Cell Online,2004,16:2481-2498.
[23]Hu H,Dai M,Yao J,etal.Overexpressing a NAM,ATAF,and CUC(NAC)transcription factor enhances drought resistance and salt tolerance in rice[J].Proceedings of the National Academy of Sciences,2006,103:12987-12992.
[24]Sakamoto H,Maruyama K,Sakuma Y,etal.ArabidopsisCys2/His2-type zinc-finger proteins function as transcription repressors under drought,cold,and high-salinity stress conditions[J].Plant Physiology,2004,136:2734-2746.
[25]Kim S,Hong J,Lee S,etal.CAZFP1,Cys2/His2-type zinc-finger transcription factor gene functions as a pathogen-induced early-defense gene inCapsicumannuum[J].Plant Molecular Biology,2004,55:883-904.
[26]Ashraf M.Inducing drought tolerance in plants:recent advances[J].Biotechnology Advances,2010,28:169-183.
[27]Ashraf M,F(xiàn)oolad M R.Roles of glycine betaine and proline in improving plant abiotic stress resistance[J].Environmental and Experimental Botany,2007,59:206-216.
[28]Shen Y G,Du B X,Zhang W K,etal.AhCMO,regulated by stresses inAtriplexhortensis,can improve drought tolerance in transgenic tobacco[J].Theoretical and Applied Genetics,2002,105:815-821.
[29]De Ronde J A,Cress W A,Krüger G H J,etal.Photosynthetic response of transgenic soybean plants,containing anArabidopsisP5CR gene,during heat and drought stress[J].Journal of Plant Physiology,2004,161:1211-1224.
[30]Gubi?J,VaňkováR,?ervenáV,etal.Transformed tobacco plants with increased tolerance to drought[J].South African Journal of Botany,2007,73:505-511.
[31]Yamada M,Morishita H,Urano K,etal.Effects of free proline accumulation in petunias under drought stress[J].Journal of Experimental Botany,2005,56:1975-1981.
[32]Romero C,Bellés J M,VayáJ L,etal.Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants:pleiotropic phenotypes include drought tolerance[J].Planta,1997,201:293-297.
[33]Miranda J,Avonce N,Suárez R,etal.A bifunctional TPS-TPP enzyme from yeast confers tolerance to multiple and extreme abiotic-stress conditions in transgenicArabidopsis[J].Planta,2007,226:1411-1421.
[34]Karim S,Aronsson H,Ericson H,etal.Improved drought tolerance without undesired side effects in transgenic plants producing trehalose[J].Plant Molecular Biology,2007,64:371-386.
[35]Jang I C,Oh S J,Seo J S,etal.Expression of a bifunctional fusion of theEscherichiacoligenes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth[J].Plant Physiology,2003,131:516-524.
[36]Wu R,Garg A.Engineering rice plants with trehalose-producing genes improves tolerance to drought,salt,and low temperature[R].ISB News Report,2003.
[37]Abebe T,Guenzi A C,Martin B,etal.Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity[J].Plant Physiology,2003,131:1748-1755.
[38]Karakas B,Ozias-Akins P,Stushnoff C,etal.Salinity and drought tolerance of mannitol-accumulating transgenic tobacco[J].Plant,Cell & Environment,1997,20:609-616.
[39]Wojtaszek P.Oxidative burst:an early plant response to pathogen infection[J].Biochemical Journal,1997,322:681-692.
[40]賈學(xué)靜,董立花,丁春邦,等.干旱脅迫對(duì)金心吊蘭葉片活性氧及其清除系統(tǒng)的影響[J].草業(yè)學(xué)報(bào),2013,22(5):248-255.
[41]Wang F Z,Wang Q B,Kwon S Y,etal.Enhanced drought tolerance of transgenic rice plants expressing apea manganese superoxide dismutase[J].Journal of Plant Physiology,2005,162:465-472.
[42]Mittler R,Zilinskas B A.Regulation of pea cytosolic ascorbate peroxidase and other antioxidant enzymes during the progression of drought stress and following recovery from drought[J].The Plant Journal,1994,5:397-405.
[43]Lee S H,Ahsan N,Lee K W,etal.Simultaneous overexpression of both Cu/Zn superoxide dismutase and ascorbate peroxidase in transgenic tall fescue plants confers increased tolerance to a wide range of abiotic stresses[J].Journal of Plant Physiology,2007,164:1626-1638.
[44]Luna C M,Pastori G M,Driscoll S,etal.Drought controls on H2O2accumulation,catalase(CAT)activity and CAT gene expression in wheat[J].Journal of Experimental Botany,2005,56:417-423.
[45]Shikanai T,Takeda T,Yamauchi H,etal.Inhibition of ascorbate peroxidase under oxidative stress in tobacco having bacterial catalase in chloroplasts[J].FEBS Letters,1998,428:47-51.
[46]Rizhsky L,Hallak-Herr E,Van Breusegem F,etal.Double antisense plants lacking ascorbate peroxidase and catalase are less sensitive to oxidative stress than single antisense plants lacking ascorbate peroxidase or catalase[J].The Plant Journal,2002,32:329-342.
[47]Munne-Bosch S.The role ofα-tocopherol in plant stress tolerance[J].Journal of Plant Physiology,2005,162:743-748.
[48]俞樂(lè),劉擁海,周麗萍,等.干旱脅迫下結(jié)縷草葉片抗壞血酸與相關(guān)生理指標(biāo)變化的品種差異研究[J].草業(yè)學(xué)報(bào),2013,22(4):106-115.
[49]Akashi K,Miyake C,Yokota A.Citrulline,a novel compatible solute in drought-tolerant wild watermelon leaves,is an effi-cient hydroxyl radical scavenger[J].FEBS Letters,2001,508:438-442.
[50]Kusvuran S,Dasgan H Y,Abak K.Citrulline is an important biochemical indicator in tolerance to saline and drought stresses in melon[J].The Scientific World Journal,2013,8:11-55.
[51]Groppa M D,Benavides M P.Polyamines and abiotic stress:recent advances[J].Amino Acids,2008,34:35-45.
[52]劉義,張春梅,謝曉蓉,等.干旱脅迫對(duì)紫花苜蓿葉片和根系多胺代謝的影響[J].草業(yè)學(xué)報(bào),2012,21(6):102-107.
[53]Alcázar R,Altabella T,Marco F,etal.Polyamines:molecules with regulatory functions in plant abiotic stress tolerance[J].Planta,2010,231:1237-1249.
[54]Alcázar R,Marco F,Cuevas J C,etal.Involvement of polyamines in plant response to abiotic stress[J].Biotechnology Letters,2006,28:1867-1876.
[55]Kasukabe Y,He L,Nada K,etal.Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenicArabidopsisthaliana[J].Plant and Cell Physiology,2004,45:712-722.
[56]Urano K,Yoshiba Y,Nanjo T,etal.Arabidopsisstress-inducible gene for arginine decarboxylase AtADC2is required for accumulation of putrescine in salt tolerance[J].Biochemical and Biophysical Research Communications,2004,313:369-375.
[57]Vaucheret H.Post-transcriptional small RNA pathways in plants:mechanisms and regulations[J].Genes & Development,2006,20:759-771.
[58]Sunkar R,Zhu J K.Novel and stress-regulated microRNAs and other small RNAs fromArabidopsis[J].Plant Cell,2004,16:2001-2019.
[59]Jones-Rhoades M W,Bartel D P.Computational identification of plant microRNAs and their targets,including a stress-induced miRNA[J].Molecular Cell,2004,14:787-799.
[60]Arenas-Huertero C,Perez B,Rabanal F,etal.Conserved and novel miRNAs in the legumePhaseolusvulgarisin response to stress[J].Plant Molecular Biology Reporter,2009,70:385-401.
[61]Liu H H,Tian X,Li Y J,etal.Microarray-based analysis of stress-regulated microRNAs inArabidopsisthaliana[J].RNA,2008,14:836-843.
[62]Lu S,Sun Y H,Chiang V L.Stress-responsive microRNAs in Populus[J].Plant Journal,2008,55:131-151.
[63]Yamaguchi-Shinozaki K,Shinozaki K.Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters[J].Trends in Plant Science,2005,10:88-94.
[64]Wang W,Vinocur B,Altman A.Plant responses to drought,salinity and extreme temperatures:towards genetic engineering for stress tolerance[J].Planta,2003,218:1-14.
[65]Qin F,Sakuma Y,Li J,etal.Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression inZeamaysL[J].Plant and Cell Physiology,2004,45:1042-1052.
[66]Novillo F,Alonso J M,Ecker J R,etal.CBF2/DREB1Cis a negative regulator of CBF1/DREB1Band CBF3/DREB1Aexpression and plays a central role in stress tolerance inArabidopsis[J].Proceedings of the National Academy of Sciences of the United States of America,2004,101:3985-3990.
[67]Pellegrineschi A,Reynolds M,Pacheco M,etal.Stress-induced expression in wheat of theArabidopsisthalianaDREB1A gene delays water stress symptoms under greenhouse conditions[J].Genome,2004,47:493-500.
[68]Oh S J,Song S I,Kim Y S,etal.ArabidopsisCBF3/DREB1AandABF3in transgenic rice increased tolerance to abiotic stress without stunting growth[J].Plant Physiology,2005,138:341-351.
[69]Aharoni A,Dixit S,Jetter R,etal.The SHINE clade of AP2domain transcription factors activates wax biosynthesis,alters cuticle properties,and confers drought tolerance when overexpressed inArabidopsis[J/OL].The Plant Cell Online,2004,16:2463-2480.
[70]Zhang J Y,Broeckling C D,Blancaflor E B,etal.Overexpression of WXP1,aputativeMedicagotruncatulaAP2domaincontaining transcription factor gene,increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa(Medicagosativa)[J].The Plant Journal,2005,42:689-707.
[71]Guo Q,Zhang J,Gao Q,etal.Drought tolerance through overexpression of monoubiquitin in transgenic tobacco[J].Journal of Plant Physiology,2008,165:1745-1755.
[72]Quan R,Shang M,Zhang H,etal.Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize[J].Plant Biotechnology Journal,2004,2:477-486.
[73]Vendruscolo E C G,Schuster I,Pileggi M,etal.Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat[J].Journal of Plant Physiology,2007,164:1367-1376.