• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    狗牙根和雙穗雀稗根中質(zhì)外體屏障結(jié)構(gòu)發(fā)育過程的比較研究

    2013-12-31 00:00:00張霞楊朝東寧國貴
    湖北農(nóng)業(yè)科學(xué) 2013年20期

    摘要:狗牙根(Cynodon dactylon)和雙穗雀稗(Paspalum distichum)幼嫩期根中質(zhì)外體屏障結(jié)構(gòu)包括內(nèi)側(cè)的內(nèi)皮層細胞壁的凱氏帶、栓質(zhì)層和木質(zhì)層;外側(cè)的外皮層細胞壁的凱氏帶、栓質(zhì)層和木質(zhì)層。成熟根中質(zhì)外體屏障結(jié)構(gòu)包括內(nèi)側(cè)的內(nèi)皮層細胞壁的凱氏帶、栓質(zhì)層、木質(zhì)層和靠近內(nèi)皮層栓質(zhì)化和木質(zhì)化的1~2層皮層細胞;外側(cè)的仍為外皮層細胞壁的凱氏帶、栓質(zhì)層和木質(zhì)層。不同點在于雙穗雀稗幼嫩期根表皮細胞有擴散狀栓質(zhì)層,而且內(nèi)皮層木質(zhì)化較遲;狗牙根靠近內(nèi)皮層栓質(zhì)化和木質(zhì)化的1~2層皮層細胞沉積很早。

    關(guān)鍵詞:狗牙根(Cynodon dactylon);雙穗雀稗(Paspalum distichum);質(zhì)外體屏障結(jié)構(gòu);組織化學(xué);時空發(fā)育

    中圖分類號:S688.4 文獻標(biāo)識碼:A 文章編號:0439-8114(2013)20-4991-04

    The Developmental Comparison of Apoplastic Barriers in Cynodon dactylon and Paspalum distichum Roots

    ZHANG Xia1,YANG Chao-dong1,NING Guo-gui2

    (1.College of Gardening and Horticulture, Yangtze University,Jingzhou 434025,Hubei,China;

    2.College of Horticulture and Forestry Sciences, Huazhong Agricultural University,Wuhan 430070,China)

    Abstract: The apoplastic barriers of the Cynodon dactylon and Paspalum distichum roots are consisted of two layers at young development stage. The inner layer is the endodermis with Casparian walls, suberin lamellae and lignified secondary cell walls. The outer is the exodermis with Casparian walls, suberin lamellae and lignified. The apoplastic barriers of the matured roots of the two species also had two layers with the inner endodermis of Casparian walls, suberin lamellae, lignified secondary cell walls, the suberized and lignified cortex cell walls adjacent to endodermis and the outer exodermis of Casparian walls, suberin lamellae and lignified. The difference is the epidermis cell of the Paspalum distichum having diffused suberin in young roots and the endodermis is lignified very later. The suberized and lignified cortex cell walls adjacent to endodermis of the Cynodon dactylon is lignified very early.

    Key words: Cynodon dactylon; Paspalum distichum; apoplastic barriers; histochemistry; spatio-temporal development

    濕地植物和水生植物也稱為“防水植物”,質(zhì)外體屏障結(jié)構(gòu)防止水環(huán)境中過多水分、離子對植物造成危害,體內(nèi)氧氣擴散到環(huán)境中去[1,2]。通氣組織為濕地植物各組織器官儲藏、輸導(dǎo)氧氣的重要結(jié)構(gòu),使植物受到洪水脅迫后繼續(xù)進行正常生命活動而存活[3]。試驗證實植物體內(nèi)氧氣常在根的根尖和側(cè)根穿過皮層的部位,根莖的莖尖和鱗葉部位有釋放,稱之為徑向氧損失(ROL)[4,5],而且細胞膜的水通道蛋白既是水分子通道,也是氧氣的通道[6,7];然而,濕地植物水稻、蘆葦根中的質(zhì)外體屏障結(jié)構(gòu)能阻擋徑向氧的釋放[4,5,8-14],以及限制根中水、離子的自由移動[10-17],這表明質(zhì)外體屏障結(jié)構(gòu)是濕地植物的重要保護裝置。

    植物根中質(zhì)外體屏障包括常見的內(nèi)、外皮層細胞初生壁的凱氏帶,次生壁的栓質(zhì)層和木質(zhì)層[2,9-20],還有根內(nèi)皮層及其鄰近皮層細胞,根外皮層和表皮細胞層[16,20],有可能因為根的內(nèi)、外皮層來源于根尖同一初始子細胞(CEEID),成熟時它們有相似的質(zhì)外體屏障結(jié)構(gòu)組成[21]。盡管對狗牙根等植物體中的質(zhì)外體屏障分布有所研究[20],但對如狗牙根(Cynodon dactylon)、雙穗雀稗(Paspalum distichum)和牛鞭草(Hemarthria altissima)等忍耐6個月以上長期淹沒植物[22-26]的根中各細胞層不同發(fā)育時期凱氏帶、栓質(zhì)層和木質(zhì)層的沉積變化過程鮮有報道。

    1 材料與方法

    用于解剖的狗牙根和雙穗雀稗采自湖北荊州陸生新鮮植株,F(xiàn)AA固定備用。在立體解剖鏡下,用雙面刀片距根尖5、15、25和80 mm分別切片。蘇丹紅7B染色切片檢測細胞壁栓質(zhì)化[27];硫氫酸黃連素-苯氨藍對染切片確定細胞壁凱氏帶和木質(zhì)化[18,28],其中凱氏帶呈現(xiàn)生動黃色,而木質(zhì)化細胞壁呈現(xiàn)呆滯濃厚黃色;鹽酸-間苯三酚對染切片檢驗細胞壁木質(zhì)化為細胞壁組織化學(xué)研究內(nèi)容,在明場和熒光下的顯微照相參照文獻[20]的技術(shù)和方法。有關(guān)組織化學(xué)名詞的現(xiàn)代含義和解釋參照文獻[2]。

    2 結(jié)果與分析

    2.1 狗牙根根中質(zhì)外體屏障發(fā)育過程

    狗牙根根中離根尖5 mm的內(nèi)、外皮層初生壁凱氏帶已出現(xiàn),2層細胞的外皮層凱氏帶呈“H”或者“Y”形態(tài)(圖1A);內(nèi)、外皮層次生壁也已有栓質(zhì)層沉積,除內(nèi)皮層上的通道細胞外(圖1B);但是內(nèi)、外皮層次生壁木質(zhì)化還不明顯(圖1C)。距離根尖15 mm根中的內(nèi)、外皮層凱氏帶、栓質(zhì)層進一步增強,內(nèi)、外皮層細胞次生壁已經(jīng)明顯木質(zhì)化,靠近內(nèi)皮層的1~2層皮層細胞壁也木質(zhì)化(圖1D、1E、1F)。距離根尖25 mm時的最大變化為靠近內(nèi)皮層的1~2層皮層細胞壁也已經(jīng)木質(zhì)化(圖1G、1H、1I),即此時靠近內(nèi)皮層的1~2層皮層細胞壁既栓質(zhì)化又木質(zhì)化。在老根區(qū)域(距根尖80 mm),內(nèi)、外皮層次生壁完全栓質(zhì)化和木質(zhì)化,靠近內(nèi)皮層的1~2層皮層細胞壁也完全栓質(zhì)化和木質(zhì)化(圖1J、1K、1L)。

    狗牙根幼嫩期根中質(zhì)外體屏障包括內(nèi)側(cè)的內(nèi)皮層細胞壁的凱氏帶、栓質(zhì)層和木質(zhì)層;外側(cè)的外皮層細胞壁的凱氏帶、栓質(zhì)層和木質(zhì)層。成熟根中質(zhì)外體屏障包括內(nèi)側(cè)的內(nèi)皮層細胞壁的凱氏帶、栓質(zhì)層和木質(zhì)層,和靠近內(nèi)皮層栓質(zhì)化和木質(zhì)化的1~2層皮層細胞;外側(cè)的仍為外皮層細胞壁的凱氏帶、栓質(zhì)層和木質(zhì)層。

    2.2 雙穗雀稗根中質(zhì)外體屏障發(fā)育過程

    雙穗雀稗根中離根尖5 mm的內(nèi)、外皮層初生壁凱氏帶已出現(xiàn),2層細胞的外皮層凱氏帶呈“H”或者“Y”形態(tài),表皮細胞壁有擴散狀栓質(zhì)化(圖2A);內(nèi)、外皮層次生壁也已有栓質(zhì)層沉積(圖2B);外皮層次生壁開始木質(zhì)化(圖2C)。距離根尖15 mm根中的內(nèi)、外皮層凱氏帶、栓質(zhì)層進一步增強,此時還是僅有外皮層次生壁木質(zhì)化(圖2D、2E、2F)。距離根尖25 mm時外皮層次生壁木質(zhì)化進一步增強,但內(nèi)皮層次生壁尚未木質(zhì)化 (圖2G、2H、2I)。在老根區(qū)域(距根尖80 mm),內(nèi)、外皮層次生壁完全栓質(zhì)化和木質(zhì)化,靠近內(nèi)皮層的1~2層皮層細胞壁完全栓質(zhì)化和木質(zhì)化(圖2J、2K、2L)。

    雙穗雀稗幼嫩期根中質(zhì)外體屏障包括內(nèi)側(cè)的內(nèi)皮層細胞壁的凱氏帶、栓質(zhì)層和木質(zhì)層;外側(cè)的外皮層細胞壁的凱氏帶、栓質(zhì)層和木質(zhì)層、有擴散狀栓質(zhì)層的表皮細胞。成熟根中質(zhì)外體屏障包括內(nèi)側(cè)的內(nèi)皮層細胞壁的凱氏帶、栓質(zhì)層和木質(zhì)層、靠近內(nèi)皮層栓質(zhì)化和木質(zhì)化的1~2層皮層細胞;外側(cè)由外皮層細胞壁的凱氏帶、栓質(zhì)層和木質(zhì)層組成。

    3 小結(jié)與討論

    狗牙根和雙穗雀稗幼嫩期根中質(zhì)外體屏障包括內(nèi)側(cè)的內(nèi)皮層細胞壁的凱氏帶、栓質(zhì)層和木質(zhì)層;外側(cè)的外皮層細胞壁的凱氏帶、栓質(zhì)層和木質(zhì)層。成熟根中質(zhì)外體屏障包括內(nèi)側(cè)的內(nèi)皮層細胞壁的凱氏帶、栓質(zhì)層和木質(zhì)層、靠近內(nèi)皮層栓質(zhì)化和木質(zhì)化的1~2層皮層細胞;外側(cè)為外皮層細胞壁的凱氏帶、栓質(zhì)層和木質(zhì)層。兩者根中質(zhì)外體屏障的不同點在于雙穗雀稗幼嫩期根表皮細胞有擴散狀栓質(zhì)層,而且內(nèi)皮層木質(zhì)化較遲。狗牙根靠近內(nèi)皮層栓質(zhì)化和木質(zhì)化的1~2層皮層細胞沉積很早。

    與水稻、玉米和香蒲研究結(jié)果比較,內(nèi)、外皮層細胞壁質(zhì)外體屏障發(fā)育順序基本是先有初生壁的凱氏帶,后有次生壁的栓質(zhì)化和木質(zhì)化,通常外皮層的質(zhì)外體屏障先發(fā)育完全。在有外界水或者其他脅迫條件下,次生壁的栓質(zhì)化和木質(zhì)化比對照組的發(fā)育早而且快速,并且可以誘導(dǎo)出木質(zhì)層[10,12-14,18]。可見不同植物根中質(zhì)外體屏障結(jié)構(gòu)的發(fā)育過程有所不同,而且容易受到環(huán)境的脅迫誘導(dǎo)和提前發(fā)育。

    參考文獻:

    [1] BAILEY-SERRES J, LEE S C, BRINTON E. Waterproofing crops: effective flooding survival strategies[J]. Plant Physiology,2012,160(4):1698-1709.

    [2] 楊朝東,張 霞,劉國鋒,等.植物根中質(zhì)外體屏障結(jié)構(gòu)和生理功能研究進展[J]. 植物研究,2013,33(1):114-119.

    [3] JUSTIN S H, ARMSTRONG W. The anatomical characteristics of roots and plant response to soil flooding[J]. New Phytologist,1987,106(3):465-495.

    [4] ARMSTRONG J, JONES R E, ARMSTRONG W. Rhizome phyllosphere oxygenation in Phragmites and other species in relation to redox potential, convective gas flow, submergence and aeration pathways[J]. New Phytologist,2006,172(4):719-731.

    [5] ARMSTRONG W, COUSINS D, ARMSTRONG J, et al. Oxygen distribution in wetland plant roots and permeability barriers to gas-exchange with the rhizosphere: A micro-electrode and modelling study with Phragmites australis[J]. Annals of Botany,2000,86(3):687-703.

    [6] CHEN LM, ZHAO J, MUSA-AZIZ R,et al. Cloning and characterization of a zebrafish homologue of human AQP1: A bifunctional water and gas channel[J]. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology,2010,299(5):1163-1174.

    [7] WANG Y, COHEN J, BORON W F, et al. Exploring gas permeability of cellular membranes and membrane channels with molecular dynamics[J]. Journal of Structural Biology,2007, 157(3):534-544.

    [8] COLMER T D, GIBBERD M R, WIENGWEERA A, et al. The barrier to radial oxygen loss from roots of rice(Oryza sativa L.) is induced by growth in stagnant solutions[J]. Journal of Experimental Botany,1998,49(325):1431-1436.

    [9] SOUKUP A,ARMSTRONG W, SCHREIBER L,et al. Apoplastic barriers to radial oxygen loss and solute penetration: a chemical and functional comparison of the exodermis of two wetland species, phragmites australis and glyceria maxima[J]. New Phytologit,2007,173(2):264-278.

    [10] RANATHUNGE K, LIN J, STEUDLE E, et al. Stagnant deoxygenated growth enhances root suberization and lignifications but differentially affects water and NaCl permeabilities in rice (Oryza sativa L.) roots[J]. Plant, Cell and Environment,2011,34(8):1223-1240.

    [11] SHIONO K, OGAWA S, YAMAZAKI S, et al. Contrasting dynamics of radial O2-loss barrier induction and aerenchyma formation in rice roots of two lengths[J]. Annals of Botany,2011,107(1):89-99.

    [12] KOTULA L, RANATHUNGE K, SCHREIBER L, et al. Functional and chemical comparison of apoplastic barriers to radial oxygen loss in roots of rice grown in aerated or deoxygenated solution[J]. Journal of Experimental Botany,2009, 60(7):2155-2167.

    [13] KOTULA L, RANATHUNGE K, STEUDLE E. Apoplastic barriers effectively block oxygen permeability across outer cell layers of rice roots under deoxygenated conditions: roles of apoplastic pores and of respiration[J]. New Phytologist,2009, 184(4):909-917.

    [14] ABIKO T, KOTULA L, SHIONO K, et al. Enhanced formation of aerenchyma and induction of a barrier to radial oxygen loss in adventitious roots of Zea nicaraguensis contribute to its waterlogging tolerance as compared with maize(Zea mays ssp. mays)[J].Plant,Cell Environment,2012,35(9):1618-1630.

    [15] ENSTONE D E, PETERSON C A, MA F. Root endodermis and exodermis: structure, function, and responses to the environment[J]. Journal Plant Growth Regulation,2002,21(4):335-351.

    [16] HOSE E, CLARKSON D T, STEUDLE E, et al. The exodermis: a variable apoplastic barrier[J]. Journal of Experimental Botany,2001,52(365):2245-2264.

    [17] SCHREIBER L. Transport barriers made of cutin, suberin and associated waxes[J]. Journal of Trends in Plant Science,2010,15(10):546-553.

    [18] SEAGO J L, PETERSON C A, ENSTONE D E,et al. Development of the endodermis and hypodermis of Typha glauca Godr. and T. angustifolia L. roots[J]. Canada Journal Botany, 1999,77(1):122-134.

    [19] WADUWARA C I, WALCOTT S E, PETERSON C A. Suberin lamellae of the onion root endodermis: Their pattern of development and continuity[J]. Canada Journal Botany,2008,86(6):623-632.

    [20] YANG C, ZHANG X, ZHOU C, et al. Root and stem anatomy and histochemistry of four grasses from the Jianghan Floodplain along the Yangtze River, China[J]. Flora,2011,206(7):653-661.

    [21] PAULUZZI G, DIVOL F, PUIG J, et al. Surfing along the root ground tissue gene network[J]. Development Biology,2012,365(1):14-22.

    [22] 王海鋒,曾 波,李 婭,等.長期完全水淹對4種三峽庫區(qū)岸生植物存活及恢復(fù)生長的影響[J].植物生態(tài)學(xué)報,2008,32(5):977-984.

    [23] 譚淑端,張守君,張克榮,等.長期深淹對三峽庫區(qū)三種草本植物的恢復(fù)生長及光合特性的影響[J].武漢植物學(xué)研究,2009,27(4):391-396.

    [24] 孫 榮,袁興中,劉 紅,等.三峽水庫消落帶植物群落組成及物種多樣性[J].生態(tài)學(xué)雜志,2011, 30(2):208-214.

    [25] 王建超,朱 波,汪 濤.三峽庫區(qū)典型消落帶淹水后草本植被的自然恢復(fù)特征[J].長江流域資源與環(huán)境,2011,20(5):603-610.

    [26] LIAO J, JIANG M, LI L. Effects of simulated submergence on survival and recovery growth of three species in water fluctuation zone of the Three Gorges reservoir[J].Acta Ecologica Sinica,2010,30(4):216-220.

    [27] BRUNDRETT M C, KENDRICK B, PETERSON C A. Efficient lipid staining in plant material with Sudan red 7B or Fluorol yellow 088 in polyethylene glycol-glycerol[J]. Biotech Histochem,1991,66(3):111-116.

    [28] BRUNDRETT M C, ENSTONE D E, PETERSON C A. A berberine-aniline blue fluorescent staining procedure for suberin, lignin and callose in plant tissue[J]. Protoplasma,1988,146(2-3):133-142.

    安溪县| 长沙市| 彩票| 江门市| 成安县| 韶山市| 玉树县| 岳普湖县| 涟源市| 新竹县| 梁山县| 昌宁县| 吉安县| 民丰县| 南京市| 自治县| 岫岩| 宣化县| 金湖县| 松滋市| 夹江县| 舟曲县| 高平市| 响水县| 水富县| 花莲市| 红桥区| 滦南县| 平邑县| 招远市| 荣成市| 永德县| 贵州省| 三台县| 恩施市| 象山县| 准格尔旗| 东丽区| 大丰市| 林甸县| 宁武县|