摘要:對(duì)果樹(shù)中花青苷合成方面的相關(guān)研究進(jìn)展進(jìn)行了綜述。分別從結(jié)構(gòu)基因和調(diào)節(jié)基因兩個(gè)方面對(duì)花青苷合成的分子機(jī)理進(jìn)行了總結(jié)和分析,同時(shí)探討了環(huán)境因子對(duì)花青苷積累的影響,對(duì)花青苷合成機(jī)理中的疑點(diǎn)及研究前景進(jìn)行了展望。
關(guān)鍵詞:花青苷;合成;基因;機(jī)理;果樹(shù)
中圖分類(lèi)號(hào):S66;Q946.83 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):0439-8114(2013)20-4857-05
Advances on the Research of Anthocyanin Synthesis in Fruit Trees
WANG Hui-liang,HE Hua-ping,GONG Lin-zhong,WANG Fu-rong,LIU Yong,ZHU Xiao-min
(Institute of Fruit and Tea,Hubei Academy of Agricultural Sciences/Fruit and Tea Subcenter of Hubei Innovation Center of Agricultural Science and Technology,Wuhan 430209, China)
Abstract: In this paper, the advance on the research of anthocyanin synthesis in fruit trees is reviewed. The molecular mechanism of anthocyanin synthesis is summarized and analyzed from both structural gene and regulatory gene. Influences of environmental factors on anthocyanin accumulation are discussed. Doublts of mechanisms of anthyocyanin synthesis and prospects of research is proposed.
Key words: anthocyanin; synthesis; gene; mechanism; fruit trees
果實(shí)顏色是果實(shí)的重要經(jīng)濟(jì)性狀?;ㄇ嘬帐穷?lèi)黃酮合成途徑的合成產(chǎn)物之一,是多種花和果實(shí)中紅色、紫色、藍(lán)色等顏色的呈色物質(zhì)?;ㄇ嘬赵谥参镏邪缪葜匾慕巧?,如吸引傳粉、種子傳播、減少UV光損傷、抗病原體的侵染等[1,2]。此外,花青苷還具有抗氧化活性,并且對(duì)人體健康具有潛在好處,如可預(yù)防癌癥、炎癥、冠狀動(dòng)脈硬化等疾病[3-6]。
近年來(lái),花青苷合成機(jī)理研究成為當(dāng)前研究的熱點(diǎn),在這方面研究的科研成果,對(duì)于加深人們對(duì)花青苷合成機(jī)理的認(rèn)識(shí),加快培育富含花青苷的優(yōu)良果樹(shù)新品種具有重要意義。在果樹(shù)方面,花青苷的很多結(jié)構(gòu)基因及各種調(diào)節(jié)基因已經(jīng)被克隆并進(jìn)行了詳細(xì)的分析驗(yàn)證,其中,對(duì)蘋(píng)果和葡萄的相關(guān)研究較為深入。研究表明,部分調(diào)節(jié)基因的表達(dá)受環(huán)境因子的影響,如光照、溫度、營(yíng)養(yǎng)狀況等[7-13],因此,環(huán)境因子也可影響花青苷的合成。為此,本文對(duì)近幾年來(lái)有關(guān)果實(shí)花青苷積累的調(diào)控機(jī)理研究進(jìn)行了綜述。
1 花青苷形成的分子機(jī)理
1.1 花青苷生物合成途徑
花青苷合成(圖1)起始于苯丙氨酸解氨酶(PAL)催化的苯丙氨酸到肉桂酸的反應(yīng),PAL是苯丙烷類(lèi)代謝途徑中的第一個(gè)酶。而后在肉桂酸羥化酶(C4H)和對(duì)香豆酰CoA連接酶(4CL)的催化下形成香豆素-CoA,1分子香豆素-CoA與來(lái)自乙酸的3分子丙二酰-CoA在查爾酮合成酶(CHS)的催化下形成黃色的4-羥基查爾酮,查爾酮異構(gòu)酶(CHI)催化4-羥基查爾酮形成無(wú)色的柚苷配基,即4,5,7-3羥基黃烷酮。這是第一個(gè)穩(wěn)定的類(lèi)黃酮化合物,它經(jīng)不同酶的修飾可形成不同的類(lèi)黃酮化合物。這些修飾作用包括羥基化、甲基化、?;?、糖基化及還原作用,在各種植物中能形成3 500種以上不同類(lèi)黃酮衍生物。其中,形成花青苷的途徑是柚苷配基在黃烷酮-3-羥化酶(F3H)的作用下轉(zhuǎn)化為二氫黃酮醇(DHK),DHK在類(lèi)烷酮-3′-羥化酶(F3′H)的作用下形成二氫櫟皮酮(DHQ),DHQ經(jīng)二氫黃酮醇-4-還原酶(DFR)還原成無(wú)色花青素,再經(jīng)花青素合成酶(ANS) 合成顯色的花青素。最后在葡萄糖基轉(zhuǎn)移酶(UFGT)的作用下生成各種花青苷[14-21]。
1.2 結(jié)構(gòu)基因與花青苷的合成
起初,關(guān)于花青苷合成機(jī)理的研究,主要集中在代謝途徑上相關(guān)結(jié)構(gòu)基因的研究。前人研究表明,擬南芥、蘋(píng)果、荔枝、葡萄等植物中的PAL、CHI、DFR、UFGT等花青苷合成相關(guān)酶與花青苷的合成關(guān)系密切,但對(duì)不同酶在花青苷合成中的作用大小,研究結(jié)果卻不盡一致[22-24]。
Honda等[25]分離了CHS、F3H、DFR、ANS、UFGT等5個(gè)花青苷合成的結(jié)構(gòu)基因,首次報(bào)道了花青苷合成酶基因間協(xié)調(diào)表達(dá)與蘋(píng)果著色的關(guān)系,在果實(shí)成熟階段,紅色品種紅玉和富士中的表達(dá)量遠(yuǎn)遠(yuǎn)高于在黃色品種王林中的表達(dá)量,花青苷合成相關(guān)基因的表達(dá)水平與花青素濃度呈正相關(guān)。Kim等[26]從cDNA文庫(kù)中分離了F3H、DFR、ANS、UFGT的cDNA序列,推導(dǎo)的氨基酸序列與其他植物基因序列具有高度的同源性。Takos等[27]克隆了3個(gè)與縮合單寧(CT)合成相關(guān)的酶基因和2個(gè)無(wú)色花青素還原酶基因(MdLAR1、MdLAR2),發(fā)現(xiàn)在果實(shí)成熟過(guò)程中,當(dāng)其他路徑基因高水平轉(zhuǎn)錄、花青苷大量積累的時(shí)候,CT的豐度卻很少。此外,利用已知的結(jié)構(gòu)基因序列合成引物,從葡萄、蘋(píng)果、草莓、藍(lán)莓中克隆了CHS、CHI、F3H、DFR、ANS、UFGT等結(jié)構(gòu)基因[19,28,29]。
許多研究表明[23,30,31],果樹(shù)中花青苷合成途徑與玉米、矮牽牛、擬南芥、金魚(yú)草中的合成途徑基本相同,結(jié)構(gòu)基因同源性很高。Kondo等[32]研究指出,在蘋(píng)果果實(shí)發(fā)育過(guò)程中,CHS、F3H、DFR、ANS、UFGT 5個(gè)基因協(xié)同表達(dá),這些基因的表達(dá)水平與花青苷積累呈正相關(guān)。不同果實(shí)中甚至是果實(shí)的不同發(fā)育階段、果實(shí)的不同組織部位,這些酶的功能也可能不盡相同[33]。
1.3 調(diào)節(jié)基因與花青苷的合成
與其他物種一樣,果樹(shù)中花青苷結(jié)構(gòu)基因的表達(dá)受一個(gè)由MYB轉(zhuǎn)錄因子(TF)、基本螺旋-環(huán)-螺旋TF(bHLH)、WD重復(fù)蛋白組成的復(fù)合物(MBW)的調(diào)控,對(duì)蘋(píng)果和葡萄中關(guān)于轉(zhuǎn)錄因子調(diào)控花青苷合成的研究較為深入,很多轉(zhuǎn)錄因子已經(jīng)被分離驗(yàn)證(圖1)。
在蘋(píng)果上,成功分離得到3個(gè)MYB基因MdMYB1、MdMYBA、MdMYB10,經(jīng)驗(yàn)證表明這3個(gè)基因都屬于R2R3類(lèi)基因,并且調(diào)控花青苷的積累[23,30]。Wang等[34]認(rèn)為這3個(gè)基因互為等位基因。該基因的甲基化程度差異決定了蘋(píng)果果皮的不同著色模式[35]。蘋(píng)果果實(shí)紅肉性狀與MdMYB10啟動(dòng)子區(qū)的一個(gè)增強(qiáng)子原件有關(guān),并且此基因具有自我調(diào)節(jié)功能[36]。蘋(píng)果果皮紅色受MdMYB1 和MdMYBA的調(diào)控[23,37]。前人研究表明,MYB類(lèi)需借助于bHLH伴侶蛋白來(lái)促進(jìn)花青苷的積累。在蘋(píng)果上,克隆得到2個(gè)類(lèi)似bHLH共轉(zhuǎn)錄因子(MdbHLH3和MdbHLH33),這2個(gè)因子參與激活結(jié)構(gòu)基因及MYB10的表達(dá),并且MYB10與MdbHLH3的結(jié)合比與MdbHLH33的結(jié)合更能有效地促進(jìn)結(jié)構(gòu)基因的轉(zhuǎn)錄[30]。
在葡萄上,VvMYBA1和VvMYBA2特異調(diào)控UFGT基因的表達(dá),從而調(diào)節(jié)果實(shí)著色。果皮著色深淺與VvMYBA1和VvMYBA2之間的加性效應(yīng)有關(guān)[38-40],兩基因同時(shí)失活會(huì)導(dǎo)致果皮因無(wú)法合成花青苷而呈白色[41]。其他有些MYB因子(如VvMYB5a和VvMYB5b)參與了苯丙氨酸反應(yīng)途徑的支路反應(yīng),這也包括花青苷生成途徑。轉(zhuǎn)化VvMYB5a基因的煙草,其單寧含量增加[42]。Deluc等[43]研究表明VvMYB5b基因參與調(diào)控花青苷和原花青苷的合成。葡萄上已經(jīng)分離得到了2個(gè)bHLH蛋白(VvMYCA1、VvMYC1)和2個(gè)WD蛋白(VvWDR1、VvWDR2)。VvMYCA1和VvWDR1對(duì)花青苷的合成都具有正調(diào)控作用,VvWDR1并不直接作用于結(jié)構(gòu)基因,而可能是通過(guò)與MYB/bHLH結(jié)合成復(fù)合體的方式起作用,VvMYCA1則可能是調(diào)控UFGT和ANR的表達(dá)。其他果實(shí)上也對(duì)MYB類(lèi)因子進(jìn)行了研究,如梨[44]、楊梅[45]、草莓[46]等。研究表明,部分MYB類(lèi)基因?qū)ㄇ嘬盏暮铣删哂胸?fù)調(diào)控作用,Wang等[47]的研究表明,蘋(píng)果中MdMYB17基因的表達(dá)減少了花青苷的積累。
2 外在因素對(duì)花青苷合成的影響
光照是影響花青苷合成最重要的環(huán)境因子之一[48,49]。完全不照光的果實(shí)中,沒(méi)有花青苷的合成,光照強(qiáng)度低于全光照的50%時(shí),隨著光照強(qiáng)度的增強(qiáng),花青苷濃度增加[50]。不同著色強(qiáng)度品種花青苷合成對(duì)光強(qiáng)的需求量不同,深紅色品種著色比淺紅色品種容易,在較低的光強(qiáng)下也能較好著色[33]。光照影響花青苷合成在基因轉(zhuǎn)錄水平上起作用,但光影響結(jié)構(gòu)基因還是調(diào)控基因尚未研究清楚[51]。柳蘊(yùn)芬等[52]研究表明,套袋明顯抑制了桃果肉紅色的形成,套袋果實(shí)成熟時(shí)a*值為10.32,僅為不套袋果的19.4%;但如果套袋果實(shí)在采收前15 d摘袋,則見(jiàn)光后的果實(shí)果肉花青苷合成能力迅速恢復(fù),采收時(shí)花青苷含量達(dá)到248.85 nmol/g。杜紀(jì)紅等[53]的研究則表明,油桃果實(shí)套袋遮光處理后20 d,果皮中花青苷含量迅速下降并接近于0,此后一直保持較低的水平,直到果實(shí)成熟時(shí)略有回升,其含量?jī)H為對(duì)照的2%。Zhou等[54]的研究表明,經(jīng)黑暗處理后,紅色桃葉片中花青苷合成途徑上結(jié)構(gòu)基因的表達(dá)出現(xiàn)了下降趨勢(shì)。
光質(zhì)對(duì)花青苷的合成有著重要作用。紅光(R)照射離體套袋紅富士蘋(píng)果果實(shí)不著色,紫外光UVA(>320 nm)灼傷果實(shí)果皮而變褐色;UVB(280~320 nm)及其組合光源刺激果實(shí)PAL酶活性增加,促進(jìn)糖含量增長(zhǎng),并使果實(shí)花青苷大量積累,促進(jìn)紅富士蘋(píng)果著紅色。白光對(duì)紅富士蘋(píng)果果實(shí)PAL酶活性、花青苷及糖分含量的增加也有一定促進(jìn)作用,但不如UVB及其組合光源照射效果好[55]。
溫度在很大程度上影響了花青苷的合成,并一定程度上影響花青苷的穩(wěn)定性。溫度對(duì)花青苷合成的影響比較復(fù)雜,相對(duì)低溫促進(jìn)花青苷的合成,但也并不完全如此。溫度對(duì)于葡萄[56]、矮牽牛[57]、血橙[8]、玫瑰[58]等植物中營(yíng)養(yǎng)器官內(nèi)花青苷的積累具有重要作用。在蘋(píng)果、梨上,低溫處理增加了果實(shí)中的花青苷含量,并促進(jìn)了結(jié)構(gòu)基因的表達(dá)[9,59,60]。高溫處理的紅葉桃葉片,花青苷生物合成基因的表達(dá)受到抑制[54]。Cripps pink蘋(píng)果采后用高壓鈉燈照射,6 ℃較20 ℃處理花青苷積累多,而嘎拉和皇家嘎拉蘋(píng)果在紫外光-B(280~320 nm)照射下,20 ℃較10 ℃花青苷積累多[61]。Aki Queen李果實(shí)在著色開(kāi)始的1~3周內(nèi),果皮內(nèi)花青苷合成對(duì)溫度敏感[62],在此前后,高溫對(duì)果實(shí)著色均沒(méi)有太大的影響。
3 小結(jié)
發(fā)展富含花青苷的功能食品越來(lái)越為大家所關(guān)注?;诖耍蛛x得到調(diào)控花青苷積累的轉(zhuǎn)錄因子,并深入揭示花青苷合成的調(diào)控網(wǎng)絡(luò)迫在眉睫。近年來(lái),果樹(shù)中花青苷研究進(jìn)展迅速,蘋(píng)果、葡萄等的花青苷合成途徑已較為清楚,光照、溫度等外界因素對(duì)花青苷合成的影響也有了進(jìn)一步的研究,有些問(wèn)題已較為清晰。但是,果樹(shù)中分離得到的轉(zhuǎn)錄因子還十分有限,并且它們與光照、溫度等外界因子的交互作用還有待進(jìn)一步研究。通過(guò)深入研究外界環(huán)境因子與花青苷積累的相互作用關(guān)系,可以給人們提供很好的人工調(diào)控果實(shí)著色的新思路、新方法。通過(guò)研究控制花青苷合成的突變基因,有望開(kāi)發(fā)出可用于分子標(biāo)記輔助育種的分子標(biāo)記技術(shù),這對(duì)于加快紅肉果實(shí)的果樹(shù)育種具有重要意義。
參考文獻(xiàn):
[1] REGAN B C,JULLIOT C,SIMMEN B,et al.Fruits,foliage and the evolution of primate colour vision[J].Philos Trans R Soc Lond B Biol Sci,2001,356(1407):229-283.
[2] WINKEL-SHIRLEY B.Flavonoid biosynthesis.A colorful model for genetics,biochemistry,cell biology,and biotechnology[J].Plant Physiol,2001,126(2):485-493.
[3] BUTELLI E,TITTA L,GIORGIO M,et al.Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors[J].Nat Biotechnol,2008,26:1301-1308.
[4] LIU R H,LIU J,CHEN B.Apples prevent mammary tumors in rats[J].J Agric Food Chem,2005,53(6):2341-2343.
[5] NIJVELDT R J,VAN NOOD E,VAN HOORN D E,et al.Flavonoids: A review of probable mechanisms of action and potential applications[J].Am J Clin Nutr,2001,74(4):418-425.
[6] RASMUSSEN S E,F(xiàn)REDERIKSEN H,STRUNTZE KROGHOLM K,et al.Dietary proanthocyanidins: Occurrence,dietary intake,bioavailability,and protection against cardiovascular disease[J].Mol Nutr Food Res,2005,49(2):159-174.
[7] JEONG S T,GOTO-YAMANOTO G,KOBAYASHI S,et al.Effects of plant hormones and shading on the accumulation of anthocyanins and expression of anthocyanin biosynthetic genes in grape berry skins[J].Plant Sci,2004,167(2):247-252.
[8] LO PIERO A R,PUGLISI I,RAPISARDA P,et al.Anthocyanins accumulation and related gene expression in red orange fruit induced by low temperature storage[J]. J Agr Food Chem, 2005,53(23):9083-9088.
[9] UBI B E,HONDA C,BESSHO H,et al.Expression analysis of anthocyanin biosynthetic genes in apple skin: Effect of UV-B and temperature[J].Plant Sci,2006,170(3):571-578.
[10] GUO J,HAN W,WANG M H.Ultraviolet and environmental stresses involved in the induction and regulation of anthocyanin biosynthesis: A review[J]. Afr J Biotechnol,2008, 7(25):4966-4972.
[11] BUREAU S,RENARD C M G C,REICH M,et al.Change in anthocyanin concentrations in red apricot fruits during ripening[J].LWT-Food Sci Technol,2009,42(1):372-377.
[12] MORENO F P,MONAGAS M,BLANCH G P,et al.Enhancement of anthocyanins and selected aroma compounds in strawberry fruits through methyl jasmonate vapor treatment[J].Eur Food Res Technol,2010,230(6):989-999.
[13] CRIF?魹 T, IVANA PUGLISI I, PETRONE G, et al. Expression analysis in response to low temperature stress in blood oranges: Implication of the flavonoid biosynthetic pathway[J].Gene,2011,476(1-2):1-9.
[14] HOLTON T A,CORNISH E C.Genetics and biochemistry of anthocyanin biosynthesis[J].The Plant Cell,1995,7(7):1071-1083.
[15] BOSS P K,DAVIES C,ROBINSON S P.Analysis of the expression of anthocyanin pathway genes in developing Vitis vinifera L. cv Shiraz grape berries and the implications for pathway regdation[J]. Plant Physiology,1996,111(4):1059-1066.
[16] GROTEWOLD E.The genetics and biochemistry of floral pigments[J].Annual Review of Plant Biology,2006,57:761-780.
[17] BOGS J,EBADI A,MCDAVID D,et al.Identification of the flavonoid hydroxylases from grapevine and their regulation during fruit development[J].Plant Physiology,2006,140(1):279-291.
[18] 王惠聰,胡桂兵.果實(shí)花色苷代謝及其調(diào)控[A].張上隆,陳昆松.果實(shí)品質(zhì)形成與調(diào)控的分子生理[M].北京:中國(guó)農(nóng)業(yè)出版社,2007.
[19] HAN Y P,VIOMLMANGKANG S,SORIA-GUERRA R E,et al.Ectopic expression of apple F3′H genes contributes to anthocyanin accumulation in the Arabidopsis tt7 mutant grown under N stress[J].Plant Physiology,2010,153(2):806-820.
[20] 張 東,滕元文.紅梨資源及其果實(shí)著色機(jī)制研究進(jìn)展[J].果樹(shù)學(xué)報(bào),2011,28(3):485-492.
[21] PETRONI K,TONELLI C.Recent advance on the regulation of anthocyanin synthesis in reproductive organs[J].Plant Science, 2011,181(3):219-229.
[22] KOBAYASHI S,ISHIMARU M,DING C K,et al.Comparison of UDP-gucose: Flavonoid 3-O-glucosyltransferase (UFGT) gene sequences between white grapes (Vitis vinifera) and their sports with red skin[J]. Plant Science,2001,160(3):543-550.
[23] TAKOS A M,JAFFE F W,JACOB S R,et al.Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples[J].Plant Physiology,2006,142(3):1216-1232.
[24] SHAN X Y,ZHANG Y S,PENG W,et al.Molecular mechanism for jasmonate-induction of anthocyanin accumulation in Arabidopsis[J].Journal of Experimental Botany,2009,60(13):3849-3860.
[25] HONDA C,KOTODA N,WADA M,et al.Anthocyanin biosynthetic genes are coordinately expressed during red coloration in apple skin[J]. Plant Physiology and Biochemistry,2002, 40(11):955-962.
[26] KIM S H,LEE J R,HONG S T,et al.Molecular cloning and analysis of anthocyanin biosynthesis genes preferentially expressed in apple skin[J]. Plant Science,2003,165(2):403-413.
[27] TAKOS A M,UBI B E,ROBINSON S P,et al.Condensed tannin biosythesis genes are regulated separately from other flavonoid biosynthesis genes in apple fruit skin[J]. Plant Science,2006,170(3):487-499.
[28] KELLER M,HRAZDINA G.Interaction of nitrogen availability during verasion. Ⅱ.Effects on anthoeyanin and phenolic developmet during grape ripening[J].American Journal of Enology and Viticulture,1998,49(3):341-349.
[29] LAURA J,KAISU M,ANNA M P,et al.Expression of genes involved in anthoeyanin biosynthesis in relation to anthocyanin,proanthoeyanidin,and flavonol levels during bilberry fruit development[J].Plant Physiol,2002,130(2):729-739.
[30] ESPLEY R V,HELLENS R P, PUTTERILL J,et al. Red colouration in apple fruit is due to the activity of the MYB transcription factor,MdMYB10[J]. The Plant Journal,2007, 49(3):414-427.
[31] TSUDA T, YAMAGUCHI M, HONDA C,et al. Expression of anthocyanin biosynthesis genes in the skin of peach and nectarine fruit[J].Journal of the American Society for Horticultural Science,2004,129(6):857-862.
[32] KONDO S,HIRAOKA K,KOBAYASHI S,et al.Changes in the expression of anthocyanin biosynthetic genes during apple development[J].Journal of the American Society for Horticultural Science,2002,12(6):971-976.
[33] 張學(xué)英,張上隆,駱 軍,等.果實(shí)花色素苷合成研究進(jìn)展[J].果樹(shù)學(xué)報(bào),2004,21(5):456-460.
[34] WANG Y,LI J,XIA R X.Expression of chalcone synthase and chalcone isomerase genes and accumulation of corresponding flavonoids during fruit maturation of Guoqing No.4 satsuma mandadarin (Citrus unshiu Marcow)[J].Scientia Horticulturae, 2010,125(3):110-116.
[35] TELIAS A, WANG K L, STEVENSON D E,et al. Apple skin patterning is associated with differential expression of MYB10[J].BMC Plant Biology, 2011,11:93.
[36] ESPLEY R V,BRENDOLISE C,CHAGN D,et al. Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples[J]. The Plant Cell,2009,21(1):168-183.
[37] BAN Y,HONDA C,HATSUYAMA Y,et al.Isolation and functional analysisis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin[J].Plant Cell Physiology,2007,48(7):958-970.
[38] KOBAYASHI S,ISHIMARU M,HIRAOKA K,et al. Myb-related genes of the Kyoho grape (Vitis labruscana) regulate anthocyanin biosynthesis[J]. Planta,2002,215(6):924-933.
[39] WALKER A R,LEE E,BOGS J,et al.White grapes arose through the mutation of two similar and adjacent regulatory genes[J]. Plant J,2007,49(5):772-785.
[40] FOURNIER-LEVEL A,LE CUNFF L,GOMEZ C,et al.Quantitative genetic bases of anthocyanin variation in grape (Vitis vinifera L. ssp. sativa) berry: A quantitative trait locus to quantitative trait nucleotide integrated study[J].Genetics, 2009,183(3):1127-1139.
[41] AZUMA A,KOBYASHI S,MITANI N,et al.Genomic and genetic analysis of Myb-related genes that regulate anthocyanin biosynthesis in grape berry skin[J]. Theor App Genet, 2008, 117(6):1009-1019.
[42] DELUC L,BARRIEU F,MARCHIVE C,et al.Characterization of a grapevine R2R3-MYB transcription factor that regulates the phenylpropanoid pathway[J]. Plant Physiol,2006,140(2):499-511.
[43] DELUC L, BOGS J, WALKER A R,et al. The transcription factor VvMYB5b contributes to the regulation of anthocyanin and proanthocyanidin biosynthesis in developing grape berries[J]. Plant Physiol,2008,147(4):2041-2053.
[44] FENG S Q,WANG Y L,YANG S,et al.Anthocyanin biosynthesis in pears is regulated by a R2R3-MYB transcription factor PyMYB10[J].Planta,2010,232(1):245-255.
[45] NIU S S,XU C J,ZHANG W S,et al. Coordinated regulation of anthocyanin biosynthesis in Chinese bayberry (Myrica rubra) fruit by a R2R3 MYB transcription factor[J].Planta, 2010,231(4):887-899.
[46] AHARONI A,RIC DE VOS CH,WEIN M,et al. The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco[J].The Plant Journal,2001,28(3):319-332.
[47] WANG K L,MICHELETTI D,PALMER J,et al. High temperature reduces apple fruit colour via modulation of the anthocyanin regulatory complex[J].Plant, Cell Environment,2011,34(7):1176-1190.
[48] AMPOMAH-DWAMENA C,MCGHIE T,WIBISONO R,et al.The kiwifruit lycopene beta-cyclase plays a significant role in carotenoid accumulation in fruit[J]. J Exp Bot,2009,60(13):3765-3779.
[49] CAZZONELLI C I,POGSON B J.Source to sink: Regulation of carotenoid biosynthesis in plants[J]. Trends in Plant Science,2010,15(5):266-274.
[50] JU Z G,YUAN Y B,LIU C L,et al.Dihydroflavonol reductase activity and anthocyanin accumulation in ‘Delicious’,‘Golden Delicious’ and ‘Indo’ apples[J]. Scientia Horticulturae, 1997, 70(1):31-43.
[51] TAKOS A M ,ROBINSON S P ,WALKER A R.Transcriptional regulation of the flavonoid pathway in the skin of dark-grow ‘Cripps Red’ apples in response to sunlight[J]. Journal of Horticultural Science Biotechnology,2006,81(4):735-744.
[52] 柳蘊(yùn)芬,劉 莉,段艷欣,等.光對(duì)紅肉桃果肉紅色形成的影響[J].中國(guó)農(nóng)學(xué)通報(bào),2010,26(13):308-311.
[53] 杜紀(jì)紅,葉正文,張學(xué)英,等.遮光對(duì)滬油018油桃果皮花色苷含量及果實(shí)著色的影響[J].果樹(shù)學(xué)報(bào),2008,25(6):928-931.
[54] ZHOU Y,GUO D,LI J,et al.Coordinated regulation of anthocyanin biosynthesis through photorespiration and temperature in peach(Prunus persica f. atropurpurea)[J].Tree Genet Geno,2013,9(1):265-278.
[55] 宋 哲,李天忠,徐貴軒,等.光質(zhì)對(duì)紅富士蘋(píng)果果實(shí)著色的影響[J].生態(tài)學(xué)報(bào),2009,29(5):2304-2311.
[56] MORI K,GOTO-YAMAMOTO N,KITAYAMA M,et al.Loss of anthocyanins in red-wine grape under high temperature[J].J Exp Bot,2007,58(8):1935-1945.
[57] SHVARTS M,BOROCHOV A,WEISS D.Low temperature enhances petunia flower pigmentation and induces chalcone synthase gene expression[J]. Physiol Plant,1997,99(1):67-72.
[58] DELA G,OR E,OVADIA R,et al.Changes in anthocyanin concentration and composition in ‘Jaguar’ rose flowers due to transient high-temperature conditions[J]. Plant Science,2003, 164(3):333-340.
[59] STEYN W J,WAND S J E, HOLCROFT D M,et al.Red colour development and loss in pears[J]. Acta Horticult,2005,671:79-86.
[60] STEYN W J,WAND S J E,JACOBS G,et al.Evidence for a photoprotective function of low-temperature induced anthocyanin accumulation in apple and pear peel[J]. Physiol Plant,2009,136(4):461-462.
[61] MARAIS E,JACOBS G,HOLCROFT D M. Color response of ‘Cripps’ apples to postharvest irradiation is influenced by maturity and temperature[J]. Scientia Horticulturae,2001, 90(1-2):31-41.
[62] YAMANE T,SHIBAYAMA K.Effects of changes in the sensitivity to temperature on skin coloration in ‘Aki Queen’ grape berries[J]. J Japan Soc Hort Sci,2006,75(6):458-462.