• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Revisiting the Correlation between γ-Ray and Mid-Infrared Fluxes of the BL Lac Objects Detected by the FERMI Satellite

    2013-12-16 07:28:13MaoLisheng
    天文研究與技術(shù) 2013年2期

    Mao Lisheng

    (Physics Department, Yunnan Normal University, Kunming 650500, China, Email: maols@126.com)

    1 Introduction

    BL Lacs and Flat Spectrum Radio Quasars (FSRQs), collectively named as blazars, constitute the most interesting and enigmatic class of extragalactic γ-ray sources[3-5]. Comptonization is believed to be responsible for the γ-ray emission from BL Lacs and FSRQs, and it has two types according to the origins of the soft seed photons: the external Comptonization (EC) and the synchrotron self-Comptonization (SSC)[6]. It has been suggested that the SSC may be responsible for the γ-ray radiation from BL Lacs while the EC dominates over the SSC for FSRQs[7-9].

    Recently D′Abrusco et al. (2012)[10]studied the correlation between γ-ray emission and MIR emission in blazars detected by the FERMI satellite in its first 24-month survey and by the Wide-Field Infrared Survey (WISE)[11]in its first 105 days (covering 57% of all the sky). The All-Sky WISE data were released to the public in March 2012, allowing us to derive the largest avalible sample of BL Lacs with both γ-ray and MIR observational data. In this paper, we revisit the correlation between the γ-ray emission and the MIR emission in the BL Lacs detected by the FERMI.

    2 Sample and Data

    The Second FERMI/LAT AGN Catalog (2LAC) includes 1,017 significant γ-ray sources located at high Galactic latitudes (|b|>10°) and statistically associated with AGN (Ackermann et al. 2011, hereafter A11)[12]. However, some of these are affected by data-analysis issues and some are associated with multiple AGN. We define a clean sample which includes 886 AGN. Among these, 395 are BL Lacs, 310 are FSRQs, 157 are blazar candidates of unknown optical-emission types, and 24 are AGN of other types. We focus on the 395 BL Lacs.

    The WISE mapped the sky at 3.4μm, 4.6μm, 12μm, and 22μm (hereafter, W1 through W4) in 2010 with an angular resolution of 6.1″, 6.4″, 6.5″, and 12.0″ in the four bands, respectively. The 5σ point source sensitivities for the four bands are better than 0.08mJy, 0.11mJy, 1mJy, and 6 mJy in unconfused regions on the ecliptic. The WISE All-Sky Release includes all data taken during the full cryogenic-mission phase, from January 7, 2010 to August 6, 2010. These data were processed with calibration and reduction algorithms better than the Preliminary Data Release (covering 57% of the sky) in April 2011. The All-Sky Release data products include a Source Catalog containing positional and photometric information for over 563 million objects detected in the WISE images. This Source Catalog can be accessed via the IRSA interface (http://irsa.ipac.caltech.edu/Missions/wise.html).

    The A11 gives the J2000 positions of the 395 BL Lacs used (see Table 3 therein). We use these position values to search for the WISE counterparts. Following Massaro et al. (2011, hereafter M11)[13]we adopt a search radius of 2.4″. When the angular separation between the position of a BL Lac and that of a WISE source is less than 2.4″, we take the WISE source as the MIR counterpart of the BL Lac. As a result, 337 of the 395 BL Lacs have unique WISE counterparts, with the WISE detection rate at about 85.3%. With 26 exceptions, each of these BL Lacs has photometric magnitudes with error estimates in the W1, W2, W3, and W4 bands. The 26 BL Lacs have the magnitudes in the W1 through W3, but only have upper limits on the W4 magnitudes. Of the 337 BL Lacs with WISE counterparts found, 63, 74, 120, and 80 are LBL, IBL, HBL, and BL Lacs of unknown spectral types, respectively.

    3 Results

    3.1 [3.4]-[4.6]-[12]μm Color-Color Diagram

    Authors of M11 found that the blazars in their sample (corresponding to a 57% sky coverage) lie in a distinct region (i.e., the WISE Blazar Strip, or WBS) in the [3.4]-[4.6]-[12]μm color-color plot, and are clearly separated from other extragalactic sources with radiation in the MIR band dominated by thermal emission. This implies that the MIR emission of blazars is dominantly non-thermal. The WBS can be used to extract new blazar candidates, identify blazars of uncertain types, and search for the counterparts of unidentified γ-ray sources[14-16]. Using the WISE observational data of the all-sky 337 BL Lacs, we show the distribution of BL Lacs in the [3.4]-[4.6]-[12]μm color-color diagram (Fig.1). It is obvious from Fig.1 that the great majority of BL Lacs fall in the WBS and lie near the power-law line (PLL) (with only five clear outliers). This result indicates that their MIR radiation is dominantly non-thermal, i.e. mainly from synchrotron emission.

    3.2 Spectral-Index Correlation

    As suggested by Reference [18], an IR spectral index is an important parameter to describe the synchrotron emission. Here we derive the MIR spectral indices of the 337 BL Lacs having WISE counterparts. We first convert the magnitudes of the W1 through W4 bands to flux densities using the zero-magnitude fluxes (306.681Jy, 170.663Jy, 29.0448Jy, and 8.2839Jy for the W1 through W4 bands, respectively) from Reference[11]. We notice that the Galactic extinction at a WISE wavelength is negligible[13]. We then apply the equation logFν=-α logν+β to fit the converted flux densities, where ν is the frequency,Fνis the flux density, and α and β are fitting parameters. A linear fit gives the MIR spectral index (αMIR) and its uncertainty (σMIR). In the fitting we take into account the uncertainties of flux densities. For the 26 BL Lacs having only upper limits for their W4 magnitudes, we use the data of the W1 through W3 bands to deriveαMIRandσMIR.

    Fig.1 The [3.4]-[4.6]-[12]μm color-color diagram for the 337 BL Lacs. The region between the two dashed lines is the WBS. The dotted line represents the power-law line (derived using the method in [17])

    Fig.2 The MIR spectral-index (αMIR) distributions of LBLs, IBLs, and HBLs

    Fig.4 presents the correlation betweenαMIRandαγ. A linear fit gives the following tight correlation:

    αγ=(0.76±0.02)+(0.39±0.03)αMIR

    (1)

    with the Pearson coefficientR=0.62 and the random-chance probabilityP<10-4. For the subclasses of LBLs, IBLs, HBLs, and BL Lacs of unknown spectral types, the Peason coefficients are 0.33, 0.37, 0.26, and 0.40, with the random-chance probabilities of 8.0×10-3, 1.0×10-3, 5.0×10-3, and 2.5×10-4, respectively. These results show that a significant (99% level) corrlation exists betweenαMIRandαγfor each subclass separately.

    3.3 Flux Correlation

    Reference [20] gives the 0.1-100GeV flux values (S25, in units of erg cm-2s-1) of the 337 BL Lacs. We convertS25to the monochromatic flux at 1GeV,F1GeV, according to the formula in Thompson et al. (1996)[21]:

    .

    (2)

    Fig.5 shows the correlation between the logarithm of 1GeV flux (γ-ray) and that of 12μm flux (MIR). A linear fit gives the following result:

    logF1GeV=(-9.44±0.10)+(0.75±0.04)logF12μm

    (3)

    with the Pearson coefficientR=0.69 and the random-chance probabilityP<10-4. For the subclasses of LBLs, IBLs, HBLs, and BL Lacs of unknown spectral types, the Peason coefficients are 0.42, 0.68, 0.69, and 0.38, with the random-chance probabilities of 7.1×10-4, <10-4, <10-4, and 5.0×10-4, respectively. These results show that (a) a correlation between MIR and γ-ray fluxes also exists for each subclass, and (b) the correlations tend to be stronger from LBLs to HBLs.

    Fig.4 The correlation betweenαMIRandαγ. The solid circels represent the 26 BL Lacs whoseαMIRvalues are derived from the W1 through W3 magnitudes. The open circels represent 311 BL Lacs whoseαMIRare derived from the W1 through W4 magnitudes

    Fig.5 The correlation between the logarithm of 1GeV flux and that of 12μm flux

    4 Discussion and Conclusions

    In this paper we search for the WISE counterparts of BL Lacs in the 2LAC Clean Sample. Out of 395 BL Lacs therein 337 were detected by the WISE with the detection rate of about 85.3%. As recently shown in M11, the blazars, with synchrotron emission dominating their radiation, lie in a distinct region (WBS) in the [3.4]-[4.6]-[12]μm color-color diagram, and appear to be clearly separated from abundant non-synchrotron emission dominated WISE sources. Here we find that nearly all of the 337 BL Lacs fall in the WBS, giving a tentative evidence that their MIR emission is dominantly non-thermal. Moreover, Fig.1 shows that these BL Lacs lie in a region even more confined than the general WBS shown in Fig.1 of M11. Such a narrow region in the infrared color-color diagram is further denominated as the WISE Gamma-ray blazar Strip (WGS) in the work by Massaro and coauthors[10,14-16].

    We derive the MIR spectral indices (αMIR) of the 337 BL Lacs based on the WISE observational data. It is shown that LBLs have a larger average MIR spectral index than HBLs, and that of IBLs is between those of LBLs and HBLs. BothαMIRandαγare strongly anti-correlated with the logarithm of synchrotron peak frequency. These results indicate that BL Lacs show an MIR or γ-ray spectral-index sequence. The gradual trends ofαMIRandαγpoint towards an underlying commonality among LBLs, IBLs, and HBLs in the sense that BL Lacs form a unique population with the same type of emission processes taking effect in a range of physical conditions, so as to make the distribution of the BL Lac population continuous rather than bimodal or trimodal[2, 22]. Chen, Shan, and Gao (2006)[23]compared the near-infrared (NIR) spectral indices of radio-selected BL Lacs (RBLs) and X-ray selected BL Lacs (XBLs). They found that the former group has a larger average NIR spectral index than the latter. It is well known that most RBLs are LBLs and most XBLs are HBLs. In view of this, our results are consistent with those of Chen, Shan, and Gao (2006).

    Exploring the relation between the γ-ray emission and the low-energy (radio to X-ray) emission in blazars can provide important insights into the soft photons constituting the observed γ-rays. The relations between radio, optical, X-ray, and γ-ray radiations of blazars have been widely discussed[24-26]. In contrast, the correlation between infrared and γ-ray radiations has been studied only by a few authors. This could be mainly due to the lack of γ-ray and infrared observations for a sufficiently large number of blazars. The difficulty has now been overcome by the availability of FERMI and WISE data. Zhang and Xie (1997)[27]reported a strong correlation between the γ-ray (above 100MeV) luminosity and the far-infrared (60μm) luminosity for 17 blazars. They suggested that the γ-ray and far-infrared luminosities are both beamed and there is a direct link between them. Xie et al. (1998)[28]found that there is a strong correlation between the γ-ray flux densities and NIR flux densities in the low and high states for 15 BL Lacs. Zhang et al. (2003)[29]found that there is a strong correlation between NIR spectral indices and γ-ray spectral indices. Mao (2011)[30]explored these two types of correlations for 260 BL Lacs detected by the FERMI. It was shown that there are strong correlations between NIR and γ-ray radiations in BL Lacs. Very recently, using the WISE Preliminary Data Release (57% sky coverage) D′Abrusco et al. (2012) found that there are significant correlations between γ-ray and MIR fluxes and betweenαMIRandαγ. In this paper, using the All-Sky WISE data we revisit such correlations. We verify with higher confidence the strong correlation betweenαMIRandαγas well as that between 12μm and 1GeV fluxes. Our results and those in References [10] and [27-30] imply a direct link between the γ-ray emission and the infrared emission for γ-ray prominent BL Lacs.

    It is well known that both the SSC model and the EC model predict a close correspondence between synchrotron and Compton flux densities in the observed spectra of blazars as due to the conversion of loss of energy of relativistic electrons in common region(s) to both types of radiations. In fact, BL Lacs show null or weak emission lines, and yield no observed thermal emission from the accretion disk; these features can be interpreted by the scarcity of gas surrounding the accretion disk and low efficiency of transforming gravitational energy to radiation. BL Lacs also lack observational signatures of the dust torus in the MIR band[31]. Consequently, spectra of BL Lacs are often effctively interpreted as pure SSC radiation, i.e., synchrotron emission (from infrared to soft X-ray) from highly relativistic electrons inside the jet, and inverse Compton upscattering (radiating in the MeV-TeV energy range) by the electrons in the same regions on seed photons of the synchrotron radiation. The tight γ-ray-MIR correlation found in this paper is consistent with the SSC model and probably shows common spatial origins of γ-ray and MIR emission.

    [1]Urry C M, Padovani P. Unified Schemes for Radio-Loud Active Galactic Nuclei[J]. Publications of the Astronomical Society of the Pacific, 1995, 107(715): 803-845.

    [2]Padovani P, Giommi P. A sample-oriented catalogue of BL Lacertae objects[J]. Monthly Notices of the Royal Astronomical Society, 1995, 277(4): 1477-1490.

    [3]Hartman R C, Bertsch D L, Bloom S D, et al. The third EGRET catalog of high-energy gamma-ray sources[J]. The Astrophysical Journal Supplement Series, 1999, 123(1): 79-202.

    [4]Abdo A A, Ackermann M, Ajello M, et al. Bright active galactic nuclei source list from the first three months of the fermi large area telescope all-sky survey[J]. The Astrophysical Journal, 2009, 700(1): 597-622.

    [5]Abdo A A, Ackermann M, Ajello M, et al. The first catalog of active galactic nuclei fetected by the fermi large area telescope[J]. The Astrophysical Journal, 2010, 715(1): 429-457.

    [6]B?ttcher M. Modeling the emission processes in blazars[J]. Astrophysics and Space Science, 2007, 309(2): 95-104.

    [7]Dondi L, Ghisellini G. Gamma-ray-loud blazars and beaming[J]. Monthly Notices of the Royal Astronomical Society, 1995, 273(3): 583-595.

    [8]Paggi A, Massaro F, Vittorini V, et al. SSC radiation in BL Lacertae sources, the end of the tether[J]. Astronomy and Astrophysics, 2009, 504(3): 821-828.

    [9]Lister M L, Aller M, Aller H, et al. γ-ray and parsec-scale jet properties of a complete sample of blazars from the MOJAVE program[J]. The Astrophysical Journal, 2011, 742(1): 27-51.

    [10]D′Abrusco R, Massaro F, Ajello M, et al. Infrared colors of the gamma-ray-detected blazars[J]. The Astrophysical Journal, 2012, 748(1): 68-81.

    [11]Wright E L, Eisenhardt P R M, Mainzer A K, et al. The wide-field Infrared survey explorer (WISE): mission description and initial on-orbit performance[J]. The Astronomical Journal, 2010, 140(6): 1868-1881.

    [12]Ackermann M, Ajello M, Allafort A, et al. The second catalog of active galactic nuclei detected by the fermi large area telescope[J]. The Astrophysical Journal, 2011, 743(2): 171-207.

    [13]Massaro F, D′Abrusco R, Ajello M, et al. Identification of the infrared non-thermal emission in blazars[J]. The Astrophysical Journal, 2011, 740(2): 48-52.

    [14]Massaro F, Paggi A, D′Abrusco R, et al. Searching for γ-ray blazar candidates among the unidentified INTEGRAL sources[J]. The Astrophysical Journal Letters, 2012, 750(2): 35-40.

    [15]Massaro F, D′Abrusco R, Tosti G, et al. Unidentifed gamma-ray sources: hunting gamma-ray blazars[J]. The Astrophysical Journal, 2012, in press (arXiv: 1203.3801).

    [16]Massaro F, D′Abrusco R, Tosti G, et al. The wise gamma-ray strip parameterization: the nature of the gamma-ray active galactic nuclei of uncertain type[J]. The Astrophysical Journal, 2012, 750(2): 138-147.

    [17]Chen P S, Shan H G. Infrared photometric study of type II quasars[J]. Monthly Notices of the Royal Astronomical Society, 2009, 393(4): 1408-1422.

    [18]Chen P S, Shan H G. Infrared spectral observation of eight BL Lac objects from the spitzer infrared spectrograph[J]. The Astrophysical Journal, 2011, 732(1): 22-26.

    [19]Abdo A A, Ackermann M, Agudo I, et al. The spectral energy distribution of fermi bright blazars[J]. The Astrophysical Journal, 2010, 716(1): 30-70.

    [20]The Fermi-LAT Collaboration. Fermi large area telescope second source catalog[J]. The Astrophysical Journal Supplement Series, 2012, 199(2): 31-76.

    [21]Thompson D J, Bertsch D L, Dingus B L, et al. Supplement to the second EGRET catalog of high-energy gamma-ray sources[J]. The Astrophysical Journal Supplement, 1996, 107: 227-237.

    [22]Nieppola E, Tornikoski M, Valtaoja E. Spectral energy distributions of a large sample of BL Lacertae objects[J]. Astronomy and Astrophysics, 2006, 445(2): 441-450.

    [23]Chen P S, Shan H G, Gao Y F. On the difference between the X-ray selected and the radio selected BL Lac objects in the near infrared[J]. New Astronomy, 2006, 11(8): 557-566.

    [24]Ghisellini G, Tavecchio F, Foschini L, et al. The radio-γ-ray connection in Fermi blazars[J]. Monthly Notices of the Royal Astronomical Society, 2011, 413(2): 852-862.

    [25]Wagner S J. Fast flares of blazars during gamma-ray observations: Optical-gamma-ray correlations[J]. A&AS, 1996, 120: 495-498.

    [26]Wang J C, Luo Q H, Xie G Z. Spectral relation between X-rays and gamma-rays for blazar high-energy emission[J]. The Astrophysical Journal Letters,1996, 457: 65-68.

    [27]Zhang Y H, Xie G Z. Correlation between Gamma-ray and Far-infrared Luminosity for EGRET-detected Sources[J]. Astronomy and Astrophysics, 1997, 317: 393-396.

    [28]Xie G Z, Zhang X, Bai J M, et al. Gamma-ray and near-infrared emission from gamma-ray-loud blazars[J]. The Astrophysical Journal, 1998, 508(1): 180-185.

    [29]Zhang X, Cheng K S, Zhao G, et al. Correlation between the gamma-ray and the near-infrared emissions from gamma-ray-loud blazars in the low state[J]. Astrophysics and Space Science, 2003, 286(3): 323-331.

    [30]Mao L S. 2MASS observation of BL Lac objects II[J]. New Astronomy, 2011, 16(8): 503-529.

    [31]Plotkin R M, Anderson S F, Brandt W N, et al. The lack of torus emission from BL Lacertae objects: an infrared view of unification with WISE[J]. The Astrophysical Journal, 2012, 745(2): 27-32.

    91aial.com中文字幕在线观看| 午夜精品国产一区二区电影| 你懂的网址亚洲精品在线观看| 成人毛片a级毛片在线播放| 少妇被粗大猛烈的视频| 精品一区在线观看国产| 亚洲国产色片| 亚洲av成人精品一区久久| av天堂中文字幕网| 国内揄拍国产精品人妻在线| 日韩伦理黄色片| 性高湖久久久久久久久免费观看| 精品国产乱码久久久久久小说| 视频中文字幕在线观看| 国产淫片久久久久久久久| 亚洲精品日韩av片在线观看| 在线播放无遮挡| 日韩欧美一区视频在线观看 | 亚洲精品国产成人久久av| 亚洲国产欧美人成| 舔av片在线| av卡一久久| 亚洲色图综合在线观看| 91久久精品国产一区二区成人| 美女内射精品一级片tv| 久久国内精品自在自线图片| 少妇 在线观看| 午夜精品国产一区二区电影| 亚洲第一av免费看| 成人毛片a级毛片在线播放| 欧美精品国产亚洲| 乱系列少妇在线播放| 欧美97在线视频| 制服丝袜香蕉在线| 国产精品av视频在线免费观看| 亚洲色图综合在线观看| av在线app专区| 人人妻人人澡人人爽人人夜夜| 婷婷色综合大香蕉| 亚洲,一卡二卡三卡| 蜜桃亚洲精品一区二区三区| h日本视频在线播放| 国内揄拍国产精品人妻在线| 一本久久精品| 精品一区二区三卡| freevideosex欧美| 嫩草影院新地址| 一级av片app| 天堂俺去俺来也www色官网| 中文字幕人妻熟人妻熟丝袜美| .国产精品久久| 99久久精品热视频| 一区二区三区乱码不卡18| 99久久人妻综合| 亚洲经典国产精华液单| 国产成人免费观看mmmm| 亚洲欧美中文字幕日韩二区| 赤兔流量卡办理| 欧美精品人与动牲交sv欧美| 99久久精品热视频| 久久久久久伊人网av| 少妇的逼好多水| 国产综合精华液| 色视频在线一区二区三区| 亚洲人成网站在线播| 成人特级av手机在线观看| 中文乱码字字幕精品一区二区三区| 成人美女网站在线观看视频| 久久热精品热| 一级a做视频免费观看| 久久国内精品自在自线图片| 精品久久久噜噜| 男女免费视频国产| 日韩强制内射视频| 中文字幕制服av| 大香蕉久久网| 午夜福利视频精品| 亚洲人成网站在线播| 女人久久www免费人成看片| 亚洲欧美成人综合另类久久久| 午夜福利视频精品| 国产亚洲一区二区精品| 狠狠精品人妻久久久久久综合| 亚洲精品成人av观看孕妇| 久久精品久久久久久久性| 纯流量卡能插随身wifi吗| 国产乱人偷精品视频| 成年女人在线观看亚洲视频| 人人妻人人看人人澡| 少妇丰满av| 天堂中文最新版在线下载| 国产一区亚洲一区在线观看| 又粗又硬又长又爽又黄的视频| 在线观看国产h片| 美女内射精品一级片tv| 久久韩国三级中文字幕| 大码成人一级视频| 免费av中文字幕在线| 久久 成人 亚洲| 国模一区二区三区四区视频| 在线 av 中文字幕| 天堂俺去俺来也www色官网| 久久久久精品性色| 中国国产av一级| 国产高清有码在线观看视频| 六月丁香七月| 国产成人aa在线观看| 中文字幕制服av| 久久婷婷青草| 大香蕉久久网| 日韩人妻高清精品专区| 日日撸夜夜添| 免费大片18禁| 国产老妇伦熟女老妇高清| 国产91av在线免费观看| 久久这里有精品视频免费| 国产永久视频网站| 亚洲av男天堂| 一级黄片播放器| 亚洲性久久影院| 精品国产三级普通话版| 乱系列少妇在线播放| 亚洲国产精品999| 26uuu在线亚洲综合色| 亚洲国产最新在线播放| 国产成人午夜福利电影在线观看| 日韩精品有码人妻一区| 久久久色成人| 在线精品无人区一区二区三 | 久久精品久久久久久久性| 国产精品一区二区三区四区免费观看| av国产久精品久网站免费入址| 免费观看性生交大片5| 99久国产av精品国产电影| 性色avwww在线观看| 高清不卡的av网站| 亚洲欧美日韩卡通动漫| 久久久久网色| 亚洲不卡免费看| 久久毛片免费看一区二区三区| 国产男女超爽视频在线观看| 国产精品福利在线免费观看| 国产亚洲欧美精品永久| 天天躁日日操中文字幕| 久久精品久久久久久久性| 男人添女人高潮全过程视频| 一级毛片黄色毛片免费观看视频| 91狼人影院| 欧美三级亚洲精品| 国产精品国产三级国产av玫瑰| 黄色视频在线播放观看不卡| 免费av不卡在线播放| 777米奇影视久久| 日韩一区二区三区影片| 欧美区成人在线视频| 2018国产大陆天天弄谢| 国产91av在线免费观看| 天美传媒精品一区二区| 如何舔出高潮| 男的添女的下面高潮视频| 国产精品精品国产色婷婷| 99热这里只有精品一区| 亚洲激情五月婷婷啪啪| 最后的刺客免费高清国语| 日韩一区二区视频免费看| 日本av免费视频播放| 亚洲成人手机| 午夜视频国产福利| 国产精品成人在线| 亚洲自偷自拍三级| 亚洲国产最新在线播放| 性色av一级| 男人爽女人下面视频在线观看| 免费人妻精品一区二区三区视频| 亚洲欧美一区二区三区国产| 欧美 日韩 精品 国产| 精品视频人人做人人爽| 伦理电影大哥的女人| 自拍偷自拍亚洲精品老妇| 黑人猛操日本美女一级片| 久久久色成人| 又爽又黄a免费视频| 亚洲美女黄色视频免费看| 亚洲欧美日韩无卡精品| 在线观看三级黄色| 日日摸夜夜添夜夜爱| 蜜桃亚洲精品一区二区三区| 亚洲性久久影院| 国产精品偷伦视频观看了| 久久久久视频综合| 国产精品久久久久久av不卡| 国产老妇伦熟女老妇高清| 日本欧美国产在线视频| 午夜激情福利司机影院| 黄色欧美视频在线观看| 国产毛片在线视频| 日韩欧美 国产精品| 日日撸夜夜添| 亚洲天堂av无毛| 久久久国产一区二区| 毛片女人毛片| 高清在线视频一区二区三区| 精品少妇黑人巨大在线播放| 亚洲精品视频女| 我要看日韩黄色一级片| 成年免费大片在线观看| 亚洲国产精品999| 国产午夜精品久久久久久一区二区三区| 日本黄色片子视频| 午夜福利在线观看免费完整高清在| 青春草亚洲视频在线观看| 老熟女久久久| 国产 一区精品| 国内精品宾馆在线| 久久av网站| 亚洲一级一片aⅴ在线观看| 久久精品国产亚洲网站| 久久久欧美国产精品| 免费黄频网站在线观看国产| 国产一区二区在线观看日韩| 秋霞在线观看毛片| 成人毛片60女人毛片免费| 一区二区三区四区激情视频| 欧美老熟妇乱子伦牲交| 免费播放大片免费观看视频在线观看| 久久午夜福利片| 日韩欧美一区视频在线观看 | 色吧在线观看| 亚洲av免费高清在线观看| 嘟嘟电影网在线观看| 久久久久久人妻| 亚洲国产色片| 精品亚洲成a人片在线观看 | 在线观看一区二区三区| 欧美日韩视频高清一区二区三区二| 麻豆乱淫一区二区| 蜜桃在线观看..| 亚洲精品乱码久久久久久按摩| 国产国拍精品亚洲av在线观看| 久久人人爽人人爽人人片va| 麻豆成人午夜福利视频| 久久国产精品男人的天堂亚洲 | 高清日韩中文字幕在线| av国产久精品久网站免费入址| 欧美成人午夜免费资源| 少妇高潮的动态图| 精品国产三级普通话版| 丰满少妇做爰视频| 欧美一级a爱片免费观看看| 午夜福利高清视频| 九九爱精品视频在线观看| 日韩视频在线欧美| 在线观看一区二区三区| 91精品国产九色| 在线观看av片永久免费下载| 午夜老司机福利剧场| 国产精品99久久久久久久久| 欧美少妇被猛烈插入视频| 国产乱人偷精品视频| 国产 一区精品| 黄色视频在线播放观看不卡| 肉色欧美久久久久久久蜜桃| 大片免费播放器 马上看| 蜜桃在线观看..| 国产一区二区三区av在线| 麻豆成人午夜福利视频| 内射极品少妇av片p| 少妇人妻一区二区三区视频| 国产高清国产精品国产三级 | 国产精品人妻久久久久久| 国产亚洲5aaaaa淫片| 国产精品人妻久久久影院| 婷婷色综合www| 小蜜桃在线观看免费完整版高清| 1000部很黄的大片| 欧美少妇被猛烈插入视频| a 毛片基地| 少妇的逼水好多| 日日啪夜夜撸| 欧美精品一区二区免费开放| 欧美性感艳星| 在线亚洲精品国产二区图片欧美 | 熟女人妻精品中文字幕| 人妻一区二区av| 国产一区二区在线观看日韩| 亚洲va在线va天堂va国产| 欧美日韩视频精品一区| 日韩一区二区三区影片| 日韩av在线免费看完整版不卡| 免费观看的影片在线观看| 国产精品一区二区三区四区免费观看| 黄色怎么调成土黄色| 午夜免费观看性视频| 久久久久视频综合| 国产色爽女视频免费观看| 亚洲欧美成人综合另类久久久| 热re99久久精品国产66热6| 22中文网久久字幕| 精品人妻熟女av久视频| 国产高潮美女av| 国语对白做爰xxxⅹ性视频网站| 欧美激情极品国产一区二区三区 | 伦理电影免费视频| 99热全是精品| 老司机影院毛片| 免费不卡的大黄色大毛片视频在线观看| 国产高清国产精品国产三级 | 网址你懂的国产日韩在线| 欧美精品一区二区免费开放| 久久久久人妻精品一区果冻| 在现免费观看毛片| 老司机影院毛片| 亚洲精品乱码久久久久久按摩| 国产精品爽爽va在线观看网站| 欧美日韩亚洲高清精品| 少妇高潮的动态图| 亚州av有码| 欧美精品亚洲一区二区| 色5月婷婷丁香| 亚洲欧洲国产日韩| 欧美成人a在线观看| 国语对白做爰xxxⅹ性视频网站| 精品久久国产蜜桃| 久久精品久久久久久久性| 高清黄色对白视频在线免费看 | 18禁动态无遮挡网站| 日韩av不卡免费在线播放| 中文字幕精品免费在线观看视频 | 99热全是精品| 日产精品乱码卡一卡2卡三| 亚洲欧美一区二区三区国产| 亚洲精品亚洲一区二区| 韩国av在线不卡| 久久精品人妻少妇| 狂野欧美白嫩少妇大欣赏| 欧美成人a在线观看| 小蜜桃在线观看免费完整版高清| 久久久精品94久久精品| 18+在线观看网站| 免费久久久久久久精品成人欧美视频 | 亚洲不卡免费看| 五月伊人婷婷丁香| 成年av动漫网址| 日韩伦理黄色片| 女的被弄到高潮叫床怎么办| 3wmmmm亚洲av在线观看| 久久久久久久大尺度免费视频| 亚洲美女黄色视频免费看| 青春草国产在线视频| 日产精品乱码卡一卡2卡三| 免费黄色在线免费观看| 一区二区三区精品91| 波野结衣二区三区在线| 久久影院123| 老熟女久久久| 熟女电影av网| 国产伦精品一区二区三区视频9| 综合色丁香网| 高清毛片免费看| 国产乱人视频| 国产免费一区二区三区四区乱码| 精品久久久噜噜| 免费观看a级毛片全部| 亚洲婷婷狠狠爱综合网| 国产午夜精品一二区理论片| 久久久久精品久久久久真实原创| 在线 av 中文字幕| 性高湖久久久久久久久免费观看| 亚洲内射少妇av| 老熟女久久久| 欧美亚洲 丝袜 人妻 在线| 美女cb高潮喷水在线观看| 久久久久久久国产电影| 中文字幕av成人在线电影| 大片免费播放器 马上看| 亚洲精华国产精华液的使用体验| 久久久久精品久久久久真实原创| 久久精品国产a三级三级三级| 精品国产三级普通话版| 精品亚洲成a人片在线观看 | 在线观看免费视频网站a站| 国产精品三级大全| 尾随美女入室| 一级毛片久久久久久久久女| 不卡视频在线观看欧美| 91久久精品国产一区二区成人| 女人久久www免费人成看片| 久久国产亚洲av麻豆专区| h日本视频在线播放| 精品久久久久久久末码| 天堂中文最新版在线下载| 国产又色又爽无遮挡免| 日本wwww免费看| 精品亚洲乱码少妇综合久久| 久久久久视频综合| 日韩欧美一区视频在线观看 | 亚洲精品成人av观看孕妇| 免费人妻精品一区二区三区视频| 中文乱码字字幕精品一区二区三区| 成人免费观看视频高清| 亚洲精品色激情综合| 99久久精品国产国产毛片| www.av在线官网国产| 日日啪夜夜撸| 午夜福利视频精品| 夜夜爽夜夜爽视频| 26uuu在线亚洲综合色| 久久精品国产亚洲av天美| 亚洲国产av新网站| 国产色爽女视频免费观看| 亚洲av福利一区| 亚洲丝袜综合中文字幕| 欧美性感艳星| 久久久久久久久久久免费av| 日本一二三区视频观看| 久久久亚洲精品成人影院| 99热这里只有是精品在线观看| 精品人妻视频免费看| 午夜精品国产一区二区电影| 中国三级夫妇交换| 80岁老熟妇乱子伦牲交| 黄色怎么调成土黄色| 性高湖久久久久久久久免费观看| 春色校园在线视频观看| 国内少妇人妻偷人精品xxx网站| 久久精品国产亚洲网站| 少妇丰满av| 涩涩av久久男人的天堂| 国产精品三级大全| 亚洲在久久综合| 欧美成人a在线观看| 成人无遮挡网站| 日韩成人伦理影院| 女人十人毛片免费观看3o分钟| 欧美最新免费一区二区三区| 国产精品嫩草影院av在线观看| 天天躁夜夜躁狠狠久久av| 99热全是精品| av国产免费在线观看| 直男gayav资源| 大码成人一级视频| 97超碰精品成人国产| 91在线精品国自产拍蜜月| 久久女婷五月综合色啪小说| 一本一本综合久久| 免费人妻精品一区二区三区视频| 色视频www国产| 精品酒店卫生间| 日韩制服骚丝袜av| 亚洲av成人精品一区久久| 日韩 亚洲 欧美在线| 久久久亚洲精品成人影院| 国产无遮挡羞羞视频在线观看| 免费播放大片免费观看视频在线观看| 国产在线一区二区三区精| 丰满人妻一区二区三区视频av| 大又大粗又爽又黄少妇毛片口| 舔av片在线| 国产成人精品福利久久| 国产在视频线精品| 亚洲一区二区三区欧美精品| 久热久热在线精品观看| 99久久中文字幕三级久久日本| 日本-黄色视频高清免费观看| 国产精品av视频在线免费观看| 91精品国产九色| 91aial.com中文字幕在线观看| 午夜激情福利司机影院| 永久免费av网站大全| 亚洲精品国产av成人精品| 亚洲成色77777| 91精品国产国语对白视频| 99re6热这里在线精品视频| 舔av片在线| 国产午夜精品一二区理论片| 一二三四中文在线观看免费高清| a级一级毛片免费在线观看| 亚洲av福利一区| 久久久久久久亚洲中文字幕| 精品一区二区免费观看| 成年av动漫网址| 精品国产乱码久久久久久小说| 国产精品久久久久久久久免| 亚洲美女黄色视频免费看| 美女高潮的动态| 国产精品成人在线| 欧美丝袜亚洲另类| 国内少妇人妻偷人精品xxx网站| 日韩 亚洲 欧美在线| 日本午夜av视频| 国产高清三级在线| 久久影院123| 波野结衣二区三区在线| 国产黄色视频一区二区在线观看| 26uuu在线亚洲综合色| 日本欧美视频一区| 超碰av人人做人人爽久久| 国产av精品麻豆| 在线免费观看不下载黄p国产| 黄片wwwwww| 日韩视频在线欧美| 久久青草综合色| 午夜福利在线观看免费完整高清在| 午夜激情久久久久久久| 成年免费大片在线观看| 一级毛片 在线播放| 国产成人午夜福利电影在线观看| 午夜福利视频精品| 天天躁夜夜躁狠狠久久av| 亚洲精品国产av蜜桃| 777米奇影视久久| 99国产精品免费福利视频| 欧美成人a在线观看| 欧美日韩综合久久久久久| 天天躁日日操中文字幕| 色网站视频免费| 午夜福利影视在线免费观看| 高清午夜精品一区二区三区| 欧美成人一区二区免费高清观看| 欧美变态另类bdsm刘玥| 精品午夜福利在线看| 久久久久久久亚洲中文字幕| 黑人高潮一二区| 日韩视频在线欧美| 精品午夜福利在线看| 欧美一级a爱片免费观看看| 午夜激情久久久久久久| 久久精品国产亚洲av天美| 汤姆久久久久久久影院中文字幕| 国产 精品1| 亚洲av欧美aⅴ国产| 美女内射精品一级片tv| 国产伦理片在线播放av一区| 欧美一区二区亚洲| 免费看光身美女| 国产成人a∨麻豆精品| 久久国产精品大桥未久av | 国产精品久久久久久av不卡| 夫妻性生交免费视频一级片| 亚洲va在线va天堂va国产| 日本黄大片高清| 国产黄色视频一区二区在线观看| 精品人妻视频免费看| 能在线免费看毛片的网站| 高清午夜精品一区二区三区| 高清欧美精品videossex| 纵有疾风起免费观看全集完整版| 老司机影院成人| 亚洲av欧美aⅴ国产| 少妇人妻精品综合一区二区| 在线观看免费日韩欧美大片 | 精品久久久久久久久av| 国产av一区二区精品久久 | 极品教师在线视频| 久久久成人免费电影| 国产成人a区在线观看| 国产亚洲欧美精品永久| 久久毛片免费看一区二区三区| 久久人人爽av亚洲精品天堂 | 少妇猛男粗大的猛烈进出视频| 成人亚洲欧美一区二区av| 色婷婷久久久亚洲欧美| 亚洲精品亚洲一区二区| 超碰97精品在线观看| 视频区图区小说| 国产一区有黄有色的免费视频| 国产男女内射视频| 人妻一区二区av| 中文字幕精品免费在线观看视频 | 国产无遮挡羞羞视频在线观看| 看非洲黑人一级黄片| 中文字幕制服av| 国产成人免费观看mmmm| 极品少妇高潮喷水抽搐| 一本色道久久久久久精品综合| 亚洲av成人精品一区久久| 国产亚洲午夜精品一区二区久久| 欧美变态另类bdsm刘玥| 一级二级三级毛片免费看| 人妻制服诱惑在线中文字幕| 91久久精品国产一区二区成人| 日本黄大片高清| 搡老乐熟女国产| 国产欧美亚洲国产| 午夜老司机福利剧场| 纵有疾风起免费观看全集完整版| 日韩一区二区三区影片| 欧美日韩精品成人综合77777| videos熟女内射| 国产精品欧美亚洲77777| 91狼人影院| 嫩草影院入口| 亚洲熟女精品中文字幕| 久久精品国产亚洲av天美| 精品午夜福利在线看| 国产一区二区三区综合在线观看 | 特大巨黑吊av在线直播| 色吧在线观看| 在线播放无遮挡| 在线 av 中文字幕| www.色视频.com| 伊人久久精品亚洲午夜| 久久久久国产精品人妻一区二区| 97超视频在线观看视频| 精品酒店卫生间| 久久99热6这里只有精品| 自拍欧美九色日韩亚洲蝌蚪91 | 国产成人免费观看mmmm| 日本黄色日本黄色录像| 狂野欧美白嫩少妇大欣赏| 久久久久视频综合| 成人亚洲精品一区在线观看 | 在线观看av片永久免费下载| 老女人水多毛片| 日日摸夜夜添夜夜爱|