師志冰,周 勇,李 夏,任安芝,高玉葆
(南開大學(xué)生命科學(xué)學(xué)院,天津 300071)
CO2濃度升高條件下內(nèi)生真菌感染對宿主植物的生理生態(tài)影響
師志冰,周 勇,李 夏,任安芝*,高玉葆
(南開大學(xué)生命科學(xué)學(xué)院,天津 300071)
以內(nèi)蒙古草原常見伴生種、感染內(nèi)生真菌的天然禾草羽茅為研究對象,通過比較不同CO2濃度和不同養(yǎng)分供應(yīng)條件下,帶內(nèi)生真菌和不帶菌植物在種子發(fā)芽和幼苗生長等方面的差異,探討帶內(nèi)生真菌的天然禾草對CO2濃度增加的響應(yīng)。結(jié)果表明:CO2濃度增加對帶菌種子發(fā)芽率和發(fā)芽速度均無顯著影響,但CO2濃度增加顯著降低了不帶菌種子的發(fā)芽率和發(fā)芽速度,即CO2濃度升高加大了帶菌和不帶菌種子發(fā)芽率之間的差異;內(nèi)生真菌感染顯著提高了宿主植物的最大凈光合速率和水分利用效率;羽茅的營養(yǎng)生長受CO2濃度和養(yǎng)分供應(yīng)的交互影響,高CO2濃度對生長的促進作用只出現(xiàn)在充足養(yǎng)分供應(yīng)條件下;CO2濃度升高和內(nèi)生真菌感染對植物根系形態(tài)有顯著的交互作用,在正常CO2濃度下,帶菌植株根徑gt;1.05 mm的根系比例顯著高于不帶菌植株,隨著CO2濃度的升高,帶菌植株上述根徑根系所占比例無顯著變化而不帶菌植株所占比例顯著升高,CO2濃度升高導(dǎo)致帶菌和不帶菌不同根徑根系分配之間的差異縮小。
CO2濃度升高;羽茅;種子發(fā)芽;根系形態(tài)
產(chǎn)業(yè)革命以來,由于人類大量消耗石油化工燃料和對土地的不合理開發(fā)利用,使得大氣CO2濃度逐步升高,從1958到2011年的50多年間,大氣CO2濃度已由280增加到391 μmol/mol,若以目前的每年增加 2 μmol/mol計, 預(yù)計到2067年,全球大氣CO2濃度將超過500 μmol/mol[1- 2]。由于CO2是植物光合作用的重要原料,所以大氣中CO2濃度的升高,必將影響到植物光合產(chǎn)物的形成以及光合產(chǎn)物在植物及其共生的微生物之間的分配[3], 從而影響到植物和根瘤菌[4]、菌根真菌[5]以及內(nèi)生真菌[6- 7]等之間的相互作用。
大量的研究表明CO2濃度升高能夠提高菌根真菌的侵染率,增強菌根真菌對宿主植物的有益影響[8- 11]。與菌根真菌類似,內(nèi)生真菌也是在植物中廣泛存在的一類真菌,只是多生活在植物的地上部分[12],據(jù)估計,大約三分之二的冷季型禾草中有與之共生的內(nèi)生真菌[13],但就已報道的研究工作來看,大量的研究集中在兩個有重要經(jīng)濟意義的植物種即高羊茅(FestucaarundinaceaSchreb.)和黑麥草(LoliumperenneL.)上面,二者分別與內(nèi)生真菌Neotyphodiumcoenophialum和N.lolii構(gòu)成共生關(guān)系。內(nèi)生真菌與高羊茅和黑麥草等人工禾草的互惠共生關(guān)系已被大量的實驗證據(jù)所證實,具體表現(xiàn)在一方面植物為內(nèi)生真菌提供光合產(chǎn)物;另一方面內(nèi)生真菌的代謝物能刺激植物的生長發(fā)育[14],提高宿主植物對生物脅迫和非生物脅迫的抵抗能力,其中的生物脅迫主要包括食草動物[15]和食草昆蟲[16]的取食、線蟲[17]和其它真菌[18]的危害以及其它植物的競爭[19]等;非生物脅迫包括干旱[20]、低養(yǎng)分[21]和高溫[22]等。由于內(nèi)生真菌依靠宿主植物獲得碳源,而對于多數(shù)C3植物而言,CO2濃度是其光合作用的限制因子,因此大氣CO2濃度的增加將會通過提高植物的光合能力并增加對共生真菌的光合產(chǎn)物供給,從而對禾草-內(nèi)生真菌的相互作用產(chǎn)生影響[6, 23],研究感染內(nèi)生真菌的天然禾草對CO2濃度升高的響應(yīng)不僅有助于預(yù)測全球氣候變化條件下帶菌植物的競爭力,而且有助于預(yù)測帶菌植物所在草原群落的發(fā)展和演替方向,為實現(xiàn)草原的可持續(xù)利用提供實驗數(shù)據(jù)。
1.1 種子的采集
羽茅(Achnatherumsibiricum(L.) Keng)是禾本科芨芨草屬的一種多年生草本植物,在內(nèi)蒙古的各類草場中較為常見,具有很高的內(nèi)生真菌侵染率(86%—100%)[24],共生的內(nèi)生真菌為Neotyphodium屬內(nèi)生真菌[25],種子于2012年采集自中國農(nóng)業(yè)科學(xué)院呼倫貝爾草原生態(tài)系統(tǒng)國家野外實驗站,種子采集樣地位于119.40°E,49.06°N,海拔629 m,年降雨量367 mm,年均溫-2.0 ℃,土壤為暗栗鈣土,植被為草甸草原。對采回的種子進行內(nèi)生真菌的檢測,發(fā)現(xiàn)帶菌率為100%,種子于4 ℃冰箱中保存。
1.2 羽茅帶菌(E+)和不帶菌(E-)種群的構(gòu)建
帶菌的種子由野外采集,存放于4 ℃冰箱中備用,不帶菌的種子則通過將野外采集的種子置于60 ℃溫箱中處理30 d后獲得,前期的研究表明,60 ℃高溫處理羽茅種子30 d能完全殺滅種子中的內(nèi)生真菌,同時高溫處理對種子發(fā)芽率、發(fā)芽勢和發(fā)芽指數(shù)均無顯著影響[26]。選取帶菌和不帶菌的、飽滿成熟的種子分別播種于裝滿蛭石的塑料花盆中,置于溫室中培養(yǎng),待幼苗生長1個月后,每盆分別選取3株長勢良好的分蘗進行內(nèi)生真菌的檢測,檢測方法參考Latch等的苯胺蘭染色法[27]。檢測結(jié)果顯示一直在4 ℃冰箱存放的種子所獲得的植株的帶菌率為100%,高溫處理過的種子所獲得的植株帶菌率為0。此時,進行間苗,保證每盆有8棵健壯的幼苗,備用。
1.3 種子發(fā)芽實驗
本實驗為兩因素實驗,因素一為CO2濃度,包括400 μmol/mol (C-)和800 μmol/mol (C+)兩個水平;因素二為內(nèi)生真菌感染狀態(tài),包括帶菌(E+)和不帶菌(E-),每個處理5個重復(fù)。實驗開始時,分別在每個培養(yǎng)皿中均勻擺放浸泡好的種子50枚,將培養(yǎng)皿分別放入不同CO2濃度的智能人工培養(yǎng)箱中,兩個培養(yǎng)箱除CO2濃度不同外,其余的實驗參數(shù)均完全相同,即溫度25 ℃,濕度60%。種子開始發(fā)芽后,每天觀察并記錄發(fā)芽種子數(shù)目,直至連續(xù)兩天無種子萌發(fā)為止,共歷時14 d,計算種子發(fā)芽率及發(fā)芽速度指數(shù)。種子發(fā)芽率及發(fā)芽速度指數(shù)計算公式[28]如下:
發(fā)芽率=(發(fā)芽種子數(shù)/供試種子數(shù))×100%
發(fā)芽速度指數(shù)=(N1/1)+(N2-N1)/2 +(N3-N2)/3+…+(Nn-Nn-1)/n
式中,N為第1天、第2天…第n天的發(fā)芽種子數(shù)目。
1.4 幼苗生長實驗
本實驗為三因素實驗,因素一為CO2濃度,包括400 μmol/mol (C-)和800 μmol/mol (C+)兩個濃度;因素二為養(yǎng)分處理:包括充足養(yǎng)分供應(yīng)(N+P+)、缺氮(N-P+)和缺磷(N+P-)3個水平;因素三為內(nèi)生真菌感染狀態(tài),包括帶菌(E+)和不帶菌(E-),每個處理5個重復(fù)。將花盆分別放入不同CO2濃度的培養(yǎng)箱中,兩個培養(yǎng)箱的其它參數(shù)為:溫度25 ℃,濕度50%,光強40%,光照12 h。養(yǎng)分處理通過澆灌Hoagland營養(yǎng)液控制,充足養(yǎng)分供應(yīng)組澆完全營養(yǎng)液;缺氮處理組使用CaCl2和KCl分別替代Hoagland營養(yǎng)液中的Ca(NO3)2和KNO3,缺磷處理組使用KCl代替KH2PO4,每周定期澆營養(yǎng)液1次,期間保證水分充足供應(yīng)。實驗期間每周隨機調(diào)換培養(yǎng)箱內(nèi)花盆的位置,以使花盆位置對實驗的影響效應(yīng)最小。
1.5 各項指標的測定
在幼苗進入智能人工培養(yǎng)箱之前,測量每盆的總分蘗數(shù)、葉片數(shù)、株高,分析其差異性,結(jié)果發(fā)現(xiàn)這些指標在帶菌和不帶菌植株之間均無顯著差異。在人工培養(yǎng)箱培養(yǎng)6周后,用LI-6400便攜式光合作用測定儀(LI-COR,Lincoln,USA)測定植株的最大凈光合速率、氣孔導(dǎo)度和蒸騰速率,測定時選取植株剛剛完全伸展開的葉片,光強由LI-6400-02BLED紅藍光源自動控制到1200 μmol·m-2·s-1,葉片水分利用效率由光合速率/蒸騰速率計算獲得[29],收獲前統(tǒng)計每盆中的葉片數(shù)、分蘗數(shù)和株高。在收獲時,將地上部分和地下部分分開,取一定量的根系,洗凈后放入裝有蒸餾水的無色透明塑料盤中,用EPSON 1680掃描儀(Epson,Long Beach,USA)以400 dpi分辨率掃描獲取根系圖像,并以WinRHIZO軟件分析得到相關(guān)數(shù)據(jù)。將地上部和地下部烘干稱重,計算生物量和根冠比。所得數(shù)據(jù)采用SPSS 19.0軟件進行統(tǒng)計處理。
2.1 種子萌發(fā)
所有種子均在第3天開始發(fā)芽,直至第12天后發(fā)芽數(shù)量不再增加。隨著CO2濃度的增加,帶菌和不帶菌種子的發(fā)芽率和發(fā)芽速度的變化不同(圖1),表現(xiàn)在正常CO2濃度下,帶菌種子的發(fā)芽率和發(fā)芽速度均顯著高于不帶菌種子;而在高濃度CO2處理下,與正常CO2濃度相比,帶菌種子的發(fā)芽率和發(fā)芽速度無顯著變化,而不帶菌種子的發(fā)芽率和發(fā)芽速度均顯著下降,即CO2濃度增加使得帶菌和不帶菌種子的發(fā)芽率和發(fā)芽速度之間的差異變得更大。
圖1 不同CO2濃度下內(nèi)生真菌感染對羽茅種子發(fā)芽率和發(fā)芽速度的影響Fig.1 Effects of endophyte infection on seed germination rate and germination speed of Achnatherum sibiricum under different CO2 concentrations字母不相同表示差異顯著(Plt;0.05)
2.2 幼苗生長
羽茅的營養(yǎng)生長受CO2濃度和養(yǎng)分供應(yīng)的交互影響(表1,圖2)。在正常CO2濃度下,羽茅的葉片數(shù)和地上部分生物量均以充足養(yǎng)分供應(yīng)組最優(yōu),缺氮組最差,缺磷組居中;在高濃度CO2處理下,羽茅的生長狀況與養(yǎng)分供應(yīng)的關(guān)系雖然與正常CO2處理組相似,但與正常CO2處理組相比,充足養(yǎng)分供應(yīng)顯著促進了羽茅的營養(yǎng)生長,而缺氮和缺磷組羽茅的生長并沒有隨CO2濃度的提高而增加。內(nèi)生真菌感染顯著提高了宿主植物的最大凈光合速率和水分利用效率(圖3),且內(nèi)生真菌對宿主植物的這一有益作用不受CO2濃度和養(yǎng)分供應(yīng)的影響。
表1不同CO2濃度和養(yǎng)分處理下內(nèi)生真菌感染對羽茅影響的三因素方差分析
Table1Three-wayANOVAforgrowthcharactersofendophyte-infected(E+)orendophyte-free(E-)AchnatherumsibiricumundervariousconditionsofCO2andnutrientsavailability
葉片數(shù)Leafnumber分蘗數(shù)Tillernumber株高Height地上干重Shootdryweight地下干重Rootdryweight總干重Totaldryweight根冠比Root∶shoot凈光合速率Netphotosyntheticrate氣孔導(dǎo)度Stomatalconductance蒸騰速率Evaporationrate水分利用效率WateruseefficiencyCO2(C)***NS**NS******NS**養(yǎng)分(N)****************NSNS**內(nèi)生真菌(E)NSNSNSNSNSNSNS**NSNS**C×N*NSNS**NS*NSNSNSNSNSC×ENSNSNSNSNSNSNSNSNSNSNSN×ENSNSNSNSNSNSNSNSNSNSNSC×N×ENSNSNSNSNSNSNSNSNSNSNS
*,**分別表示Plt;0.05,0.01,NS表示差異不顯著
圖2 不同CO2濃度和養(yǎng)分處理對羽茅葉片數(shù)和地上生物量的影響Fig.2 Effects of CO2 and nutrients availability on leaf number and shoot biomass of Achnatherum sibiricum*表示差異顯著(Plt;0.05)
圖3 內(nèi)生真菌感染對羽茅葉片最大凈光合速率和水分利用效率的影響Fig.3 Effects of endophyte infection on maximum net photosynthetic rate and water use efficiency of Achnatherum sibiricum*表示差異顯著(Plt;0.05)
2.3 根系形態(tài)
根系表面積的大小與植物吸收能力密切相關(guān),CO2濃度增加和充足的養(yǎng)分供應(yīng)都顯著增加了羽茅的根系表面積,而內(nèi)生真菌感染對這一參數(shù)無顯著影響(圖4)。為了明確粗細不同的各級根系對表面積變化的貢獻,本文按照根徑大小將根系劃分為如下3類:即根徑 lt;0.45 mm、0.45—1.05 mm、gt;1.05 mm,計算了各根徑下根系長度的百分比,結(jié)果發(fā)現(xiàn)(表2,圖5),前兩個級別根系的比例只受到養(yǎng)分供應(yīng)的顯著影響,而后一個級別根系的比例除與養(yǎng)分供應(yīng)有關(guān)外,也與CO2濃度和內(nèi)生真菌狀態(tài)有關(guān),在正常CO2濃度下,帶菌植株根徑gt;1.05 mm根系的比例顯著高于不帶菌植株,隨著CO2濃度的升高,帶菌植株根徑gt;1.05 mm根系所占比例無顯著變化而不帶菌植株該級別根系所占比例顯著升高,即CO2濃度升高導(dǎo)致帶菌和不帶菌不同根徑根系分配之間的差異縮小。
圖4 不同二氧化碳濃度、養(yǎng)分處理和內(nèi)生真菌感染狀態(tài)對羽茅根系表面積的影響Fig.4 Effects of CO2 concentration, nutrients availability and endophyte infection on root surface area of Achnatherum sibiricum字母不相同表示差異顯著(Plt;0.05)
Table2Three-wayANOVAforrootmorphologyofendophyte-infected(E+)orendophyte-free(E-)AchnatherumsibiricumundervariousconditionsofCO2andnutrientsavailability
總長度Totallength總表面積Totalarea平均直徑Averagediameterlt;0.45mm0.45—1.05mmgt;1.05mmCO2(C)NS*NSNSNSNS養(yǎng)分(N)***********內(nèi)生真菌(E)NSNSNSNSNS**C×NNSNSNSNSNSNSC×ENSNSNSNSNS*N×ENSNSNSNSNSNSC×N×ENSNSNSNSNS**
圖5 不同CO2濃度下內(nèi)生真菌感染對羽茅根徑gt;1.05 mm根系比例的影響Fig.5 Effects of endophyte infection on the proportion of root length with a diameter of gt;1.05 mm of Achnatherum sibiricum under different CO2 concentrations*表示差異顯著(Plt;0.05)
關(guān)于CO2濃度增加對種子發(fā)芽時間和發(fā)芽率影響的報道存在明顯的差異,有的報道為無直接聯(lián)系[30],有的報道為有明顯的促進作用[31]。內(nèi)生真菌是靠宿主的種子進行傳播的,關(guān)于內(nèi)生真菌感染對宿主種子發(fā)芽率的影響,Clay[32]發(fā)現(xiàn),帶菌的黑麥草和高羊茅種子,其發(fā)芽率均比相應(yīng)不帶菌種子高10%左右,在對黑麥草的研究中也發(fā)現(xiàn),內(nèi)生真菌感染顯著提高了宿主種子的發(fā)芽勢和發(fā)芽率[33],而在天然禾草中,彭清青等[34]發(fā)現(xiàn),內(nèi)生真菌感染只是提高了宿主植物的發(fā)芽勢,而對宿主植物的發(fā)芽率無顯著影響,本研究中雖然在兩種CO2濃度處理下,帶菌種子的發(fā)芽率和發(fā)芽速度均顯著高于不帶菌種子,然而,我們的不帶菌種子是通過高溫殺菌的方法獲得的,因此內(nèi)生真菌對宿主發(fā)芽的促進作用還需進一步證實。值得注意的是,帶菌和不帶菌種子對于CO2濃度增加的反應(yīng)不同,CO2濃度增加對帶菌種子發(fā)芽率和發(fā)芽速度均無顯著影響,但CO2濃度增加顯著降低了不帶菌種子的發(fā)芽率和發(fā)芽速度,即CO2濃度升高加大了帶菌和不帶菌種子發(fā)芽率之間的差異。
關(guān)于CO2濃度增加對內(nèi)生真菌-禾草相互作用影響的研究目前還很少,Compant等[35]報道CO2濃度增加會提高高羊茅的內(nèi)生真菌感染率,與之相對照,Marks和Clay[36]和Chen等[23]發(fā)現(xiàn)CO2濃度增加對禾草-內(nèi)生真菌共生體的影響不大,本研究中內(nèi)生真菌感染顯著提高了宿主植物的凈光合速率和水分利用效率,但內(nèi)生真菌的這一有益影響不受CO2濃度的影響。內(nèi)生真菌對根系形態(tài)的影響與CO2濃度有關(guān),在正常CO2濃度下,帶菌植株根徑gt;1.05 mm根系的比例顯著高于不帶菌植株,隨著CO2濃度的升高,帶菌植株上述根徑根系所占比例無顯著變化而不帶菌植株所占比例顯著升高,CO2濃度升高導(dǎo)致帶菌和不帶菌植株不同根徑根系分配之間的差異縮小,在他人的研究中,Compant等[35]報道CO2濃度升高使得宿主體內(nèi)的生物堿濃度下降,Hunt等[6]發(fā)現(xiàn)帶菌和不帶菌植物體內(nèi)碳水化合物濃度的差異也隨著CO2濃度的增加而減小,即CO2濃度升高縮小了帶菌和不帶菌幼苗生長和代謝物之間的差異。
與菌根真菌-植物共生體相比,內(nèi)生真菌-禾草共生體對CO2濃度增加較為不敏感[23],Hunt等[6]發(fā)現(xiàn)與正常CO2濃度相比,不帶菌植株中的可溶性蛋白濃度在高濃度CO2下下降約40%,而帶菌植株的可溶性蛋白濃度隨CO2濃度增加無顯著變化,本研究中也發(fā)現(xiàn)隨著CO2濃度的升高,帶菌種子的發(fā)芽率和根系分配均無顯著變化,而不帶菌植株的上述指標均發(fā)生了顯著變化,內(nèi)生真菌感染有可能弱化CO2濃度增加對宿主植物的影響。當然,本文只在種子發(fā)芽和幼苗生長方面研究了感染內(nèi)生真菌的植物對CO2濃度增加的相應(yīng),要闡明感染內(nèi)生真菌的植物對CO2濃度增加的綜合反應(yīng)及其反應(yīng)機制,還需要大量的研究工作。
[1] Peters G P, Marland G, Le Quéré C, Boden T, Canadell J, Raupach M R. Rapid growth in CO2emissions after the 2008—2009 global financial crisis. Nature Climate Change, 2012, 2(1): 2- 4.
[2] Franks P J, Adams M A, Amthor J S, Barbour M M, Berry J A, Ellsworth D S, Farquhar G D, Ghannoum O, Lloyd J, McDowell N, Norby R J, Tissue D T, von Caemmerer S. Sensitivity of plants to changing atmospheric CO2concentration: from the geological past to the next century. New Phytologist, 2013, 197(4): 1077- 1094.
[3] Hu S J, Firestone M K, Chapin F S. Soil microbial feedbacks to atmospheric CO2enrichment. Trends in Ecology and Evolution, 1999, 14(11): 433- 437.
[4] Zanetti S, Hartwig U A, Luscher A, Hebeisen T, Frehner M, Fischer BU, Hendrey G R, Blum H, Nosberger J. Stimulation of symbiotic N2fixation inTrifoliumrepensL. under elevated atmosphericpCO2in a grassland ecosystem. Plant Physiology, 1996, 112(2): 575- 583.
[5] Johnson N C, Wolf J, Koch G W. Interactions among mycorrhizae, atmospheric CO2and soil N impact plant community composition. Ecology Letters, 2003, 6(6): 532- 540.
[6] Hunt M G, Rasmussen S, Newton P C D, Parsons A J, Newman J A. Near-term impacts of elevated CO2, nitrogen and fungal endophyte-infection onLoliumperenneL. growth, chemical composition and alkaloid production. Plant, Cell and Environment, 2005, 28(11): 1345- 1354.
[7] Newman J A, Abner M L, Dado R G, Gibson D J, Brookings A, Parsons A J. Effects of elevated CO2, nitrogen and fungal endophyte-infection on tall fescue: growth, photosynthesis, chemical composition and digestibility. Global Change Biology, 2003, 9(3): 425- 437.
[8] Rillig M C, Field C B, Allen M F. Fungal root colonization responses in natural grasslands after long-term exposure to elevated atmospheric CO2. Global Change Biology, 1999, 5(5): 577- 585.
[9] Hartwig U A, Wittmann P, Raun R B. Arbuscular mycorrhiza infection enhances the growth response ofLoliumperenneto elevated atmosphericpCO2. Journal of Experimental Botany, 2002, 53(371): 1207- 1213.
[10] Treseder K K. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2in field studies. New Phytologist, 2004, 164(2): 347- 355.
[11] Hu S J, Wu J S, Burkey K O, Firestone M K. Plant and microbial N acquisition under elevated atmospheric CO2in two mesocosm experiments with annual grasses. Global Change Biology, 2005, 11(2): 223- 233.
[12] Arnold A E, Meijia L C, Kyllo D, Rojas E I, Maynard Z, Robbins N, Herre E A. Fungal endophytes limit pathogen damage in a tropical tree. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(26): 15649- 15654.
[13] Müller C B, Krauss J. Symbiosis between grasses and asexual fungal endophytes. Current Opinion in Plant Biology, 2005, 8(4): 450- 456.
[14] Rahman M H, Saiga S. Endophytic fungi (Neotyphodiumcoenophialum) affect the growth and mineral uptake, transport and efficiency ratios in tall fescue (Festucaarundinacea). Plant and Soil, 2005, 272(1/2): 163- 171.
[15] Burns J C, Fisher D S. Intake and digestion of ′Jesup′ tall fescue hays with a novel fungal endophyte, without an endophyte, or with a wild-type endophyte. Crop Science, 2006, 46(1): 216- 223.
[16] Züst T, H?rri S A, Müller C B. Endophytic fungi decrease available resources for the aphidRhopalosiphumpadiand impair their ability to induce defences against predators. Ecological Entomology, 2008, 33(1): 80- 85.
[17] Eerens J P J, Visker M H P W, Lucas R J, Easton H S, White J G H. Influence of the ryegrass endophyte on phyto-nematodes // Neotyphodium/Grass Interactions. New York: Plenum Press, 1997: 153- 156.
[18] Van Hecke M M, Treonis A M, Kaufman J R. How does the fungal endophyteNeotyphodiumcoenophialumaffect tall fescue (Festucaarundinacea) rhizodeposition and soil microorganisms? Plant and Soil, 2005, 275(1/2): 101- 109.
[19] Quigley P E. Effects ofNeotyphodiumloliiinfection and sowing rate of perennial ryegrass (Loliumperenne) on the dynamics of ryegrass/subterranean clover (Trifoliumsubterraneum) swards. Australian Journal of Agricultural Research, 2000, 50(1): 47- 56.
[20] Hesse U, Schoberlein W, Wittenmayer L, Forster K, Warnstorff K, Diepenbrock W, Merbach W. Influence of water supply and endophyte infection (Neotyphodiumspp.) on vegetative and reproductive growth of twoLoliumperenneL. genotypes. European Journal of Agronomy, 2005, 22(1): 45- 54.
[21] Lewis G C. Effects of biotic and abiotic stress on the growth of three genotypes ofLoliumperennewith and without infection by the fungal endophyteNeotyphodiumlolii. Annals of Applied Biology, 2004, 144(1): 53- 63.
[22] Marks S, Clay K. Physiological responses ofFestucaarundinaceato fungal endophyte infection. New Phytologist, 1996, 133(4): 727- 733.
[23] Chen X, Tu C, Burtonm G, Watsond M, Burkeyk O, Hu S J. Plant nitrogen acquisition and interactions under elevated carbon dioxide: impact of endophytes and mycorrhizae. Global Change Biology, 2007, 13(6): 1238- 1249.
[24] Wei Y K, Gao Y B, Xu H, Su D, Zhang X, Wang Y H, Chen L, Nie L Y, Ren A Z.Neotyphodiumin native grasses in China and observations on endophyte/host interactions. Grass and Forage Science, 2006, 61(4): 422- 429.
[25] Zhang X, Ren A Z, Wei Y K, Lin F, Li C, Liu Z J, Gao Y B. Taxonomy, diversity and origins of symbiotic endophytes ofAchnatherumsibiricuminthe Inner Mongolia Steppe of China. FEMS Microbiology Letters, 2009, 301(1): 12- 20.
[26] Li X, Han R, Ren A Z, Gao Y B. Using high-temperature treatment to construct endophyte-freeAchnatherumsibiricum. Microbiology China, 2010, 37(9): 1395- 1400.
[27] Latch G C M, Christensen M J, Samuels G J. Five endophytes ofLoliumandFestucain New Zealand. Mycotaxon, 1984, 20(2): 535- 550.
[28] Chiapuso G, Sanchez A M, Reigosa M J, Gonzalez L, Pellissier F. Do germination indices adequately reflect allelochemical effects on the germination process?. Journal of Chemical Ecology, 1997, 23(11): 2445- 2453.
[29] Farquhar G D, Richards R A. Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Australian Journal of Plant Physiology, 1984, 11(6): 539- 552.
[30] Garbutt K, Williams W E, Bazzaz F A. Analysis of the differential response of five annuals to elevated CO2during growth. Ecology, 1990, 71(3): 1185- 1194.
[31] Heichel G H, Jaynes R A. Stimulating emergence and growth of Kalmia genotypes with CO2. Horticulture Science, 1974, 9(1): 60- 62.
[32] Clay K. Effects of fungal endophytes on the seed and seedling biology ofLoliumperenneandFestucaarundinacea. Oecologia, 1987, 73(3): 358- 362.
[33] Ren A Z, Gao Y B, Gao W S. Effects of endophyte infection on seed germination, seedling growth and osmotic stress resistance of perennial ryegrass (LoliumperenneL.). Acta Phytoecologica Sinica, 2002, 26(4) 420- 426.
[34] Peng Q Q, Li C J, Song M L, Liang Y, Nan Z B. Effects ofNeotyphodiumendophytes on seed germination of three grass species under different pH conditions. Acta Prataculturae Sinica, 2011, 20(5): 72- 78.
[35] Compant S, van der Heijden M G A, Sessitsch A. Climate change effects on beneficial plant-microorganism interactions. FEMS Microbiology Ecology, 2010, 73(2): 197- 214.
[36] Marks S, Clay K. Effects of CO2enrichment, nutrient addition, and fungal endophyte-infection on the growth of two grasses. Oecologia, 1990, 84(2): 207- 214.
參考文獻:
[26] 李夏, 韓榮, 任安芝, 高玉葆. 高溫處理構(gòu)建不感染內(nèi)生真菌羽茅種群的方法探討. 微生物學(xué)通報, 2010, 37(9): 1395- 1400.
[33] 任安芝, 高玉葆, 高文生. 內(nèi)生真菌侵染對黑麥草種子萌發(fā)、幼苗生長及滲透脅迫抗性的影響. 植物生態(tài)學(xué)報, 2002, 26(4): 420- 426.
[34] 彭清青, 李春杰, 宋梅玲, 梁瑩, 南志標. 不同酸堿條件下內(nèi)生真菌對三種禾草種子萌發(fā)的影響. 草業(yè)學(xué)報, 2011, 20(5): 72- 78.
Physio-ecologicaleffectsofendophyteinfectiononthehostgrasswithelevatedCO2
SHI Zhibing, ZHOU Yong, LI Xia, REN Anzhi*, GAO Yubao
CollegeofLifeSciences,NankaiUniversity,Tianjin300071,China
Carbon dioxide (CO2) enrichment in the atmosphere stimulates photosynthetic activity and growth of C3plants. This may in turn alter the availability of photosynthates for plant-associated microbes, modifying the symbiosis formed such as mycorrhizae and plant-endophyte complexes. Documents are accumulating to show that elevated CO2increases hyphal growth and root colonization by arbuscular mycorrhizal fungi (AMF). Similar to AMF, endophytes are also fungi that are widely associated with plants but they mostly exist in the shoots rather than the roots of plants. Up to now, however, few studies have focused on the responses of endophyte-infected plants to elevated CO2. In the present study, we examined how elevated CO2affects endophytes and their functions, usingAchnatherumsibiricum(L.) Keng as model species.A.sibiricumis a caespitose perennial grass, widely distributed in the Inner Mongolia steppe and usually highly infected byNeotyphodiumendophytes. Seeds ofA.sibiricumwere collected from natural population in Hailar in the Northeast part of China. Detection of endophytes using the aniline blue staining method showed that endophyte infection frequency of the Hailar population was almost 100%. To eliminate the endophyte, we heat-treated a subset of randomly chosen seeds in a convection drying oven for 30 d at 60 ℃. Two experiments were performed in two growth chambers, with ambient (C-) and elevated (C+) CO2, separately. In Experiment 1, germination rates of endophyte-infected (E+) and endophyte-free (E-) seeds were compared under two different CO2concentrations. In Experiment 2, vegetative growth of E+ and E- seedlings was compared. The design of this experiment was completely randomized and a 2×2×3 factorial, with CO2concentration (C+ vs. C-), infection status (E+ vs. E-) and nutrients availability (N+P+, N-P+, N+P-, i.e. N and P supply, N deficiency P supply, N supply P deficiency) as the variables. There were five replicates per treatment group. The results showed that both the germination rate and germination speed of E+ seeds were not affected by elevated CO2while those of E- seeds were significantly decreased by elevated CO2. That is to say, elevated CO2increased the germination rate difference between E+ and E- seeds. Endophyte infection significantly improved maximum net photosynthetic rate and water use efficiency of the host grass. The vegetative growth was significantly affected by the interaction of elevated CO2and nutrients availability, but was not affected by endophyte infection. The beneficial improvement of elevated CO2on vegetative growth ofA.sibiricumoccurred only under N+P+ conditions. With N or P deficiency, the beneficial effect of elevated CO2on the growth did not exist. The root morphological characters were affected by the interaction of elevated CO2and endophyte infection. In the ambient CO2treatment, the proportion of root length with a diameter of gt;1.05 mm was significantly higher in E+ than in E- plants. With elevated CO2, no significant difference was found in the proportion of the root length stated above between E+ and E- roots. Elevated CO2decreased the difference of root morphology between E+ and E- plants. When compared with plant-AMF associations, the present study suggested that the grass-endophyte association was less sensitive to CO2enrichment. It is suggested that more experiments are needed to fully examine the potential impacts of elevated CO2on plant-endophyte associations.
elevated CO2;Achnatherumsibiricum; seed germination; root morphology
國家自然科學(xué)基金資助項目(31270463); 國家基礎(chǔ)學(xué)科人才培養(yǎng)基金資助項目(J1103503)
2013- 06- 08;
2013- 07- 23
*通訊作者Corresponding author.E-mail: renanzhi@ nankai.edu.cn
10.5846/stxb201306081432
師志冰,周勇,李夏,任安芝,高玉葆.CO2濃度升高條件下內(nèi)生真菌感染對宿主植物的生理生態(tài)影響.生態(tài)學(xué)報,2013,33(19):6135- 6141.
Shi Z B, Zhou Y, Li X, Ren A Z, Gao Y B.Physio-ecological effects of endophyte infection on the host grass with elevated CO2.Acta Ecologica Sinica,2013,33(19):6135- 6141.