• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Introduction to mediation analysis with structural equation modeling

    2013-12-09 02:28:53DouglasGUNZLERTianCHENPanWUHuiZHANG
    上海精神醫(yī)學(xué) 2013年6期

    Douglas GUNZLER*, Tian CHEN, Pan WU, Hui ZHANG

    ?Biostatistics in psychiatry (18)?

    Introduction to mediation analysis with structural equation modeling

    Douglas GUNZLER*, Tian CHEN, Pan WU, Hui ZHANG

    1. What is mediation analysis?

    In mediation, we consider an intermediate variable,called the mediator, that helps explain how or why an independent variable influences an outcome. In the context of a treatment study, it is often of great interest to identify and study the mechanisms by which an intervention achieves its effect. By investigating mediational processes that clarify how the treatment achieves the study outcome, not only can we further our understanding of the pathology of the disease and the mechanisms of treatment, but we may also be able to identify alternative, more efficient, intervention strategies. For example, a tobacco prevention program may teach participants how to stop taking smoking breaks at work (the intervention) which changes their social norms about tobacco use (the intermediate mediator) and subsequently leads to a reduction in smoking behavior (study outcome).[1]

    With mediation analysis, we gain insight and acquire deep understanding about the mechanism of action of pharmacological and psychotherapeutic treatments. Such information provides an added dimension to understand the etiology of disease and the pathways of therapeutic effects, which can stimulate the identification of more efficacious and cost-efficient alternative therapies.

    2. What is structural equation modeling?

    Structural equation modeling (SEM) is a very general,very powerful multivariate technique. It uses a conceptual model, path diagram and system of linked regression-style equations to capture complex and dynamic relationships within a web of observed and unobserved variables. Although similar in appearance,SEM is fundamentally different from regression. In a regression model, there exists a clear distinction between dependent and independent variables. In SEM,however, such concepts only apply in relative terms since a dependent variable in one model equation can become an independent variable in other components of the SEM system.[2,3]It is precisely this type of reciprocal role a variable plays that enables SEM to infer causal relationships.

    SEM models include both endogenous and exogenous variables. Endogenous variables act as a dependent variable in at least one of the SEM equations; they are called endogenous variables rather than response variables because they may become independent variables in other equations within the SEM equations. Exogenous variables are always independent variables in the SEM equations. SEM equations model both the causal relationships between endogenous and exogenous variables, and the causal relationships among endogenous variables.

    SEM models are best represented by path diagrams.A path diagram consists of nodes representing the variables and arrows showing relations among these variables. By convention, in a path diagram latent variables (e.g., depression) are represented by a circle or ellipse and observed variables (e.g., a score on a rating scale) are represented by a rectangle or square.Arrows are generally used to represent relationships among the variables. A single straight arrow indicates a causal relation from the base of the arrow to the head of the arrow. Two straight single-headed arrows in opposing directions connecting two variables indicate a reciprocal causal relationship. A curved two-headed arrow indicates there may be some association between the two variables. Error terms for a variable are inserted into the path diagram by drawing an arrow from the value of the error term to the variable with which the term is associated.

    For example, in most path diagrams for crosssectional data, error terms are not connected, indicating stochastic independence across the error terms. But if we suspect association between error terms – which is likely to occur in most longitudinal studies – the error terms should be connected by curved two-headed arrows. See Bollen[2]and Kowalski and Tu[3]for more details about modeling complex relationships involving latent constructs using SEM.

    3. Advantages of using structural equation modeling instead of standard regression methods for mediation analysis

    Baron and Kenny,[4]in the fi rst paper addressing mediation analysis, tested the mediation process using a series of regression equations. However, mediation assumes both causality and a temporal ordering among the three variables under study (i.e. intervention, mediator and response). Since variables in a causal relationship can be both causes and effects, the standard regression paradigm is ill-suited for modeling such a relationship because of its a priori assignment of each variable as either a cause or an effect.[1,5,6]Structural equation modeling (SEM) provides a more appropriate inference framework for mediation analyses and for other types of causal analyses.

    There are many advantages to using the SEM framework in the context of mediation analysis. When a model contains latent variables such as happiness,quality of life and stress, SEM allows for ease of interpretation and estimation. SEM simplifies testing of mediation hypotheses because it is designed, in part,to test these more complicated mediation models in a single analysis.[7]SEM can be used when extending a mediation process to multiple independent variables,mediators or outcomes. This contrasts with standard regression, in which ad hoc methods must be used for inference about indirect and total effects.[4,8,9]These ad hoc methods rely on combining the results of two or more equations to derive the asymptotic variance.This is especially problematic when there are different numbers of observations missing in the different regression equations representing a mediation process.Also, in standard regression, we handle missing data via listwise deletion since there is no built-in missing data mechanism when using ordinary least squares (OLS).

    Another important advantage of SEM over standard regression methods is that the SEM analysis approach provides model fit information about the consistency of the hypothesized mediational model to the data and evidence for the plausibility of the causality assumptions[10,11]made when constructing the mediation model. The standard regression procedure initially recommended by Baron and Kenny[4]has also been shown to be low powered.[7]Moreover, unlike standard regression approaches, SEM allows for ease of extension to longitudinal data within a single framework,corresponding with a study’s conceptual framework for clear hypothesis articulation.[12]Finally, Bollen and Pearl[10]note that even when the same equation is used in SEM and in regression analysis, the results will be different because they are based on completely different assumptions. Standard regression analysis implies a statistical relationship based on a conditional expected value, while SEM implies a functional relationship expressed via a conceptual model, path diagram, and mathematical equations. Thus, the causal relationships in a hypothesized mediation process, the simultaneous nature of the indirect and direct effects,and the dual role the mediator plays as both a cause for the outcome and an effect of the intervention are more appropriately expressed using structural equations than using regression analysis.

    4. Use of SEM for mediation analysis

    Figure 1 shows a path diagram for the causal relationships between the three variables in the smoking prevention example discussed earlier:prevention program (xi), social norm (zi), and amount of smoking (yi). In this example, all variables that are effected by other variables – social norms and amount of smoking – are endogenous variables, while variables that only impart an effect on other variables without being effected by other variables – the prevention program – are exogenous variables. All three variables in this smoking prevention example are assumed to be all observed so rectangles (not circles) are used to represent the variables.

    Figure 1: Pathway of a mediation process for a tobacco prevention program

    The SEM for this mediation model for the ith subject (1 ≤ i ≤ n) is given by:

    We assume the error terms (εzi,εyi) are uncorrelated,an important assumption for causal inference in performing mediation analysis.[10,11]We also assume multivariate normality for the error terms; this is a necessary underlying condition of the definition of direct, indirect and total effects. Note that the two structural equations are linked together and inference about them is simultaneous, unlike two independent standard regression equations.

    The direct effect is the pathway from the exogenous variable to the outcome while controlling for the mediator. Therefore, in our path diagram γxyis the direct effect. The indirect effect describes the pathway from the exogenous variable to the outcome through the mediator. This path is represented through the product of βxzand γzy. Finally, the total effect is the sum of the direct and indirect effects of the exogenous variable on the outcome, γxy+ βxzγzy.

    The primary hypothesis of interest in a mediation analysis is to see whether the effect of the independent variable (intervention) on the outcome can be mediated by a change in the mediating variable. In a full mediation process, the effect is 100% mediated by the mediator, that is, in the presence of the mediator, the pathway connecting the intervention to the outcome is completely broken so that the intervention has no direct effect on the outcome. In most applications, however,partial mediation is more common, in which case the mediator only mediates part of the effect of the intervention on the outcome, that is, the intervention has some residual direct effect even after the mediator is introduced into the model.

    In terms of testing the primary hypothesis of interest, we start by examining a reduced regression equation without the mediator:

    If we accept the null hypothesis (H0: γ*xy=0) for this reduced regression equation, then x and y (i.e., the intervention and the outcome) are not related and we should not consider potential mediators. We then proceed to evaluate the SEM for the mediation model if we reject the null hypothesis for this reduced regression equation. Full mediation (i.e., the intervention has no direct effect on the outcome) corresponds to the null hypothesis, H0: γxy=0. If this null is rejected, it becomes of interest to assess partial mediation via the direct,indirect and total effects. Inference (standard errors and p-values) about such effects is easily performed using the Delta or Bootstrap methods.[8,9,13]

    Significant advances have been made over the past few decades in the theory, applications and associated software development for fitting SEM models that can be used in the context of mediation analysis. For example, in addition to specialized packages such as LISREL,[14]MPlus,[15]EQS,[16]and Amos,[17]procedures for fitting SEM are also available from general-purposes statistical packages such as R, SAS, STATA and Statistica.These packages provide inference based on maximum likelihood, generalized least squares, and weighted least squares.

    5. An example of mediation analysis using SEM to model the relationship of drinking to suicidal risk

    Project MATCH[18]is a multisite treatment trial for alcohol use disorders that enrolled 1,726 participants (including 24% women) with a mean (sd) age of 40.2 (11.0) years.Previously, studies of alcohol dependent individuals established that drinking promotes depressive symptoms and depressive disorders and that depression is an important risk factor for suicidal thoughts and behavior.[19]Therefore, considering the context of the study and prior theory, mediation analysis was used to evaluate the hypothesis that greater drinking intensity leads to higher levels of depression which, in turn, leads to suicidal ideation.[19]In the model, drinking intensity was a latent construct based on three months of data about drinking behavior, while depression and suicidal ideation were measured using the Beck Depression Inventory.[20]

    Mediation analysis with SEM was performed using MPlus software. Age, gender, race, treatment assignment,study arm, and baseline percent days abstinent were controlled for in the structural equations for each endogenous variable in the structural model. The outcome – the presence or absence of suicidal ideation– was analyzed via the probit link (which is used to transform outcome probabilities to the standard normal variable), which made it possible to interpret the indirect, direct and total effects on an interval scale. Subjects were assessed at baseline and at 3-,9-, and 15-month follow-up, but in order to derive a single direct, indirect and total effect in the model(as in models of cross-sectional data) we constrained all model parameters at the three follow-up times to be equal and controlled for the baseline value of the outcome measure. Standardized estimates (between -1 and 1) were reported rather than raw estimates, so that estimates from different structural equations are on the same scale, simplifying interpretation.

    In the regression equation without the mediator,the estimate of the causal path from drinking intensity to suicidality was significant (γ^*xy=0.20, p<0.001).

    The path diagram of Figure 2 of the mediation model includes the standardized estimates for the causal paths for the indirect and direct effects. Both estimated paths for the indirect effect were statistically significant, while the estimate of the direct effectfrom drinking intensity to suicidal ideation was close to zero and not significant. Therefore, potentially,depression fully mediates the path between drinking intensity and suicidal ideation. The model showed reasonably good model fi t according to multiple SEM fi t statistics and indices: χ2(df=59)=218.29, p≤0.001; Root Mean Square Error of Approximation (RMSEA)=0.042;Comparative fit index (CFI)=0.947; Tucker-Lewis index(TLI)=0.933. Rule of thumb guidelines are that CFI ≥0.95,TLI ≥0.95 and RMSEA ≤0.05 represent a good fitting model.

    Figure 2: Pathway of a mediation process for a clinical model of drinking and suicidal risk(*p<0.05)

    6. Other issues to consider when performing mediation analysis

    Baron and Kenny[4]distinguished mediation from moderation, in which a third variable affects the strength or direction of the relationship between an independent variable and an outcome. In multi-group analyses a moderator is typically either part of an interaction term or a grouping variable. For example,if males are known to react differently than females to a particular intervention for lowering cholesterol, in a gender by treatment interaction effect, gender is a moderator. In mediated-moderation, such an interaction is used as an independent (i.e., exogenous) variable in the SEM path diagram.

    Longitudinal data help capture both withinindividual dynamics and between individual differences over time. Also, longitudinal data allow for the examination of whether changes in the mediator are more likely to precede changes in the outcome,presenting more accurate representations of the temporal order of change over time that lead to more accurate conclusions about mediation.[7]Latent growth modeling is an SEM extension for longitudinal data that can flexibly evaluate mediating relationships between multiple time-varying measures.[12]Autoregressive and multilevel models have also been used for longitudinal mediation analyses with SEM.

    Causal inference methods, which use the language of counterfactuals and potential outcomes, have been used in mediation analysis.[21]These approaches address the issues of potential confounders of the mediatoroutcome relationship and of potential interactions between the mediator and treatment. They also provide definitions for deriving effects for analyses involving mediators and outcomes that are not on an interval scale (i.e. count data, categorical data).These causal inference methods can be applied in the SEM framework.[22,23]Imai and colleagues[11]proposed approaches to extend SEM by using causal inference methods to generate a more general definition,identification, estimation, and sensitivity analysis of causal mediation effects that are not based on any specific statistical model; they also introduced a R package for performing causal mediation analysis using their approaches.[11]

    7. Conclusion

    Mediation helps explain the mechanism through which an intervention influences an outcome and assumes both causal and temporal relations. When performed using strong prior theory and with appropriate context, mediation analysis helps provide a focus for future intervention research so more efficacious and cost-efficient alternative therapies may be developed.Structural equation modeling provides a very general,fl exible framework for performing mediation analysis.

    Conflict of Interest

    The authors report no conflict of interest related to this manuscript.

    Funding

    Financial support for this study was provided by a grant from NIH/NCRR CTSA KL2TR000440. The funding agreement ensured the authors’ independence in designing the study, interpreting the data, writing, and publishing the report.

    1. MacKinnon D, Fairchild A. Current directions in mediation analysis. Current Directions in Psychological Science 2009;18: 16-20.

    2. Bollen KA. Structural Equations with Latent Variables. New York, NY: Wiley; 1989.

    3. Kowalski J, Tu XM. Modern Applied U Statistics. New York,NY: Wiley; 2007.

    4. Baron RM, Kenny DA. The moderator-mediator variable distinction in social psychological research: concept, strategic and statistical considerations. Journal of Personality and Social Psychology 1986;51: 1173-1182.

    5. Kraemer H. How do risk factors work together? Mediators,moderators, and independent, overlapping, and proxy risk factors. Am J Psychiatry 2001;158: 848-856.

    6. Rothman KJ, Greenland S. Modern Epidemiology.Philadelphia, PA: Lippingcott Williams and Wilkins; 1998.

    7. MacKinnon, D. Introduction to Statistical Mediation Analysis.New York, NY: Lawrence Erlbaum Associates; 2008.

    8. Sobel ME. Asymptotic intervals for indirect effects in structural equations models. In S. Leinhart (Ed.), Sociological methodology (pp. 290-312). San Francisco, CA: Jossey-Bass;1982.

    9. Clogg CC, Petkova, E, Shihadeh ES. Statistical methods for analyzing collapsibility in regression models. Journal of Educational Statistics 1992;17(1): 51-74.

    10. Bollen KA, Pearl J. Eight myths about causality and structural equation models. UCLA Cognitive Systems Laboratory,Technical Report (R-393). Draft chapter for S. Morgan (ed.)Handbook of Causal Analysis for Social Research. New York,NY: Springer; 2012.

    11. Imai K, Keele, L, Tingley D. A general approach to casual mediation analysis. Psychological Methods 2010;15(4): 309-334.

    12. Preacher KJ, Wichman AL, MacCallum RC, Briggs NE. Latent Growth Curve Modeling. Los Angeles, CA: Sage; 2008.

    13. Bollen KA, Stine R. Direct and indirect effects: Classical and bootstrap estimates of variability. Sociological Methodology 1990;20: 115-140.

    14. Joreskog KG, Sorbom D. Lisrel 8 User’s Guide, Second Edition.Lincolnwood, IL: Scientific Software; 1997.

    15. Muthén LK, Muthén BO. Mplus User’s Guide, Seventh Edition. Los Angeles, CA: Muthén & Muthén; 1998-2012.

    16. Bentler, P.M. EQS 6 Structural Equations Program Manual.Encino, CA: Multivariate Software, Inc; 2006.

    17. Arbuckle JL. IBM SPSS Amos 19 User’s Guide. Crawfordville,FL: Amos Development Corporation; 1995-2010.

    18. Project MATCH Research Group. Project MATCH: rationale and methods for a multisite clinical trial matching patients to alcoholism treatment. Alcohol Clin Exp Res 1993;17:1130–1145.

    19. Conner KR, Gunzler D, Tang, W, Tu XM, Maisto SA. Test of a Clinical Model of Drinking and Suicidal Risk. Alcoholism:Clinical and Experimental Research 2011;35: 60-68.

    20. Beck AT, Ward CH, Mendelsohn M, Mock J, Erbaugh J. An inventory for measuring depression. Arch Gen Psychiatry,1961;4: 561–571.

    21. Robins JM, Greenland S. Identifiability and exchangeability for direct and indirect effects. Epidemiology 1992;3: 143-155.

    22. Muthén BO [internet]. Los Angeles, CA: Muthén and Muthén. [updated 2011; cited 2013 Dec 11]. Applications of Causally Defined Direct and Indirect Effects in Mediation Analysis Using SEM in Mplus. Available from: http://www.statmodel.com/examples/penn.shtml#extendSEM

    23. Pearl J. Causal inference in statistics: An overview. UCLA Computer Science Department, Technical Report R-350.Statistics Surveys 2009;3: 96-146.

    10.3969/j.issn.1002-0829.2013.06.009

    Center for Health Care Research & Policy, Case Western Reserve University at Metro Health Medical Center, Cleveland, Ohio, United States

    *correspondence: dgunzler@metrohealth.org

    Dr. Douglas Gunzler is a Senior Instructor of Medicine at the Center for Health Care Research and Policy, Case Western Reserve University. His research has focused on structural equation modeling and longitudinal analysis, emphasizing mediation analysis, missing data, multi-level modeling and distribution-free models, with applications in mental health and neurology. Dr. Gunzler received his PhD in Statistics from the Department of Biostatistics and Computational Biology at the University of Rochester in 2011.

    婷婷色综合大香蕉| 欧美色欧美亚洲另类二区| 国产精品一区二区三区四区久久| 99热这里只有是精品50| 99久久成人亚洲精品观看| 香蕉av资源在线| 亚洲成av人片在线播放无| 1024手机看黄色片| 十八禁网站免费在线| 欧美日韩国产亚洲二区| 久久精品国产99精品国产亚洲性色| av在线播放精品| 久久这里只有精品中国| 亚洲欧美精品自产自拍| 亚洲精品乱码久久久v下载方式| 国产精华一区二区三区| 国产一区二区激情短视频| 久久热精品热| 亚洲中文日韩欧美视频| 欧洲精品卡2卡3卡4卡5卡区| 国产精品三级大全| 国产亚洲精品久久久久久毛片| 亚洲国产精品久久男人天堂| 久久韩国三级中文字幕| 免费观看在线日韩| 看片在线看免费视频| 亚洲国产精品成人久久小说 | 国产成人a区在线观看| 美女cb高潮喷水在线观看| 亚洲国产欧美人成| 美女大奶头视频| 免费av不卡在线播放| 日本黄色片子视频| 99国产精品一区二区蜜桃av| 我的女老师完整版在线观看| 日本免费一区二区三区高清不卡| 久久久久久久久中文| 国产精品一区二区免费欧美| 亚洲最大成人手机在线| 亚洲av成人av| 亚洲高清免费不卡视频| 国产高清激情床上av| 亚洲色图av天堂| 亚洲av免费高清在线观看| a级毛片免费高清观看在线播放| 欧美日本亚洲视频在线播放| 亚洲最大成人中文| 日本黄色片子视频| 久久久久九九精品影院| 成年女人永久免费观看视频| 2021天堂中文幕一二区在线观| 尾随美女入室| 嫩草影院入口| 亚洲精品色激情综合| av天堂在线播放| 国产精品久久久久久久电影| 成人精品一区二区免费| 蜜桃亚洲精品一区二区三区| 亚洲精品影视一区二区三区av| 男女边吃奶边做爰视频| 国产午夜精品久久久久久一区二区三区 | 天堂av国产一区二区熟女人妻| 在线免费十八禁| 日韩成人av中文字幕在线观看 | 中文字幕精品亚洲无线码一区| 一本一本综合久久| 欧美一区二区亚洲| 午夜福利在线在线| 欧美日韩国产亚洲二区| 18+在线观看网站| 国产v大片淫在线免费观看| 在现免费观看毛片| 欧美激情在线99| 99久久精品国产国产毛片| 菩萨蛮人人尽说江南好唐韦庄 | 欧美一区二区精品小视频在线| 久久久欧美国产精品| 淫妇啪啪啪对白视频| 美女高潮的动态| 麻豆国产av国片精品| 女人十人毛片免费观看3o分钟| 国产精品免费一区二区三区在线| 男女啪啪激烈高潮av片| 国产精品亚洲一级av第二区| 在线国产一区二区在线| 久久精品国产99精品国产亚洲性色| 国产亚洲精品久久久com| 成人特级av手机在线观看| 亚洲一级一片aⅴ在线观看| 日韩精品青青久久久久久| 久久久久国产精品人妻aⅴ院| 成年av动漫网址| 亚洲熟妇熟女久久| 亚洲精品一区av在线观看| 欧美区成人在线视频| 亚洲av成人精品一区久久| 久久6这里有精品| 久久精品影院6| 久久久久久久久大av| www日本黄色视频网| 12—13女人毛片做爰片一| 国产黄片美女视频| 99热精品在线国产| 校园春色视频在线观看| 校园春色视频在线观看| 男人和女人高潮做爰伦理| 天天躁日日操中文字幕| 91在线精品国自产拍蜜月| 国产精品女同一区二区软件| 欧美性感艳星| 久久久久久久午夜电影| 一级a爱片免费观看的视频| 日韩人妻高清精品专区| 免费观看在线日韩| 免费av不卡在线播放| 变态另类成人亚洲欧美熟女| 搡老熟女国产l中国老女人| 亚洲精品乱码久久久v下载方式| 最近2019中文字幕mv第一页| 给我免费播放毛片高清在线观看| 国产黄色小视频在线观看| 男女做爰动态图高潮gif福利片| 天天躁夜夜躁狠狠久久av| 看十八女毛片水多多多| 欧美日韩国产亚洲二区| 午夜视频国产福利| 日本三级黄在线观看| 国产v大片淫在线免费观看| 麻豆精品久久久久久蜜桃| 国产欧美日韩一区二区精品| 国产成人影院久久av| 波多野结衣高清作品| 日韩av不卡免费在线播放| 国产高潮美女av| 亚洲中文字幕一区二区三区有码在线看| 国产白丝娇喘喷水9色精品| 亚洲中文日韩欧美视频| 久久久欧美国产精品| 可以在线观看毛片的网站| 欧美最黄视频在线播放免费| 可以在线观看毛片的网站| 国产精品永久免费网站| 老司机午夜福利在线观看视频| 日本在线视频免费播放| 日韩 亚洲 欧美在线| 久久人人爽人人片av| 少妇熟女欧美另类| 亚洲成a人片在线一区二区| 最新在线观看一区二区三区| 久久久久久久午夜电影| 一级毛片电影观看 | 在线观看美女被高潮喷水网站| 久久久久久久午夜电影| 久久精品影院6| 日韩欧美免费精品| 日本免费a在线| 少妇丰满av| 男女做爰动态图高潮gif福利片| 国产成人91sexporn| 精品乱码久久久久久99久播| 国产亚洲91精品色在线| 热99在线观看视频| 综合色丁香网| 毛片女人毛片| 亚洲av电影不卡..在线观看| 啦啦啦韩国在线观看视频| 国产白丝娇喘喷水9色精品| 国产成人精品久久久久久| 国内揄拍国产精品人妻在线| 成人特级av手机在线观看| 日韩亚洲欧美综合| 国产乱人偷精品视频| 黄色配什么色好看| 国产一级毛片七仙女欲春2| 亚洲美女黄片视频| 日韩三级伦理在线观看| 免费搜索国产男女视频| 三级毛片av免费| 成人综合一区亚洲| 天天一区二区日本电影三级| 午夜福利在线在线| 男女边吃奶边做爰视频| 一区二区三区免费毛片| 晚上一个人看的免费电影| 国产精品人妻久久久久久| 嫩草影视91久久| 久久久久久大精品| 长腿黑丝高跟| 国产精品女同一区二区软件| 国产中年淑女户外野战色| 搞女人的毛片| 少妇的逼好多水| 亚洲欧美精品综合久久99| 一级黄色大片毛片| 听说在线观看完整版免费高清| 国产91av在线免费观看| 亚洲一区二区三区色噜噜| 俄罗斯特黄特色一大片| 国产乱人偷精品视频| 一进一出抽搐gif免费好疼| 一夜夜www| 精品久久久久久久久久免费视频| 日本五十路高清| 六月丁香七月| 国产精品99久久久久久久久| 国产男人的电影天堂91| 校园春色视频在线观看| 久久久午夜欧美精品| 99国产精品一区二区蜜桃av| 97超碰精品成人国产| 久久婷婷人人爽人人干人人爱| 亚洲国产精品成人久久小说 | 成人av一区二区三区在线看| 中国国产av一级| 尤物成人国产欧美一区二区三区| 午夜福利在线在线| 99久久精品国产国产毛片| 成人永久免费在线观看视频| 精品午夜福利在线看| 成年女人毛片免费观看观看9| 婷婷精品国产亚洲av| 精品久久国产蜜桃| 成人二区视频| av在线蜜桃| 精品免费久久久久久久清纯| 天堂av国产一区二区熟女人妻| 久久亚洲精品不卡| 97超级碰碰碰精品色视频在线观看| 日本成人三级电影网站| 日韩欧美免费精品| 波多野结衣巨乳人妻| 午夜a级毛片| 老司机影院成人| 日韩,欧美,国产一区二区三区 | 国产三级在线视频| 丝袜美腿在线中文| 亚洲国产日韩欧美精品在线观看| 男女做爰动态图高潮gif福利片| 国产成人aa在线观看| 黄色日韩在线| 偷拍熟女少妇极品色| 国产色爽女视频免费观看| 亚洲乱码一区二区免费版| 久久国内精品自在自线图片| 亚洲最大成人中文| 国产精品爽爽va在线观看网站| 中文字幕免费在线视频6| 国产高清视频在线播放一区| 国产精华一区二区三区| 亚洲性久久影院| 我的女老师完整版在线观看| 国产精品伦人一区二区| 日韩av不卡免费在线播放| 在线观看午夜福利视频| 少妇高潮的动态图| 激情 狠狠 欧美| 国产综合懂色| 最好的美女福利视频网| 校园人妻丝袜中文字幕| 精品久久久噜噜| 久久精品国产自在天天线| 欧美xxxx性猛交bbbb| 在线观看66精品国产| 变态另类丝袜制服| 日本一本二区三区精品| avwww免费| 美女 人体艺术 gogo| 欧美日韩一区二区视频在线观看视频在线 | 亚洲国产精品sss在线观看| 亚洲国产色片| 欧美最新免费一区二区三区| 最近中文字幕高清免费大全6| 日韩一区二区视频免费看| 亚洲av.av天堂| 亚洲精品456在线播放app| 成人av一区二区三区在线看| 亚洲最大成人手机在线| 国产熟女欧美一区二区| 观看美女的网站| 美女被艹到高潮喷水动态| 国产高清激情床上av| 日韩 亚洲 欧美在线| 国产伦在线观看视频一区| 日韩制服骚丝袜av| 免费看av在线观看网站| 婷婷精品国产亚洲av在线| 美女cb高潮喷水在线观看| 看免费成人av毛片| 校园人妻丝袜中文字幕| 国产精品人妻久久久久久| 深夜精品福利| 十八禁国产超污无遮挡网站| 成人国产麻豆网| 国产亚洲欧美98| 午夜福利高清视频| 欧美色视频一区免费| 小说图片视频综合网站| 欧美xxxx黑人xx丫x性爽| 国产探花极品一区二区| 久久综合国产亚洲精品| 亚洲无线观看免费| 女生性感内裤真人,穿戴方法视频| 国产综合懂色| 色吧在线观看| 国产综合懂色| 丰满人妻一区二区三区视频av| 成人亚洲精品av一区二区| 嫩草影视91久久| 老司机影院成人| 亚洲人成网站在线播放欧美日韩| 久久天躁狠狠躁夜夜2o2o| 看十八女毛片水多多多| 乱人视频在线观看| 亚洲国产日韩欧美精品在线观看| 国产一区二区三区在线臀色熟女| 日韩欧美在线乱码| 国产欧美日韩精品亚洲av| 亚洲不卡免费看| 亚洲成人中文字幕在线播放| 日韩高清综合在线| 99视频精品全部免费 在线| 亚洲av熟女| 亚洲,欧美,日韩| 97在线视频观看| 亚洲三级黄色毛片| 欧美精品国产亚洲| 精品国内亚洲2022精品成人| 亚洲内射少妇av| 淫妇啪啪啪对白视频| 久久久久久久久大av| 九九爱精品视频在线观看| 国产真实伦视频高清在线观看| 秋霞在线观看毛片| 亚洲av中文av极速乱| 国产淫片久久久久久久久| 成年女人看的毛片在线观看| 日本欧美国产在线视频| 成年女人看的毛片在线观看| 久久久色成人| 成年女人看的毛片在线观看| 男人和女人高潮做爰伦理| 你懂的网址亚洲精品在线观看 | 最近视频中文字幕2019在线8| 亚洲丝袜综合中文字幕| 久久久久久久午夜电影| 在线国产一区二区在线| 国产精品精品国产色婷婷| 免费一级毛片在线播放高清视频| 有码 亚洲区| 国产探花在线观看一区二区| 麻豆国产97在线/欧美| 中文字幕久久专区| 麻豆国产97在线/欧美| 成人综合一区亚洲| 色哟哟·www| 国产色婷婷99| 国产黄a三级三级三级人| 天堂网av新在线| 亚洲精品色激情综合| 丝袜喷水一区| 深夜精品福利| 成人一区二区视频在线观看| 久久久久久久久久黄片| 精品久久久久久久久久免费视频| 久久久久久久久久黄片| 亚洲三级黄色毛片| 久久精品综合一区二区三区| 少妇的逼水好多| 色哟哟·www| 久久久精品大字幕| 久久人人爽人人爽人人片va| 99精品在免费线老司机午夜| 成人特级av手机在线观看| 成人精品一区二区免费| 亚洲最大成人av| 国产在线精品亚洲第一网站| 十八禁网站免费在线| 人妻丰满熟妇av一区二区三区| 亚洲av免费在线观看| 亚洲av成人精品一区久久| 国产精品人妻久久久影院| 亚洲在线观看片| 长腿黑丝高跟| 人人妻人人看人人澡| 九九热线精品视视频播放| 18+在线观看网站| 嫩草影院精品99| 久久久欧美国产精品| 露出奶头的视频| 久久久久久久久中文| 国产一区二区三区在线臀色熟女| 欧美绝顶高潮抽搐喷水| av卡一久久| 国产高清不卡午夜福利| 亚洲精品国产av成人精品 | 国产黄色视频一区二区在线观看 | 99视频精品全部免费 在线| 性色avwww在线观看| 你懂的网址亚洲精品在线观看 | 少妇猛男粗大的猛烈进出视频 | 国产伦精品一区二区三区视频9| 欧美国产日韩亚洲一区| av免费在线看不卡| 国产色婷婷99| 日韩强制内射视频| 日韩国内少妇激情av| 日日摸夜夜添夜夜爱| 国产精品1区2区在线观看.| 97热精品久久久久久| 插逼视频在线观看| 国产淫片久久久久久久久| 中文字幕av成人在线电影| 精品无人区乱码1区二区| 欧美日本亚洲视频在线播放| 欧美另类亚洲清纯唯美| av免费在线看不卡| 亚洲丝袜综合中文字幕| 18禁在线播放成人免费| 伦理电影大哥的女人| 精品久久久久久久末码| 色哟哟哟哟哟哟| 能在线免费观看的黄片| 亚洲真实伦在线观看| 亚洲一区高清亚洲精品| 热99在线观看视频| 亚洲在线自拍视频| 淫秽高清视频在线观看| 内射极品少妇av片p| 免费搜索国产男女视频| 日本-黄色视频高清免费观看| 在线免费十八禁| 神马国产精品三级电影在线观看| 亚洲精品456在线播放app| 成人国产麻豆网| 乱码一卡2卡4卡精品| 免费高清视频大片| 亚洲成av人片在线播放无| 男女之事视频高清在线观看| 成人亚洲欧美一区二区av| 亚洲av免费高清在线观看| 国产乱人视频| 91精品国产九色| 菩萨蛮人人尽说江南好唐韦庄 | 日本一二三区视频观看| 国产精品综合久久久久久久免费| 久久精品国产亚洲网站| 少妇丰满av| 老师上课跳d突然被开到最大视频| 国产亚洲91精品色在线| 搡老熟女国产l中国老女人| 久久6这里有精品| 国产老妇女一区| 麻豆成人午夜福利视频| 日本与韩国留学比较| 特大巨黑吊av在线直播| 免费电影在线观看免费观看| 免费一级毛片在线播放高清视频| 国产黄色小视频在线观看| 中文亚洲av片在线观看爽| 午夜免费激情av| 在线观看av片永久免费下载| 中出人妻视频一区二区| 在线观看一区二区三区| 精品久久久噜噜| 91久久精品国产一区二区三区| 国产成人一区二区在线| 中国美女看黄片| 国产高清视频在线播放一区| 99热全是精品| 97人妻精品一区二区三区麻豆| 免费黄网站久久成人精品| 黑人高潮一二区| 亚洲精华国产精华液的使用体验 | 女人被狂操c到高潮| 国产伦精品一区二区三区视频9| 久久人妻av系列| 久久久精品94久久精品| 国产成人freesex在线 | 久久欧美精品欧美久久欧美| 欧美另类亚洲清纯唯美| 亚洲av成人av| 搞女人的毛片| 国产精华一区二区三区| 国产男靠女视频免费网站| 内地一区二区视频在线| 国产男人的电影天堂91| 欧美人与善性xxx| 亚洲精品久久国产高清桃花| 中文字幕av成人在线电影| 如何舔出高潮| 99久久精品热视频| 级片在线观看| 狂野欧美激情性xxxx在线观看| 免费看光身美女| 国产精华一区二区三区| 国产精品久久久久久亚洲av鲁大| 国内精品美女久久久久久| 最近2019中文字幕mv第一页| 一级a爱片免费观看的视频| 国产乱人偷精品视频| 男女边吃奶边做爰视频| 国产精品一区二区三区四区免费观看 | 欧美人与善性xxx| 一级毛片我不卡| 国内少妇人妻偷人精品xxx网站| 日本五十路高清| 卡戴珊不雅视频在线播放| 三级国产精品欧美在线观看| 国产精品伦人一区二区| 国产精品人妻久久久影院| 亚洲无线观看免费| 精品久久久久久久末码| 亚洲激情五月婷婷啪啪| 国产91av在线免费观看| 麻豆国产97在线/欧美| 国产精品乱码一区二三区的特点| 国产亚洲av嫩草精品影院| 国产男靠女视频免费网站| 久久久久久久久久久丰满| 少妇的逼好多水| 成人高潮视频无遮挡免费网站| 国产精华一区二区三区| 亚洲自拍偷在线| 99久久成人亚洲精品观看| 综合色av麻豆| 成人亚洲欧美一区二区av| 美女 人体艺术 gogo| 草草在线视频免费看| 国产欧美日韩精品一区二区| 男女之事视频高清在线观看| 少妇高潮的动态图| 国产精品一区www在线观看| 国产不卡一卡二| 亚洲经典国产精华液单| 麻豆一二三区av精品| 乱人视频在线观看| 青春草视频在线免费观看| 我要搜黄色片| 99久久中文字幕三级久久日本| 男女啪啪激烈高潮av片| 亚洲欧美日韩东京热| 亚洲性久久影院| 亚洲美女视频黄频| 午夜精品在线福利| 99久久九九国产精品国产免费| 成人精品一区二区免费| 一a级毛片在线观看| 久久久国产成人免费| 婷婷精品国产亚洲av| 99九九线精品视频在线观看视频| av在线亚洲专区| 日韩强制内射视频| 亚洲三级黄色毛片| 国产三级在线视频| 美女 人体艺术 gogo| 久久热精品热| 亚洲国产精品成人综合色| 联通29元200g的流量卡| 国产精品久久久久久精品电影| 国产av一区在线观看免费| 91麻豆精品激情在线观看国产| 午夜久久久久精精品| av免费在线看不卡| av黄色大香蕉| 国产精品一区二区免费欧美| 欧美+亚洲+日韩+国产| 午夜精品在线福利| 亚洲激情五月婷婷啪啪| 亚洲av免费高清在线观看| 悠悠久久av| 精品一区二区三区视频在线| 一级黄色大片毛片| 夜夜爽天天搞| 色综合色国产| 一个人免费在线观看电影| 国产探花极品一区二区| 精品免费久久久久久久清纯| 国产精品乱码一区二三区的特点| 欧美一区二区亚洲| 国产成人一区二区在线| 激情 狠狠 欧美| av在线亚洲专区| 观看美女的网站| 国产白丝娇喘喷水9色精品| 中国美女看黄片| 欧美三级亚洲精品| 简卡轻食公司| 婷婷精品国产亚洲av在线| 久99久视频精品免费| 此物有八面人人有两片| 精品无人区乱码1区二区| 欧美日本亚洲视频在线播放| 一进一出好大好爽视频| 国产v大片淫在线免费观看| 亚洲欧美成人综合另类久久久 | 嫩草影院精品99| 久久久久久久久久成人| 欧美性猛交黑人性爽| 国产成人一区二区在线| 女人十人毛片免费观看3o分钟| 国语自产精品视频在线第100页| 嫩草影院新地址| 国产色爽女视频免费观看| 女同久久另类99精品国产91| 午夜老司机福利剧场| 我的老师免费观看完整版| 国产精品一区www在线观看| 国产爱豆传媒在线观看| 国产麻豆成人av免费视频| 国产三级中文精品| 老司机午夜福利在线观看视频| 少妇被粗大猛烈的视频| 十八禁国产超污无遮挡网站| 日本精品一区二区三区蜜桃| 人妻丰满熟妇av一区二区三区|