柯文山,陳世儉,熊治廷,吳明煜,李亞?wèn)|
(1. 湖北大學(xué)生命科學(xué)學(xué)院, 武漢 430062;2. 中國(guó)科學(xué)院地球測(cè)量與物理研究所,武漢 430077;3. 武漢大學(xué)資源與環(huán)境科學(xué)學(xué)院,武漢 430079)
銅和營(yíng)養(yǎng)缺失對(duì)海州香薷兩個(gè)種群生長(zhǎng)、
耐性及礦質(zhì)營(yíng)養(yǎng)吸收的差異影響
柯文山1,*,陳世儉2,熊治廷3,吳明煜1,李亞?wèn)|1
(1. 湖北大學(xué)生命科學(xué)學(xué)院, 武漢 430062;2. 中國(guó)科學(xué)院地球測(cè)量與物理研究所,武漢 430077;3. 武漢大學(xué)資源與環(huán)境科學(xué)學(xué)院,武漢 430079)
以來(lái)自銅礦區(qū)(CS)和非礦區(qū)(UCS)兩個(gè)海州香薷種群為對(duì)象,通過(guò)室內(nèi)水培實(shí)驗(yàn),分析了兩種群幼苗在銅及營(yíng)養(yǎng)缺失脅迫下植物生長(zhǎng)、銅富集及礦質(zhì)營(yíng)養(yǎng)含量的差異。結(jié)果顯示,銅、低營(yíng)養(yǎng)脅迫及其相互作用對(duì)非礦區(qū)種群生長(zhǎng)具有明顯的抑制作用,而對(duì)礦區(qū)種群的影響則遠(yuǎn)比非礦區(qū)種群小,且較低銅濃度(25μmol/L Cu)明顯促進(jìn)了礦區(qū)種群的生長(zhǎng);從耐性指數(shù)結(jié)果看,礦區(qū)種群銅耐性指數(shù)和營(yíng)養(yǎng)脅迫耐性指數(shù)均高于非礦區(qū)種群。這表明礦區(qū)種群不僅進(jìn)化為銅耐受種群,同時(shí)也進(jìn)化成營(yíng)養(yǎng)脅迫耐受種群。低營(yíng)養(yǎng)脅迫明顯促進(jìn)了植物對(duì)銅的吸收和運(yùn)轉(zhuǎn),如在低營(yíng)養(yǎng)脅迫和25μmol/L Cu復(fù)合處理下,礦區(qū)種群根銅含量約為單一銅處理的25倍,非礦區(qū)種群是單一銅處理5倍多。低營(yíng)養(yǎng)脅迫和過(guò)量銅顯著減少了非礦區(qū)種群礦質(zhì)營(yíng)養(yǎng)元素如P, Mg, K和Mn的吸收積累,而礦區(qū)種群則仍然能保持相對(duì)穩(wěn)定;在銅和營(yíng)養(yǎng)缺失復(fù)合作用下,兩個(gè)種群礦質(zhì)營(yíng)養(yǎng)除Ca 和部分Fe外,均顯著減少,但礦區(qū)種群減少程度明顯比非礦區(qū)種群小。這些結(jié)果表明,礦區(qū)種群在脅迫條件下具有保持營(yíng)養(yǎng)相對(duì)穩(wěn)定和平衡的能力,這種能力使其能在高銅污染和營(yíng)養(yǎng)缺乏的土壤中正常生長(zhǎng)和定居。
海州香薷;銅耐性;營(yíng)養(yǎng)缺失耐性;礦質(zhì)營(yíng)養(yǎng)積累
銅雖然是植物必需微量元素,但過(guò)量能引起植物其它必需元素的缺失[ 1- 2 ]。植物體內(nèi)這些元素的缺失常常是重金屬中毒的表現(xiàn)[ 3 ]。然而,和敏感植物相比,重金屬抗性植物表現(xiàn)出對(duì)礦質(zhì)元素缺失有更高的耐受性[ 3- 4 ]。以前的研究主要都集中在重金屬的吸收、蓄積和耐性以及重金屬對(duì)一些元素含量的影響[ 5- 6 ],很少知道銅礦區(qū)耐受種群是否對(duì)營(yíng)養(yǎng)缺失也有耐受性,更不清楚這種銅耐受性和營(yíng)養(yǎng)缺失耐受性有何關(guān)系。
海州香薷(ElsholtziahaichowensisS.)俗稱銅草,廣泛分布于長(zhǎng)江流域,尤其在銅礦區(qū),該植物是這些礦區(qū)旺盛生長(zhǎng)的優(yōu)勢(shì)植物之一,是一種Cu礦指示植物[7- 8]。研究表明,海州香薷對(duì)Cu具有很強(qiáng)的富積能力和耐受能力[9- 10],是一種可應(yīng)用于重金屬污染土壤修復(fù)的本土資源植物[11]。且近年來(lái)的研究顯示,生長(zhǎng)于銅礦區(qū)或銅污染區(qū)的海州香薷在銅吸收控制、銅區(qū)隔脫毒、耐性蛋白等方面具有一系列耐銅機(jī)制[12- 20]。該植物也在非礦區(qū)有生長(zhǎng),但與礦區(qū)種群相比,其銅吸收對(duì)策、耐性、生理生化方面明顯不同于礦區(qū)種群[16,21- 24]。銅礦廢棄地由于長(zhǎng)期開(kāi)采和冶煉,導(dǎo)致土壤裸露,水土流失,污染嚴(yán)重,土壤不僅銅濃度高,而且營(yíng)養(yǎng)也不足[25]。生長(zhǎng)于銅礦區(qū)的海州香薷已進(jìn)化形成很強(qiáng)的銅耐性,是否也進(jìn)化為營(yíng)養(yǎng)缺失耐性?為此,本研究擬通過(guò)水培實(shí)驗(yàn)對(duì)來(lái)自礦區(qū)和非礦區(qū)的海州香薷不同種群的對(duì)比研究,分析其對(duì)銅的耐受性和對(duì)營(yíng)養(yǎng)缺失耐受可能的差異,揭示銅耐受性和營(yíng)養(yǎng)缺失耐受性的關(guān)系。
1.1 植物材料和預(yù)處理
植物種子的采集、選擇、消毒和萌發(fā)見(jiàn)文獻(xiàn)[21]。種子萌發(fā)后,選擇一致的小苗種于酸洗過(guò)的石英砂中培養(yǎng),每天澆1/2Hogland營(yíng)養(yǎng)液(HS)。營(yíng)養(yǎng)液的組成(mmol/L):5KNO3, 5Ca(NO3)2·H2O, 2 MgSO4·7H2O, 1 KH2PO4, 0.02 FeSO4·7 H2O 和 0.02 Na2-EDTA, 0.045 H3BO3, 0.01 MnCl24 H2O, 和微量元素 (μmol/L) 0.8 ZnSO4, 0.3 CuSO4·5 H2O, 0.1 NaMoO4·2 H2O. 溶液pH用 0.1mol/L NaOH or 0.1mol/L HCl 調(diào)節(jié)至5.5±0.3。
1.2 銅和營(yíng)養(yǎng)缺失處理
待幼苗長(zhǎng)至6—8片小葉時(shí),選擇一致的幼苗用于水培實(shí)驗(yàn)。幼苗轉(zhuǎn)移到裝有500mL營(yíng)養(yǎng)液(HS)白色塑料碗中。預(yù)培養(yǎng)1周后,分別給以不同銅水平處理(對(duì)照,25 和100μmol/LCu2+(CuSO4·5 H2O))、全營(yíng)養(yǎng)缺失處理(1/50HS)或Cu和營(yíng)養(yǎng)缺失復(fù)合處理。每3天換1次營(yíng)養(yǎng)液,每處理3個(gè)重復(fù), 每盤(pán)4株。14d后收獲測(cè)定根長(zhǎng)、生物量及元素分析。
1.3 耐受指數(shù)的確定
銅耐受指數(shù)計(jì)算用根長(zhǎng)指數(shù)法[15],營(yíng)養(yǎng)缺失耐受根據(jù)Antosiewicz于1995年的方法,即,用處理植物的干生物量相對(duì)于對(duì)照生物量的百分?jǐn)?shù)來(lái)表示。
1.4 元素分析
收獲的植物根系用5 mmol/L冷 Pb(NO3)2洗30min以脫去根表面吸附的銅,再用蒸餾水洗3次。然后分為根和地上部分,于70℃烘48h。干樣磨成粉,濕消化法消化[15]。P元素用比色法測(cè)定,K用火焰分光光度計(jì)(6400-A,上海分析儀器廠)測(cè)定,其它如Cu, Ca, Mg,F(xiàn)e等元素在等離子發(fā)射光譜儀(ICP-OES)上測(cè)定。
1.5 統(tǒng)計(jì)分析
二維方差分析方法分析處理(因素1)和種群(因素2)的差異(P<0.05),鄧肯多重比較分析各處理間差異的顯著性。
2.1 銅、全營(yíng)養(yǎng)缺失處理?xiàng)l件下,海州香薷礦區(qū)和非礦區(qū)種群的耐性和生物量差異
不同銅濃度處理幼苗14d后,兩個(gè)種群的根長(zhǎng)耐性指數(shù)表現(xiàn)出明顯差異(圖1): 礦區(qū)種群(CS種群)顯著高于非礦區(qū)種群(UCS種群)(P<0.01)。較低Cu濃度(25μmol/L)明顯促進(jìn)CS種群根的生長(zhǎng)(P<0.01),較高濃度(100μmol/LCu)沒(méi)有明顯的影響;而兩個(gè)處理濃度對(duì)UCS種群根生長(zhǎng)有顯著的抑制作用。
在全營(yíng)養(yǎng)缺失脅迫下,CS種群根生物量顯著高于UCS種群(P< 0.01)(圖2),且營(yíng)養(yǎng)缺失促進(jìn)了CS種群根的生長(zhǎng)而抑制UCS種群根的生長(zhǎng);兩個(gè)種群地上部分的生長(zhǎng)明顯抑制,但CS種群仍然顯著高于(P<0.001)UCS種群。
圖1 水培條件下海州香薷銅礦區(qū)(CS)和非礦區(qū)(UCS)兩個(gè)種群對(duì)銅的耐受性Fig.1 Tolerance index of two Elsholtzia haichouensis populations from Cu mine site (CS) and uncontaminated site (UCS) in hydroponic experiments圖中不同字母表示顯著性差異(P<0.01)
圖2 海州香薷兩個(gè)種群對(duì)全營(yíng)養(yǎng)缺失的耐受性Fig.2 Tolerance difference of general nutrient deficiency between two E.haichouensis populations**指示種群間的顯著性差異(P<0.01)
不同銅濃度處理對(duì)兩個(gè)種群生物量(相對(duì)生物量)的影響表現(xiàn)出明顯差異(表1)。較低濃度銅(25μmol/LCu)處理時(shí), CS種群生物量明顯增加,較高濃度銅(100μmol/L Cu)處理則略有降低,但沒(méi)有表現(xiàn)出顯著性;而UCS種群生物量在不同濃度銅均有顯著減少。在銅與全營(yíng)養(yǎng)缺失脅迫(1/50HS)復(fù)合作用下,海州香薷兩個(gè)種群生物量都明顯降低,但仍然可看出兩個(gè)種群的差異:CS種群的生物量(相對(duì)生物量)普遍高于UCS種群,除了根在1/50HS和100μmol/LCu復(fù)合處理中沒(méi)有顯著差異外,其它都達(dá)到顯著水平。和單一銅處理相比,復(fù)合脅迫條件下的兩個(gè)種群的生物量都明顯低于相應(yīng)銅處理水平,但礦區(qū)種群仍然高于非礦區(qū)種群。
表1銅及與全營(yíng)養(yǎng)缺失(1/50HS)復(fù)合脅迫對(duì)海州香薷兩個(gè)種群生物量的影響
Table1Relativebiomasses(% of controls)oftwoE.haichouensispopulationsindifferentCuandmixturewithgeneralnutrientdeficiencytreatments(1/50HS)
Cu(μmol/L)+HSTreatment根生物量Rootbiomass/%UCSCS地上生物量Shootbiomass/%UCSCSCK100.00±5.35a100.00±7.01b100.00±5.81a100.00±3.11b2541.62±2.62b118.26±13.56a74.16±5.68b119.75±1.45a10033.34±4.36c96.07±3.63b52.09±5.72c97.67±2.25b1/50HS+2529.03±6.30c55.43±9.22c47.39±8.22c61.03±2.05c1/50HS+10025.25±2.15d30.78±1.49d41.97±2.40d52.11±5.16d
同一行中的不同字母表示顯著差異(P<0.05) (鄧肯多重比較)
3.2 營(yíng)養(yǎng)缺失對(duì)海州香薷Cu吸收、積累及運(yùn)轉(zhuǎn)的影響
表2顯示的是營(yíng)養(yǎng)缺失及與Cu復(fù)合對(duì)海州香薷兩個(gè)種群Cu吸收的影響。在營(yíng)養(yǎng)缺失條件下,兩個(gè)種群根中的Cu含量明顯降低(P<0.05),種群間沒(méi)有明顯的差異,礦區(qū)為對(duì)照的68.5%,非礦區(qū)為對(duì)照的70.3%。然而,非礦區(qū)種群地上部分則明顯增加(P<0.05),是對(duì)照的150.5%,礦區(qū)種群略有增加。兩個(gè)種群在營(yíng)養(yǎng)脅迫條件下,地上部分和根的銅含量比值都明顯增加。在25μmol/L Cu處理中,非礦區(qū)種群根Cu含量急劇增加,約是礦區(qū)的5倍。地上增加相對(duì)較少,非礦區(qū)種群略高于礦區(qū)。然而,在全營(yíng)養(yǎng)缺失和25μmol/L Cu復(fù)合脅迫處理下,兩個(gè)種群根和地上的Cu含量急劇增加(表2)。
表2營(yíng)養(yǎng)缺失及與Cu復(fù)合處理14d對(duì)海州香薷兩個(gè)種群Cu富集及運(yùn)轉(zhuǎn)的影響
Table2EffectofgeneralnutrientdeficiencyandCuonCuuptakeandtransportintwoE.haichouensispopulationsafter14daysofhydroponicculture
種群Population處理Treatments根銅含量(RootCu,μg/g)地上銅含量ShootCu(μg/g)地上根Shoot/RootUCSControl26.05±2.66e12.65±0.83e0.491/50HS18.31±1.50f19.03±3.76d1.041/50HS+25μmol/LCu6117.78±300.44a470.6±18.46a0.0825μmol/LCu1125.81±103.36c22.86±5.23cd0.02CSControl20.55±1.31e11.23±1.58e0.551/50HS14.08±1.24f12.72±1.83e0.901/50HS+25μmol/LCu5248.08±221.02b397.1±21.29b0.07625μmol/LCu201.10±14.01d17.996±1.46d0.06
表中結(jié)果是平均值±S.D. (n=3); 同一欄中的不同字母表示顯著性差異(P<0.05)(根據(jù)鄧肯多重比較)
3.3 全營(yíng)養(yǎng)缺失及銅脅迫對(duì)海州香薷礦質(zhì)元素吸收的影響
3.3.1 銅對(duì)海州香薷礦質(zhì)元素吸收的影響
表3顯示的是銅對(duì)海州香薷兩個(gè)種群礦質(zhì)元素吸收的影響。從表3可看出,過(guò)量銅對(duì)礦區(qū)種群植物礦質(zhì)元素吸收積累的影響明顯比非礦區(qū)種群小,如礦區(qū)種群P、Ca、Mg礦質(zhì)元素含量的變化不明顯,但非礦區(qū)種群除Ca含量變化較大外,均隨銅濃度的增加而急劇減少;兩個(gè)種群Fe、K和Mn元素隨銅濃度的增加都有減少,但礦區(qū)種群量減少明顯比非礦區(qū)小。尤其是根K和Mn,在較低銅濃度(25μmol/L Cu)處理時(shí),非礦區(qū)種群K和Mn含量分別是其對(duì)照的41.7%和31.4%,而礦區(qū)種群分別為對(duì)照的88.2%和94.4%。
3.3.2 營(yíng)養(yǎng)缺失及與銅復(fù)合對(duì)海州香薷礦質(zhì)元素吸收的影響
表4顯示的是營(yíng)養(yǎng)缺失及與Cu復(fù)合對(duì)海州香薷兩個(gè)種群礦質(zhì)元素吸收的影響。營(yíng)養(yǎng)缺失條件下,兩個(gè)種群根中元素含量均有明顯的減少,但仍然表現(xiàn)為非礦區(qū)種群降低的幅度比礦區(qū)種群大。地上部分元素含量的變化則沒(méi)有根顯著。在營(yíng)養(yǎng)缺失和銅復(fù)合作用下,除根Ca和Fe元素增加外,其它元素含量均進(jìn)一步減少。其中根K和Mn含量減少更為顯著,礦區(qū)種群分別為對(duì)照的35.4%和25.97%,非礦區(qū)種群分別為對(duì)照的15.8%和8.7%。
重金屬能干擾植物對(duì)必需營(yíng)養(yǎng)元素的吸收和運(yùn)輸,從而影響植物體內(nèi)礦質(zhì)營(yíng)養(yǎng)組成,最終導(dǎo)致植物金屬毒性效應(yīng)的產(chǎn)生[ 2]。銅雖然是植物必需重金屬元素,但過(guò)量會(huì)導(dǎo)致植物毒害。在本實(shí)驗(yàn)中,過(guò)量銅明顯減少了海州香薷非礦區(qū)種群對(duì)礦質(zhì)營(yíng)養(yǎng)P, Mg, K, Mn的吸收和運(yùn)輸,增加了根Ca的吸收和積累(表3),而對(duì)礦區(qū)種群的影響則不明顯。這種現(xiàn)象在銅和全營(yíng)養(yǎng)缺少?gòu)?fù)合脅迫下也有相同表現(xiàn):礦區(qū)種群影響小,而非礦區(qū)種群影響顯著(表4)。通常認(rèn)為,銅毒產(chǎn)生的第一個(gè)效應(yīng)是根細(xì)胞膜的損傷,繼而引起離子流失、脂質(zhì)過(guò)氧化及原生質(zhì)膜受損[ 13]。根K元素含量的顯著減少常常說(shuō)明根膜受損程度,本實(shí)驗(yàn)中礦區(qū)耐性種群的減少量明顯比非礦區(qū)少,說(shuō)明礦區(qū)種群根膜受損程度比非礦區(qū)種群小。因此,海州香薷耐性種群可能具有較強(qiáng)的防止銅毒產(chǎn)生的能力,保證細(xì)胞膜不受或少受損傷,因而能維持植物體內(nèi)礦質(zhì)營(yíng)養(yǎng)的相對(duì)穩(wěn)定。
表3海州香薷兩個(gè)種群在14d的銅處理后根礦質(zhì)元素含量(mg/g干重; Mn: μg/g干重)
Table3Mineralconcentrations(mg/g DW; Mn and Zn: μg/g DW)inplanttissuesoftwoElsholtziahaichouensispopulationsafter14daysofhydroponicculturewithvariouscopperconcentrations
元素Elements根RootControl地上部分Shoot25μmol/LCu100μmol/LCuControl25μmol/LCu100μmol/LCuP-CS3.96±0.68b4.60±0.32a3.82±0.29b3.41±0.04a3.39±0.15a3.18±0.31a-UCS3.49±0.38b2.71±0.32d2.48±0.22e3.45±0.26a2.17±0.08b1.86±0.07cCa-CS1.55±0.096c1.42±0.45cd1.60±0.28c21.40±1.69bc23.59±3.42b26.22±2.05a-UCS1.15±0.07e3.07±0.15b3.84±0.69a23.66±2.42b18.32±3.04d21.27±1.93bcMg-CS11.45±1.95b14.87±0.54a13.66±2.23ab9.37±0.78a10.10±1.09a10.14±1.11a-UCS10.32±1.69b8.44±0.87c3.70±0.33d9.03±0.57a8.20±0.97b4.90±0.31cFe-CS1.66±0.33c1.19±0.21d0.88±0.01e0.21±0.08a0.21±0.02a0.16±0.044b-UCS1.98±0.19b2.62±0.25a0.66±0.04f0.10±0.005d0.09±0.007e0.13±0.01cK-CS83.81±3.73a73.91±3.55b59.89±6.46c39.23±0.09b43.60±2.49a35.39±3.15bc-UCS78.47±2.64ab32.76±4.70d11.16±4.29e34.75±0.84c31.24±1.27d33.52±0.76cMn-CS60.37±5.16a56.97±2.20a35.995±8.24b53.15±5.14a50.58±10.51a34.77±5.04b-UCS64.13±2.85a20.11±5.87c8.63±2.49d50.03±3.80a24.67±2.33c18.72±5.05d
表中結(jié)果是平均值± S.D. (n=3); 同一行中以及同一元素兩個(gè)種群間的不同字母表示處理水平及種群間的顯著差異(P<0.05),據(jù)鄧肯檢驗(yàn)
表4全營(yíng)養(yǎng)缺失(1/50HS)及與Cu復(fù)合脅迫14d處理后海州香薷兩個(gè)種群根和地上礦質(zhì)元素含量(mg/g干重; Mn, μg/g干重)
Table4Mineralconcentrations(mg/g DW; Mn, μg/g DW)ofrootsinplanttissuesoftwoE.haichouensispopulationsafter14daysofhydroponicculturewithgeneralnutrientdeficiencyanditsmixwithCu
元素Elements根RootControl地上部分Shoot1/50HS1/50HS+25μmol/LCuControl1/50HS1/50HS+25μmol/LCuP-CS3.96±0.68a3.10±0.18b2.80±0.25c3.41±0.035a3.17±0.14b2.69±0.34c-UCS3.49±0.38ab1.99±0.06d1.64±0.31e3.45±0.26a2.57±0.21c2.28±0.18dCa-CS1.55±0.1c0.79±0.05e1.78±0.047b21.40±1.69a22.32±4.61a22.20±2.53a-UCS1.15±0.07d0.78±0.08e4.39±1.25a23.66±2.42a18.78±0.167b13.09±3.97cMg-CS11.45±1.95a9.73±0.83b8.07±2.04c9.37±0.78a9.28±0.69a7.80±0.47b-UCS10.32±1.69a5.22±0.87d2.21±0.23e9.03±0.57a7.84±1.29b6.83±0.41cFe-CS1.66±0.33a0.47±0.1c0.53±0.04c0.21±0.08b0.20±0.04b0.30±0.08a-UCS1.98±0.19a0.32±0.04d0.890±0.055b0.22±0.01b0.19±0.01b0.101±0.01cK-CS83.81±3.73a50.64±2.76c29.66±1.09e39.23±2.51a35.3±1.30ab32.05±3.88b-UCS78.47±2.64a33.50±2.49d12.37±0.97f34.75±0.84ab28.14±1.54c23.38±2.32dMn-CS60.37±5.16a34.79±6.30b15.68±1.90c53.15±5.14a38.02±4.95b40.86±3.18b-UCS64.13±2.85a18.10±2.73c5.60±1.46d50.03±3.80a22.76±3.78c19.79±8.46c
表中結(jié)果是平均值± S.D. (n=3); 根據(jù)鄧肯多重比較分析,同一元素行中兩個(gè)種群的不同字母表示顯著性差異(P<0.05)
Antosiewicz[ 3]的研究證明,土豆和蠅子草的鉛耐受品種對(duì)低營(yíng)養(yǎng)脅迫同樣表現(xiàn)出高的耐受性。海州香薷礦質(zhì)營(yíng)養(yǎng)脅迫實(shí)驗(yàn)結(jié)果顯示,礦質(zhì)營(yíng)養(yǎng)缺失脅迫對(duì)海州香薷銅耐性種群生物量的影響明顯小于非礦區(qū)(敏感)種群,在銅和低營(yíng)養(yǎng)脅迫復(fù)合作用時(shí)也是如此(表1)。這表明,海州香薷銅耐性種群對(duì)低營(yíng)養(yǎng)脅迫同樣具有較高的耐受性。另一方面,在營(yíng)養(yǎng)缺失脅迫條件下,銅耐性種群植物體內(nèi)礦質(zhì)營(yíng)養(yǎng)組成(如P, Mg, K和Mn)的變化明顯比非礦區(qū)種群小(表3)。因而,在營(yíng)養(yǎng)脅迫或銅脅迫下,礦區(qū)種群具有較強(qiáng)的維持植物體內(nèi)營(yíng)養(yǎng)組成平衡的能力,這可能成為礦區(qū)種群在富銅土壤中正常生長(zhǎng)的原因。也許礦區(qū)種群銅耐性和低營(yíng)養(yǎng)脅迫耐性獨(dú)立進(jìn)化,但其生長(zhǎng)的銅礦土壤因?yàn)榫哂懈咩~和低營(yíng)養(yǎng)含量而選擇在一起[26]。然而,這兩者在遺傳上和生理上是否有聯(lián)系需要進(jìn)一步研究。
本實(shí)驗(yàn)中,較低銅濃度(25μmol/L)明顯促進(jìn)了銅耐性種群的生長(zhǎng)(生物量增加)(低營(yíng)養(yǎng)脅迫也促進(jìn)該種群根的生長(zhǎng)),表現(xiàn)出明顯的hormesis效應(yīng)[27],但該濃度明顯抑制了非礦區(qū)種群生長(zhǎng),這可能與來(lái)源不同的種群具有不同的耐性閾值有關(guān)。礦區(qū)種群因長(zhǎng)期生長(zhǎng)于高銅污染土壤,已經(jīng)形成高銅耐性生態(tài)型[26],25μmol/L銅濃度對(duì)于礦區(qū)種群來(lái)說(shuō),處于低劑量促進(jìn)效應(yīng)范圍,而對(duì)于非礦區(qū)種群則處于高劑量抑制效應(yīng)范圍。然而,當(dāng)25μmol/LCu和低營(yíng)養(yǎng)脅迫共同作用時(shí),礦區(qū)耐性種群植物生長(zhǎng)也明顯受到抑制(表1)。這可能與其植物體內(nèi)銅含量急劇增加有關(guān)。兩因子共同處理時(shí),礦區(qū)種群根銅含量是其單一銅處理的25倍,非礦區(qū)種群為5倍(表2)。顯然,低營(yíng)養(yǎng)脅迫顯著促進(jìn)了植物對(duì)銅的吸收和富集。即使作為銅耐性種群,銅的過(guò)量積累超過(guò)了植物耐受限度,使植物生長(zhǎng)受到抑制,導(dǎo)致生物量減少。
總之,在銅和低營(yíng)養(yǎng)脅迫下,海州香薷兩個(gè)種群在生長(zhǎng)、銅富集、耐性及礦質(zhì)營(yíng)養(yǎng)組成上存在明顯差異。礦區(qū)種群不僅進(jìn)化成銅耐受生態(tài)型,也進(jìn)化為營(yíng)養(yǎng)脅迫耐受生態(tài)型。銅和低營(yíng)養(yǎng)脅迫對(duì)礦區(qū)種群植物礦質(zhì)營(yíng)養(yǎng)組成的影響明顯小于非礦區(qū)種群。這表明海州香薷銅耐性種群體內(nèi)礦質(zhì)營(yíng)養(yǎng)組成的穩(wěn)定和平衡,在其銅耐性中起重要作用,這也是其能定居于富銅土壤的重要原因。這些結(jié)果為從營(yíng)養(yǎng)穩(wěn)定和平衡理論的角度進(jìn)一步理解銅耐性機(jī)制提供了很好的思路。同時(shí),低營(yíng)養(yǎng)脅迫促進(jìn)了植物對(duì)重金屬銅的吸收和運(yùn)轉(zhuǎn),這間接表明,營(yíng)養(yǎng)元素充足可以減少植物重金屬富集,也為避免農(nóng)作物在營(yíng)養(yǎng)不足條件下因重金屬積累而產(chǎn)生毒害提供科學(xué)參考。
[1] Godbold D L, Kettner C. Lead influences root growth and mineral nutrition ofPiceaabiesseedlings. Journal of Plant Physiology, 1991, 139(1): 95- 99.
[2] Monni S, Salemaa M, White C, Tuittila E, Huopalainen M. Copper resistance ofCallunavulgarisoriginating from the pollution gradient of a Cu-Ni smelter, in southwest Finland. Environmental Pollution, 2000, 109(2): 211- 219.
[3] Antosiewicz D M. The relationships between constitutional and inducible Pb-tolerance and tolerance to mineral deficits inBiscutellalaevigataandSileneinflata. Environmental and Experimental Botany, 1995, 35(1): 55- 69.
[4] Baker A J M, Walker P L. Ecophysiology of metal uptake by tolerant plants // Shaw A J, ed. Heavy Metal Tolerance in Plants: Evolutionary Aspects. Boca Raton, FL: CRC Press, 1990: 155- 177.
[5] Chen H M, Zhen C R, Tu C, Zhu Y G. Heavy Metal Pollution in Soils in Chian:Status and Countermeasures. AMBIO, 1999, 2: 130- 134
[6] Wallace A, Cha J W. Interactions involving copper toxicity and phosphorus deficiency in bush bean plants grown in solutions of low and high pH. Soil Science, 1989, 147(6): 430- 431.
[7] Xie X J, Xu Z B.Elsholtziahaichouensis-an indicator of copper mine. Geological Acta, 1952, 32(4): 360- 368.
[8] Ke W S, Xi H A, Yang Y, Wang W X, Chen S J. Analysis on characteristics of Phytogeochemistry ofElsholtziahaichowensisin Daye Tonglushan copper mine. Acta Ecologica Sinica, 2001, 21(6): 907- 912.
[9] Tang S R, Wilke B M, Brooks R R. Heavy-metal uptake by metal-tolerantElsholtziahaichowensisandCommelinacommunis from China. Communications in Soil Science and Plant Analysis, 2001, 32(5/6): 895- 905.
[10] Yang M J, Yang X E, R?mheld V. Growth and nutrient composition ofElsholtziasplendensNakai under copper toxicity. Journal of Plant Nutrient, 2002, 25(7): 1359- 1375.
[11] Jiang L Y, Yang X E, He Z L. Growth response and phytoextraction of copper at different levels in soils byElsholtziasplendens. Chemosphere, 2004, 55(9): 1179- 1187.
[12] Shi J Y, Chen Y X, Huang Y Y, He W. SRXRF microprobe as a technique for studying elements distribution inElsholtziasplendens. Micron, 2004, 35(7): 557- 564.
[13] Lou L Q, Shen Z G, Li X D. The copper tolerance mechanisms ofElsholtziahaichowensis, a plant from copper-enriched soils. Environmental and Experimental Botany, 2004, 51(2): 111- 120.
[14] Chen Y X, Wang Y P, Lin Q, Luo Y M. Effect of copper-tolerant rhizosphere bacteria on mobility of copper in soil and copper accumulation byElsholtziasplendens. Environment International, 2005, 31(6): 861- 866.
[15] Liu J, Xiong Z T, Li T Y, Huang H. Bioaccumulation and ecophysiological responses to copper stress in two populations ofRumexdentatusL. from Cu contaminated and non-contaminated sites. Environmental and Experimental Botany, 2004, 52(1): 43- 51.
[16] Ke W S, Xiong Z T, Jin Z X, Ke S S. Differences of Cu uptake and acid phosphatase activities of twoElsholtziahaichowensisSun populations. Acta Ecologica Sinica, 2007, 27(8): 3172- 3181.
[17] Zhang H X, Zhang F Q, Xia Y, Wang G P, Shen Z G. Excess copper induces production of hydrogen peroxide in the leaf ofElsholtziahaichowensisthrough apoplastic and symplastic CuZn-superoxide dismutase. Journal of Hazardous Materials, 2010, 178(1/3): 834- 843.
[18] Wu B, Susnea I, Chen Y X, Przybylski M, Becker J S. Study of metal-containing proteins in the roots ofElsholtziasplendensusing LA-ICP-MS and LC-tandem mass spectrometry. International Journal of Mass Spectrometry, 2011, 307(1/3): 85- 91.
[19] Zhang J, Tian S K, Lu L L, Shohag M J I, Liao H B, Yang X E. Lead tolerance and cellular distribution inElsholtziasplendensusing synchrotron radiation micro-X-ray fluorescence. Journal of Hazardous Materials, 2011, 197: 264- 271.
[20] Zhang H X, Song Y F, Wang G P, Shen Z G. Identification of Cu-induced Protein in Root ofElsholtziahaichowensisunder Cu Stress. Acta Botanica Boreali-Occidentalia Sinica, 2011, 31(7): 1335- 1339.
[21] Ke W S, Xiong Z T, Xie M J, Xiong S L, Huang H, Li M J. Differences in Cu resistance and accumulation ofElsholtziahaichouensisSun andDaucuscarotaL. populations from Cu mine sites and uncontaminated sites. Chinese Journal of Environmental Engineering, 2007, 1(5): 94- 100.
[22] Ke W S, Xiong Z T, Chen S J, Wang Z H. Differences of Cu accumulation and Cu-induced ATPase activity in roots of two populations ofElsholtziahaichowensisSun. Environmental Toxicology, 2008, 23(2): 193- 199.
[23] Ke W S, Xiong Z T, Ke S S, Jin Z X. Effects of copper toxicity on photosynthesis and transpiration of threeElsholtziasplendensNakai ex F.Maekawa populations. Acta Ecologica Sinica, 2007, 27(4): 1368- 1375.
[24] Liu J, Xiong Z T. Differences in accumulation and physiological response to copper stress in three populations ofElsholtziahaichowensisS. Water, Air, and Soil Pollution, 2005, 168(1/4): 5- 16.
[25] Huang M H, Luo Y M. Land remediation and ecological restoration of mined land. Acta Pedologica Sinica, 2003, 40(2): 161- 169.
[26] Ke W S, Xiong Z T, Chen S J, Chen J J. Effects of copper and mineral nutrition on growth, copper accumulation and mineral element uptake in twoRumexjaponicuspopulations from a copper mine and an uncontaminated field sites. Environmental and Experimental Botany, 2007, 59(1): 59- 67.
[27] Calabrese E J, Baldwin L A. Defining hormesis. Human and Experimental Toxicology, 2002, 21(2): 91- 98.
參考文獻(xiàn):
[5] 陳懷滿, 鄭春榮, 涂從, 朱永官. 中國(guó)土壤重金屬污染現(xiàn)狀與防治對(duì)策. AMBIO- 人類環(huán)境雜志, 1999, 28(2): 130- 134.
[8] 柯文山, 席紅安, 楊毅, 王萬(wàn)賢, 陳世儉. 大冶銅綠山礦區(qū)海州香薷 (Elsholtziahai-chowensis) 植物地球化學(xué)特征分析. 生態(tài)學(xué)報(bào), 2001, 21(6): 907- 912.
[20] 張紅曉, 宋玉峰, 王桂萍, 沈振國(guó). 銅脅迫下海州香薷根中銅誘導(dǎo)蛋白的鑒定. 西北植物學(xué)報(bào), 2011, 31(7): 1335- 1339.
[21] 柯文山, 熊治廷, 謝明吉, 熊雙蓮, 黃河, 李民敬. 不同來(lái)源的海州香薷和野胡蘿卜的銅抗性及銅積累差異. 環(huán)境工程學(xué)報(bào), 2007, 1(5): 94- 100.
[23] 柯文山, 熊治廷, 柯世省, 金則新. 銅毒對(duì)海州香薷 (Elsholtziasplendens) 不同種群光合作用和蒸騰作用的影響. 生態(tài)學(xué)報(bào), 2007, 27(4): 1368- 1375.
Cuandnutrientdeficiencyondifferenteffectsofgrowth,toleranceandmineralelementsaccumulationbetweentwoElsholtziahaichouensispopulations
KE Wenshan1,*, CHEN Shijian2, XIONG Zhiting2, WU Mingyu1, LI Yadong1
1SchoolofLifeScienceofHubeiUniversity,Wuhan430062,China2GeodecyandGeophysicsInstituteofChinaAcademy,Wuhan430077,China3SchoolofResourceandEnvironmentalScienceofWuhanUniversity,Wuhan430079,China
TwoElsholtziahaichowensispopulations, one from a copper mine (CS) and the other from an uncontaminated site (UCS), were studied in hydroponic experiments for the plant growth, copper accumulation and mineral nutrients content under excess copper, nutrient deficiency and their interaction. The growth of UCS population was significantly inhibited by excessive Cu, nutrient deficiency and their interaction. But the growth of CS population was less affected by these factors, and 25μmol/L Cu stimulated significantly the growth of CS population. The tolerance indices of root length to Cu and biomass to mineral nutrient deficiency in the CS population were significantly higher than that in the UCS population. The results indicated that the CS population had evolved not only Cu tolerance but also tolerance to low nutrient supply. Nutrient deficiency increased significantly Cu uptake and transport in two populations. For example, at 25μmol/L Cu mixed with nutrient deficiency, root-Cu content of CS population was about 25 times that of CS population at 25μmol/L Cu treatment; root-Cu content of UCS population at interaction of 25μmol/L Cu and nutrient deficiency was more than 5 times that of CS population at 25μmol/L Cu treatment. Shoot-Cu contents in two populations also increased, but that in UCS population increased much more than in CS population. Excessive Cu reduced significantly uptake and transport of mineral nutrient including P, Mg, K and Mn. But contents of these mineral elements in CS population was less affected by excessive Cu. At interaction of nutrient deficiency and Cu (25μmol/L ), mineral element contents except Ca and some Fe decreased significantly. But the reduction in CS population is less than that in UCS population. The results indicated that the mineral composition homeostasis under the stresses was important in metal tolerance and colonizing normally in the Cu-enriched soils for the Cu-tolerant population.
Elsholtziahaichowensis; copper tolerance; nutrient deficiency tolerance; mineral element accumulation
國(guó)家自然科學(xué)基金資助 (30570322);中國(guó)科學(xué)院知識(shí)創(chuàng)新工程重大項(xiàng)目(KZCX1-YW-08-01-02)
2012- 05- 04;
2012- 11- 19
*通訊作者Corresponding author.E-mail: kokews2000@163.com
10.5846/stxb201205040642
柯文山,陳世儉,熊治廷,吳明煜,李亞?wèn)|.銅和營(yíng)養(yǎng)缺失對(duì)海州香薷兩個(gè)種群生長(zhǎng)、耐性及礦質(zhì)營(yíng)養(yǎng)吸收的差異影響.生態(tài)學(xué)報(bào),2013,33(15):4737- 4743.
Ke W S, Chen S J, Xiong Z T, Wu M Y, Li Y D.Cu and nutrient deficiency on different effects of growth, tolerance and mineral elements accumulation between twoElsholtziahaichouensispopulations .Acta Ecologica Sinica,2013,33(15):4737- 4743.