• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Prediction Chatter Stability and Bifurcation in Milling Machine

    2013-12-07 07:35:35ZHAODeminZHANGQichang
    機(jī)床與液壓 2013年1期
    關(guān)鍵詞:石油大學(xué)天津大學(xué)工程學(xué)院

    ZHAO Demin, ZHANG Qichang

    1.Department of Engineering Mechanics, College of Storage & Transportation and Architectural Engineering,China University of Petroleum, Qingdao 266555,China;2.Department of Mechanics,College of Mechanical Engineering, Tianjin University, Tianjin 300072,China

    PredictionChatterStabilityandBifurcationinMillingMachine

    ZHAO Demin1*, ZHANG Qichang2

    1.DepartmentofEngineeringMechanics,CollegeofStorage&TransportationandArchitecturalEngineering,ChinaUniversityofPetroleum,Qingdao266555,China;2.DepartmentofMechanics,CollegeofMechanicalEngineering,TianjinUniversity,Tianjin300072,China

    TheshiftedChebyshevpolynomialsandFloquettheoryareadoptedforthepredictionchatterstabilityandbifurcationinmilling.Thestabilitylobesdiagramisobtained.Thestabilityinmillingcanwellbepredictedbythelobesdiagram.Themuliti-periodicandHopfbifurcationsaredetectedbytheEigen-valuesanalysis.Theresultsshowedthatthestabilitysolutionofthesystemtransformfromthestableequilibriumpointtothelimitcycleoscillatoryaftermultiplecyclebifurcation,andittransformstothequasi-periodicoscillationafterHopfbifurcation.ThenumericalresultsofthePoincarésectionprovethattheoccurrenceofthequasi-periodicoscillation.

    milling,chatterstability,Chebyshevpolynomials,bifurcation

    1.Introduction

    High-speed milling is in aerospace, ship, and many other industries due to its advantages such as high material remove rates, better surface finish and low cost. However, the chatter vibration of the machine tool-workpiece system is not only one of the main limitations for poor workpiece surface quality but also promotes wear of the machine tools. The basic and comprehensive mechanism of the machine chatter was presented by Tobias[1] and Altintas[2].

    Because the cutting force is time-varying, it can be approximated by the zero-order or one-order Fourier series. Based on this principle, the analytical stability prediction method in frequency domain was introduced for the stability lobes in milling by Altintas[2-3]. Altintas[4] and Tang[5] summarized analytical stability prediction method in frequency domain and semi-discretization method in time domain for the two- or multi-degree-of-freedom (MDOF) system modal. The stability analysis on an uncertain dynamics milling model was performed and probabilistic instead of deterministic stability lobes were obtained in Reference[6]. Faassen[7] and Quintana [8] presented an experimental method to identify stability lobes diagram in milling operation. Gradisek[9] revealed periodic and quasi-periodic chatter by using the semi-discretization method. The quasi-periodic solutions of the time-periodic delay differential equations in high speed milling system were also identified by some milling experiments[10].

    The time-varying periodic cutting force approximated by the zero-order or one-order Fourier series is not accurate for high-speed milling. Chebyshev polynomial[11-14] is an efficient computational scheme for the analysis of the periodic system. Therefore, this paper presented a stability theory which predicts chatter stability and bifurcation based on Chebyshev polynomial rather than Fourier series.

    2.Dynamics model of milling

    The cross sectional figure of the 2-degree-of-freedom(2-DOF) high-speed milling tool-workpiece system is shown in Fig. 1. The tool with the diameterD1and teeth numberzrotates at an angular speedΩ(rad/s). The radial immersion angle of the ith tooth varies with time as:φi(t)=Ωt+2π(i-1)/z.apandadescribes the axial and radial depth of immersion, respectively. The dynamics model of this machine tool-workpiece system is given by

    (1)

    Where,M,CandKare the mode mass, damping and stiffness matrix, respectively,F(t) is the cutting force.

    Fig.1 General sketch of the milling dynamic model with 2-DOF

    2.1.Cuttingforcesmodel

    The machine tool chatter vibrations occur due to a self excitation mechanism in generation of chip thickness during machining operations. An oscillatory surface finish left by one of the tooth is removed by the succeeding oscillatory tooth due to the structural vibrations. According to Altintas[4], the resulted chip thickness becomes also oscillatory, which could be expressed by

    hj(t)=(Δx(t)sinφj(t)+

    Δy(t)cosφj(t))g(φj(t))

    (2)

    where Δx(t)=x(t)-x(t-T),Δy(t)=y(t)-y(t-T),g(φj) describes a unit step function determining whether or not thejthtooth is in cutting.

    (3)

    Where,φstandφexare the start and exit angles of the cutter to and from the cutting, respectively.

    The tangentialFtjand radialFrjcutting forces acting on the toothjare proportional to the axial depth of cutapand chip thicknesshj(t),

    Ftj=ktaphj(t),Frj=krFtj

    (4)

    Where, the cutting coefficientsktandkrare constant. Resolve the cutting forces in thexandydirection

    Fxj=-Ftjcosφj-Frjsinφj

    Fyj=Ftjsinφj-Frjcosφj

    (5)

    The total cutting forces on the cutters contributed by all the teeth are given by

    (6)

    Rearranging Eq. (6) in matrix form yields

    (7)

    where:

    2.2.Governingstructuredynamicsmodel

    Substituting Eq.(7) into Eq.(1) yields the following coupled delayed different equations with periodic coefficient:

    (8)

    In order to normalize the delay period toT=τ=1, we apply the following transformation:

    (9)

    (10)

    3.Shifted Chebyshev polynomials analysis

    The shift Chebyshev polynomials can be generated by noting the following equations:

    (11)

    (12)

    (13)

    (14)

    Where,I4is 4-order identity and ? denotes as Kronecker product. Based on the theory of the ordinary differential equation, the solution of the Eq. (10) is given by

    C(s)X(s-1))ds

    (15)

    (16)

    (17)

    Substitute Eqs. (16 ) and (17) into Eq.(15), it yields:

    (18)

    (19)

    By simplify Eq. (19), we obtain:

    (20)

    Similarly, in the interval [i-1,i], the ith Chevbyshev coefficient vector relates to the counterpart of the previous interval as

    (21)

    Wcan be defined as an approximately monodromy operator

    (22)

    Based on the Floquet theory, the Eigen-values of monodromy operatorWcan predict the asymptotic stability of system. The cycle solution of the non-smooth dynamical system is stable if all the Eigen-values lie within the unit circle. The multiple cycle bifurcation occurs if one Eigen-value go through unit circle at point -1 and the saddle-note bifurcation occurs if the one Eigen-value go through unit circle at point +1. The Hopf bifurcation will take place if one pair Eigen-values go through unit circle at complex number.

    4.Simulation and discuss

    The system parameters are chosen according to Altintas[4]. Throughout of the paper, the value of the parameters are chose as:kt=900 (N/mm2),kr=0.3,ωnx=510 Hz,ωny=802 Hz,ζx=0.04,ζy=0.05,kx=96.2×10-6N/m,ky=47.5×10-6N/m,z=4. The cutter applied has four flutes with zero helix and the cutting condition is half immersion down milling. The 12-order shift Chebyshev polynomial is used in the simulation.

    4.1.Chatterstabilityanalysis

    Fig.2 gives the lobes diagram about spindle speedΩversus axial depth of cutap. The curve of the lobes demonstrates that the system with the parameters in the region of below the curve is stable as shown in Fig.3 and contrast to that the system is unstable if the parameters are in the region of above the curve. If the system parameters are on the curve, the system is in critical stability.

    Fig.2 Stability lobes

    Fig.3 The time history plots of x 1 and x 2, when Ω=2.0×104 (r/min), a p=18 mm

    4.2.Chatterbifurcationanalysis

    The bifurcation analysis is only discussed when the milling system changes from stability to critical stability. When the parameters of the system are chosen on the critical stability curve,the real and imaginary part of one pairs of the Eigen-values of monodromy operatorW, whose modules is max among all Eigen-values, varies as the spindle speedΩas shown in Fig.4. The results indicate that when the spindle speed is in the region approximately 1.755×104≤Ω≤2.238×104, the multiple cycle bifurcation takes place. When the spindle speed is in the region 0.5×104≤Ω<1.755×104or 2.238×104<Ω≤5×104, the Hopf bifurcation takes place. No Eigen-values go through unit circle at +1, thus the saddle-note bifurcation never occurs.

    Fig.5 and Fig.6 give the phase plane plots ofxandydirection whenΩ=2.0×104(r/min),ap=20.2 mm andΩ=3.5×104(r/min),ap=19.8 mm. Fig.5 demonstrates that the system converge to limit cycle oscillation (LCO) after multiple cycle bifurcation. The quasi-periodic oscillation occurs after Hopf bifurcation as shown in Fig.6.

    Fig.4 The real and imaginary parts of the Eigen-values versus spindle speed

    Fig.5 The phase plane plots of x and y directions, with Ω=2.0×104(r/min), a p=20.2 mm

    Fig.6 The phase plane plots of x and y directions with Ω=3.5×104(r/min), a p=19.8 mm

    The Poincaré section figures as shown in Fig.7 (a),(b) and Fig.7 (c),(d) are obtained by performing 1.5×104and 21×104iterative times, respectively. WhenΩ=3.5×104(r/min),ap=19.8 mm, the Poincaré sections ofxandydirections are approximately ellipse, which also confirm occurrences of the quasi-periodic motions. Frequency components ration of the response, demonstrated in Fig.7 (a),(b), is approximately 1∶3.

    Fig.7 The Poincaré section of in x and y directions which are obtained by performing different iterative times, when Ω=3.5×104(r/min), a p=19.8 mm, (a),(b):1.5×104 times; (c),(d): 21×104 times

    5.Conclusions

    The paper investigated the machine tool-workpiece system chatter vibrations in high speed milling. The shift Chebyshev polynomial and Floquet theory are efficiently adopted for this type of time-varying periodic delayed system. The stability and bifurcation are analyzed in the paper and the primary results of the present investigation can be summarized as follows:

    The stability lobes have been obtained, which can give stability information about tool spindle speed and axial depth of cutting. Chatter bifurcation is analyzed by the Eigen-values of monodromy operator and the results confirm the multiple cycle bifurcation and Hopf bifurcation have onset in the milling system. After multiple cycle bifurcation, the stability solution of the system transforms from the stable equilibrium point to the LCO. After Hopf bifurcation, the stability solution transforms to the quasi-periodic oscillation. The Poincaré sections obtained also prove the occurrence of the quasi-periodic oscillation and give the frequency components ration of the response. Our achievement in this paper can provide important information for design of the 5-axial milling machine. This method is could be used to study the time-periodic delay-differential dynamics system.

    [1] Tobias S A.Machine Tool Vibration[M].[S.l.]:Blackie and Sons Ltd,1965.

    [2] Altintas Y, Budak E.Analytical Prediction of Stability Lobes in Milling[J].Annals of the CIRP,1995,44(1):357-362.

    [3] Altintas Y.Analytical Prediction of Three Dimensional Chatter Stabolity in Milling[J].Japan Society of Mechanical Engineers International, 2001,44:717-723.

    [4] Altintas Y,Stepan G,Merdol D.Chatter Stability of Milling in Frequency and Discrete Time Domain[J].CIRP Journal of Manufacturing Science and Technology,2008(1):35-44.

    [5] TANG W X,SONG Q H,YU SQ, et al.Prediction of Chatter Stability in High-speed Finishing End Milling Considering Multi-mode Dynamics[J].Journal of Material Processing Technology, 2009,209:2585-2591.

    [6] Totis G.RCPM-A New Method for Robust Chatter Prediction in Milling[J].International Journal of Machine tools & Manufacture,2009,49:273-284.

    [7] Faassen R P H,Van de Wouw N,Oosterling J A J,et al.Prediction of Regenerative Chatter by Modelling and Analysis of High-speed Milling[J].International Journal of Machine tools & Manufacture,2003,43:1437-1446.

    [8] Quintana G,Ciurana J,Teixidor D.A New Experimential Methodology for Identification of Stability Lobes Diagram in Milling Operations[J].International Journal of Machine tools & Manufacture,2008,48:1637-1645.

    [9] Gradisek J,Kalveram M,Insperger T,et al.On Stability Prediction for Milling[J].International Journal of Machine tools & Manufacture,2005,45:769-781.

    [10] Insperger T,Stépán G,Bayly P V,et al.Multiple Chatter Frequencies in Milling Processes[J].Journal of Sound and Vibration,2003,262:333-345.

    [11] Butcher E A,Ma H T,Bueler E,et al.Stability of Linear Time-Periodic Delay-Fifferential Equations via Chebyshev Polynomials[J].International Journal for Numerical Methods in Engineering,2004,59:895-922.

    [12] Sinha S C,Wu D H.An Efficient Computational Scheme for the Analysis of Periodic Systems[J].Journal of Sound and Vibration,1991,151:91-117.

    [13] Butcher E A,Sinha S C.A Hybrid Formulation for the Analysis Time Preiodic Linear systems via Chebyshev Polynomials[J].Journal of Sound and Vibration,1996,195(3):518-527.

    [14] Sinha S C,Butcher E A.Symbolic computation of fundmental solution Matrices for Linear Time-Periodic Dynamical Systems[J].Journal of Sound and Vibration,1997,26(1):61-85.

    AppendixA

    AppendixB

    高速銑削顫振系統(tǒng)穩(wěn)定性及分岔的Chebyshev多項(xiàng)式數(shù)值分析

    趙德敏1*,張琪昌2

    1.中國石油大學(xué)(華東) 儲運(yùn)與建筑工程學(xué)院 工程力學(xué)系,山東 青島 266580;2.天津大學(xué) 機(jī)械工程學(xué)院 力學(xué)系,天津 300072

    采用Chebyshev多項(xiàng)式法和Floquet理論相結(jié)合來預(yù)測銑床運(yùn)行中的顫振和分岔。得到了穩(wěn)定性極限形圖,可以準(zhǔn)確地預(yù)示機(jī)床的穩(wěn)定性。通過系統(tǒng)的特征值分析得到此系統(tǒng)發(fā)生了倍周期分岔和Hopf分岔。系統(tǒng)由穩(wěn)定的平衡點(diǎn)通過倍周期分岔收斂到穩(wěn)定的極限環(huán)運(yùn)動,由Hopf分岔轉(zhuǎn)化到概周期運(yùn)動。龐加萊截面的數(shù)值結(jié)果也證實(shí)了概周期運(yùn)動的發(fā)生。

    銑削;顫振穩(wěn)定性;Chebyshev多項(xiàng)式法;分岔

    TH17

    2012-12-09

    Project supported by the Fundamental Research Funds for the Central Universities (11CX04049A), National Natural Science Foundation of China (10872141)*ZHAO Demin,Doctor.E-mail: zhaodemin@upc.edu.cn

    10.3969/j.issn.1001-3881.2013.06.004

    猜你喜歡
    石油大學(xué)天津大學(xué)工程學(xué)院
    福建工程學(xué)院
    砥礪奮進(jìn)中的西南石油大學(xué)法學(xué)院
    砥礪奮進(jìn)中的西南石油大學(xué)法學(xué)院
    福建工程學(xué)院
    《天津大學(xué)學(xué)報(bào)(社會科學(xué)版)》簡介
    福建工程學(xué)院
    福建工程學(xué)院
    學(xué)生寫話
    東北石油大學(xué)簡介
    天津大學(xué)學(xué)報(bào)(社會科學(xué)版)2014年總目次
    婷婷丁香在线五月| 丝袜美足系列| 12—13女人毛片做爰片一| 免费av毛片视频| 欧美日韩乱码在线| 亚洲一区高清亚洲精品| 国产熟女xx| 不卡一级毛片| 国产一区二区三区综合在线观看| 国产熟女午夜一区二区三区| 亚洲精品av麻豆狂野| 少妇 在线观看| 国产xxxxx性猛交| 日本精品一区二区三区蜜桃| 嫁个100分男人电影在线观看| 亚洲avbb在线观看| 成人国产综合亚洲| 一区二区日韩欧美中文字幕| 又大又爽又粗| 国产精品久久电影中文字幕| 国产精品免费视频内射| 他把我摸到了高潮在线观看| 亚洲精品久久国产高清桃花| 天堂影院成人在线观看| 在线观看66精品国产| 美女午夜性视频免费| 日韩欧美免费精品| 极品人妻少妇av视频| 校园春色视频在线观看| 亚洲国产精品合色在线| 一区福利在线观看| 1024视频免费在线观看| 久久人妻av系列| 亚洲五月色婷婷综合| 97人妻精品一区二区三区麻豆 | 国产精品免费一区二区三区在线| 亚洲色图 男人天堂 中文字幕| 久久午夜综合久久蜜桃| 亚洲成人久久性| 88av欧美| tocl精华| 看黄色毛片网站| 午夜视频精品福利| 精品久久久久久久毛片微露脸| 亚洲一卡2卡3卡4卡5卡精品中文| 九色国产91popny在线| 大香蕉久久成人网| 欧美久久黑人一区二区| 丝袜在线中文字幕| 亚洲中文av在线| 99在线视频只有这里精品首页| 亚洲情色 制服丝袜| 精品不卡国产一区二区三区| www.999成人在线观看| 男女下面插进去视频免费观看| 欧美中文日本在线观看视频| 亚洲av五月六月丁香网| 一级a爱片免费观看的视频| 欧美日韩乱码在线| 亚洲欧美精品综合久久99| 免费在线观看视频国产中文字幕亚洲| 国产精品香港三级国产av潘金莲| 日韩大码丰满熟妇| 黑人欧美特级aaaaaa片| ponron亚洲| 亚洲精品美女久久av网站| 一本久久中文字幕| 啦啦啦韩国在线观看视频| 9热在线视频观看99| 日本黄色视频三级网站网址| 日韩欧美国产一区二区入口| 少妇被粗大的猛进出69影院| 亚洲狠狠婷婷综合久久图片| 色播亚洲综合网| 嫁个100分男人电影在线观看| 99精品久久久久人妻精品| 午夜老司机福利片| 精品久久久久久成人av| 啦啦啦韩国在线观看视频| 国产亚洲精品综合一区在线观看 | 久久精品成人免费网站| 精品一区二区三区四区五区乱码| 国产av一区在线观看免费| 日韩大尺度精品在线看网址 | 久久久国产精品麻豆| 久久人妻福利社区极品人妻图片| 欧美成狂野欧美在线观看| x7x7x7水蜜桃| 久久伊人香网站| 淫妇啪啪啪对白视频| 热re99久久国产66热| 无限看片的www在线观看| 757午夜福利合集在线观看| 欧美av亚洲av综合av国产av| 色精品久久人妻99蜜桃| 天堂影院成人在线观看| 精品不卡国产一区二区三区| 国产午夜精品久久久久久| 欧美日韩一级在线毛片| 91九色精品人成在线观看| 人人妻,人人澡人人爽秒播| av在线天堂中文字幕| 在线av久久热| 亚洲国产精品合色在线| 亚洲精品久久成人aⅴ小说| 亚洲黑人精品在线| 久久人人爽av亚洲精品天堂| 国产高清视频在线播放一区| 国产精品自产拍在线观看55亚洲| 精品午夜福利视频在线观看一区| 一级黄色大片毛片| 亚洲成人国产一区在线观看| 免费在线观看黄色视频的| 91精品国产国语对白视频| 18禁观看日本| 亚洲av第一区精品v没综合| 欧美成人免费av一区二区三区| 少妇熟女aⅴ在线视频| 午夜福利欧美成人| 大香蕉久久成人网| 搡老熟女国产l中国老女人| 国产亚洲精品第一综合不卡| 久久久久久久久久久久大奶| 夜夜躁狠狠躁天天躁| 亚洲国产欧美日韩在线播放| 国产伦人伦偷精品视频| 亚洲欧洲精品一区二区精品久久久| 又紧又爽又黄一区二区| 视频区欧美日本亚洲| 老司机午夜十八禁免费视频| 国产伦一二天堂av在线观看| 久久天堂一区二区三区四区| 精品一区二区三区四区五区乱码| 九色亚洲精品在线播放| 日韩三级视频一区二区三区| 非洲黑人性xxxx精品又粗又长| 欧美日本视频| 日韩精品免费视频一区二区三区| 久9热在线精品视频| 成人精品一区二区免费| av欧美777| 亚洲精品久久国产高清桃花| 99久久99久久久精品蜜桃| 波多野结衣av一区二区av| 亚洲欧美一区二区三区黑人| 国内久久婷婷六月综合欲色啪| 亚洲成人免费电影在线观看| 亚洲中文av在线| 亚洲国产欧美一区二区综合| 午夜福利成人在线免费观看| 国产免费男女视频| 国产三级在线视频| 亚洲成av片中文字幕在线观看| 男女之事视频高清在线观看| 老司机午夜十八禁免费视频| 看片在线看免费视频| 亚洲av五月六月丁香网| 亚洲精品一区av在线观看| 亚洲激情在线av| 99国产综合亚洲精品| 99riav亚洲国产免费| 成人国语在线视频| 国产伦一二天堂av在线观看| 91成人精品电影| 国产欧美日韩精品亚洲av| 69av精品久久久久久| 免费在线观看黄色视频的| 丰满人妻熟妇乱又伦精品不卡| 一本综合久久免费| 国产男靠女视频免费网站| 天堂动漫精品| 男人操女人黄网站| 可以在线观看毛片的网站| 国产亚洲精品久久久久久毛片| 久热这里只有精品99| 久久中文字幕人妻熟女| 9色porny在线观看| 天天躁夜夜躁狠狠躁躁| 欧美成人性av电影在线观看| 中文字幕av电影在线播放| 一级a爱片免费观看的视频| 人成视频在线观看免费观看| 亚洲国产欧美网| avwww免费| 69精品国产乱码久久久| 国产乱人伦免费视频| 国产黄a三级三级三级人| e午夜精品久久久久久久| 国产精品98久久久久久宅男小说| 俄罗斯特黄特色一大片| 啦啦啦观看免费观看视频高清 | 欧美大码av| 国产欧美日韩一区二区三区在线| 1024视频免费在线观看| 搞女人的毛片| 琪琪午夜伦伦电影理论片6080| 精品日产1卡2卡| 色哟哟哟哟哟哟| 国产亚洲精品久久久久5区| 久久午夜综合久久蜜桃| 啦啦啦免费观看视频1| 91国产中文字幕| 黑人操中国人逼视频| 欧美黑人精品巨大| 成人国语在线视频| 亚洲专区中文字幕在线| 这个男人来自地球电影免费观看| 老司机深夜福利视频在线观看| 岛国视频午夜一区免费看| e午夜精品久久久久久久| 一边摸一边做爽爽视频免费| а√天堂www在线а√下载| 最新美女视频免费是黄的| 好男人电影高清在线观看| 一级片免费观看大全| 中文字幕av电影在线播放| 在线观看免费视频网站a站| 久久香蕉激情| 亚洲五月色婷婷综合| 久久久久久大精品| 50天的宝宝边吃奶边哭怎么回事| 亚洲第一av免费看| 极品人妻少妇av视频| 亚洲国产精品合色在线| 变态另类丝袜制服| 制服人妻中文乱码| 国产在线观看jvid| 性少妇av在线| 亚洲成人久久性| 亚洲国产精品成人综合色| 精品国产乱子伦一区二区三区| 久久国产乱子伦精品免费另类| 国产成人影院久久av| 亚洲av成人一区二区三| 欧美激情 高清一区二区三区| 国产精品秋霞免费鲁丝片| 国产精品免费视频内射| av视频在线观看入口| 黄色毛片三级朝国网站| 久久天堂一区二区三区四区| 成人国语在线视频| 久久精品91蜜桃| 午夜亚洲福利在线播放| 国产激情欧美一区二区| 99国产极品粉嫩在线观看| 丝袜美腿诱惑在线| 中文字幕最新亚洲高清| 亚洲第一av免费看| 极品人妻少妇av视频| 久热爱精品视频在线9| 国产成人精品在线电影| 我的亚洲天堂| 1024香蕉在线观看| 成熟少妇高潮喷水视频| 韩国精品一区二区三区| 后天国语完整版免费观看| 757午夜福利合集在线观看| 色综合站精品国产| 久久人妻av系列| 99re在线观看精品视频| 首页视频小说图片口味搜索| 久久人人97超碰香蕉20202| a在线观看视频网站| 成人永久免费在线观看视频| 一级a爱片免费观看的视频| 日韩高清综合在线| 国产精品国产高清国产av| 亚洲无线在线观看| 丁香六月欧美| 国产又色又爽无遮挡免费看| 成人国语在线视频| 在线观看www视频免费| 亚洲性夜色夜夜综合| 人妻丰满熟妇av一区二区三区| 亚洲国产看品久久| 99久久综合精品五月天人人| 此物有八面人人有两片| 欧美乱妇无乱码| 国产乱人伦免费视频| 岛国视频午夜一区免费看| 99精品久久久久人妻精品| 在线观看66精品国产| 他把我摸到了高潮在线观看| 非洲黑人性xxxx精品又粗又长| 国产99白浆流出| 一级,二级,三级黄色视频| 中文字幕精品免费在线观看视频| 亚洲九九香蕉| 一级毛片高清免费大全| 美女高潮到喷水免费观看| 午夜久久久久精精品| 美女免费视频网站| 中文字幕色久视频| 无遮挡黄片免费观看| 国产极品粉嫩免费观看在线| 成人av一区二区三区在线看| 两性夫妻黄色片| 老司机在亚洲福利影院| 大型av网站在线播放| 亚洲av片天天在线观看| 国产成人精品在线电影| 亚洲中文日韩欧美视频| 色综合站精品国产| 一级毛片高清免费大全| 亚洲av日韩精品久久久久久密| 我的亚洲天堂| 91精品三级在线观看| 级片在线观看| av视频免费观看在线观看| 精品久久蜜臀av无| 巨乳人妻的诱惑在线观看| 99久久精品国产亚洲精品| 久久久久久人人人人人| 麻豆国产av国片精品| 在线观看免费视频日本深夜| 99riav亚洲国产免费| 免费无遮挡裸体视频| 18禁美女被吸乳视频| 精品久久久精品久久久| 欧美日韩中文字幕国产精品一区二区三区 | 法律面前人人平等表现在哪些方面| 91成人精品电影| 亚洲人成伊人成综合网2020| 国产精品影院久久| 国产麻豆69| 丝袜在线中文字幕| av福利片在线| 亚洲专区中文字幕在线| 三级毛片av免费| 纯流量卡能插随身wifi吗| 亚洲成av人片免费观看| 麻豆久久精品国产亚洲av| 在线观看午夜福利视频| 中文亚洲av片在线观看爽| 1024视频免费在线观看| 精品不卡国产一区二区三区| 久久久久九九精品影院| 国产视频一区二区在线看| 久久久久久久久久久久大奶| 久热爱精品视频在线9| 一个人观看的视频www高清免费观看 | 国产真人三级小视频在线观看| 十分钟在线观看高清视频www| 国产精品秋霞免费鲁丝片| 一区二区三区高清视频在线| 国产精品美女特级片免费视频播放器 | 亚洲av电影在线进入| 91大片在线观看| 欧美午夜高清在线| 国内久久婷婷六月综合欲色啪| 精品一品国产午夜福利视频| 国产精品永久免费网站| 亚洲激情在线av| 伦理电影免费视频| 99热只有精品国产| 脱女人内裤的视频| 亚洲av日韩精品久久久久久密| 久久 成人 亚洲| 国产精品九九99| 国产精品野战在线观看| 精品久久久久久久毛片微露脸| 中文字幕高清在线视频| 亚洲av电影在线进入| 亚洲av片天天在线观看| 丝袜美腿诱惑在线| 色婷婷久久久亚洲欧美| 一级片免费观看大全| 国产精品一区二区精品视频观看| 久久精品91无色码中文字幕| 亚洲三区欧美一区| 亚洲色图 男人天堂 中文字幕| 不卡一级毛片| 18禁黄网站禁片午夜丰满| 91字幕亚洲| 18禁黄网站禁片午夜丰满| 亚洲 国产 在线| 国产国语露脸激情在线看| 成人国产一区最新在线观看| av片东京热男人的天堂| 久久国产精品男人的天堂亚洲| 亚洲欧美精品综合久久99| 中文字幕人成人乱码亚洲影| 丰满人妻熟妇乱又伦精品不卡| 国产精品久久久人人做人人爽| 国产片内射在线| 男女做爰动态图高潮gif福利片 | 国产av在哪里看| 三级毛片av免费| 91字幕亚洲| 人人妻人人澡人人看| 好男人电影高清在线观看| 女警被强在线播放| 久久久久亚洲av毛片大全| 精品一区二区三区四区五区乱码| 欧美日本亚洲视频在线播放| 中出人妻视频一区二区| 久久狼人影院| 亚洲第一电影网av| 精品国产美女av久久久久小说| 国产亚洲欧美精品永久| 国产精品久久久人人做人人爽| 最新美女视频免费是黄的| 日本精品一区二区三区蜜桃| 久久国产亚洲av麻豆专区| or卡值多少钱| 无限看片的www在线观看| 久久人妻熟女aⅴ| 亚洲专区字幕在线| 亚洲aⅴ乱码一区二区在线播放 | 国产在线精品亚洲第一网站| 岛国视频午夜一区免费看| 久久久久久久久免费视频了| 啦啦啦 在线观看视频| 精品国内亚洲2022精品成人| 视频区欧美日本亚洲| 亚洲国产欧美网| 99国产综合亚洲精品| 国产精品亚洲美女久久久| 91av网站免费观看| 曰老女人黄片| 18美女黄网站色大片免费观看| 国产精品免费视频内射| 成人手机av| 亚洲精品中文字幕在线视频| 一进一出抽搐动态| 精品人妻1区二区| 亚洲一区高清亚洲精品| 男人舔女人下体高潮全视频| 国产高清videossex| 久久天堂一区二区三区四区| 高潮久久久久久久久久久不卡| www.999成人在线观看| 可以在线观看毛片的网站| videosex国产| 国产成+人综合+亚洲专区| 少妇裸体淫交视频免费看高清 | 两性夫妻黄色片| 亚洲成人久久性| 热99re8久久精品国产| 人人妻人人澡欧美一区二区 | 国产精品久久久久久精品电影 | 色老头精品视频在线观看| 母亲3免费完整高清在线观看| 亚洲五月色婷婷综合| 给我免费播放毛片高清在线观看| 自线自在国产av| 国产精华一区二区三区| 一级黄色大片毛片| 天堂√8在线中文| 丰满人妻熟妇乱又伦精品不卡| 免费看a级黄色片| 欧美成狂野欧美在线观看| 午夜激情av网站| 国产精品自产拍在线观看55亚洲| 婷婷丁香在线五月| 亚洲电影在线观看av| 午夜亚洲福利在线播放| 午夜福利成人在线免费观看| 久久久久亚洲av毛片大全| 桃红色精品国产亚洲av| 欧美 亚洲 国产 日韩一| 国产精品香港三级国产av潘金莲| 老司机午夜十八禁免费视频| 一级a爱视频在线免费观看| 国产精品精品国产色婷婷| 国内精品久久久久精免费| 天天躁夜夜躁狠狠躁躁| 99精品久久久久人妻精品| 亚洲人成网站在线播放欧美日韩| 最近最新中文字幕大全免费视频| 国产亚洲精品久久久久久毛片| 欧美日韩福利视频一区二区| 亚洲国产毛片av蜜桃av| 国产精品一区二区在线不卡| 美女高潮到喷水免费观看| 欧美 亚洲 国产 日韩一| 又大又爽又粗| 国产精品久久久久久亚洲av鲁大| 97超级碰碰碰精品色视频在线观看| 国产亚洲av嫩草精品影院| 此物有八面人人有两片| 国产精品久久电影中文字幕| 欧美日本中文国产一区发布| 免费在线观看视频国产中文字幕亚洲| 久久久久九九精品影院| 精品人妻1区二区| 狂野欧美激情性xxxx| 色综合亚洲欧美另类图片| 啦啦啦观看免费观看视频高清 | 欧美中文日本在线观看视频| 亚洲视频免费观看视频| 日日爽夜夜爽网站| 国产精品自产拍在线观看55亚洲| 一二三四在线观看免费中文在| 99香蕉大伊视频| 久久人人精品亚洲av| 伦理电影免费视频| 亚洲av电影在线进入| 亚洲色图av天堂| 别揉我奶头~嗯~啊~动态视频| 国产野战对白在线观看| 国产人伦9x9x在线观看| 国产一区二区三区在线臀色熟女| 美女国产高潮福利片在线看| 一级作爱视频免费观看| 精品国产一区二区三区四区第35| 一级毛片女人18水好多| 欧美日韩乱码在线| 妹子高潮喷水视频| 久久草成人影院| 午夜两性在线视频| 可以在线观看的亚洲视频| 国产真人三级小视频在线观看| 国产aⅴ精品一区二区三区波| av有码第一页| 久久久久国产精品人妻aⅴ院| 久久九九热精品免费| 午夜精品国产一区二区电影| 免费久久久久久久精品成人欧美视频| 亚洲精品粉嫩美女一区| 手机成人av网站| 国产欧美日韩一区二区精品| 美女午夜性视频免费| 免费观看精品视频网站| 男女下面插进去视频免费观看| 麻豆久久精品国产亚洲av| 久久久久国产一级毛片高清牌| 国产精品二区激情视频| 天天一区二区日本电影三级 | 最好的美女福利视频网| 免费久久久久久久精品成人欧美视频| 欧美激情极品国产一区二区三区| 岛国在线观看网站| 欧美日韩福利视频一区二区| 国产精品香港三级国产av潘金莲| 一级毛片女人18水好多| 亚洲av第一区精品v没综合| 在线观看免费视频日本深夜| 亚洲人成伊人成综合网2020| 1024香蕉在线观看| av电影中文网址| 成人手机av| 国产精品久久久av美女十八| 最近最新中文字幕大全电影3 | 最近最新中文字幕大全免费视频| 12—13女人毛片做爰片一| 午夜福利成人在线免费观看| 美女高潮到喷水免费观看| 国语自产精品视频在线第100页| 在线观看午夜福利视频| 国产野战对白在线观看| 91老司机精品| 91av网站免费观看| 色哟哟哟哟哟哟| 成人亚洲精品av一区二区| 国产午夜精品久久久久久| 97人妻天天添夜夜摸| 精品无人区乱码1区二区| 午夜免费观看网址| 搞女人的毛片| 99精品久久久久人妻精品| 亚洲精品久久成人aⅴ小说| 看黄色毛片网站| 99riav亚洲国产免费| 精品久久久久久,| 国内精品久久久久精免费| 日本a在线网址| 日韩精品中文字幕看吧| 欧美色视频一区免费| 精品一品国产午夜福利视频| 亚洲av片天天在线观看| 91国产中文字幕| 国产真人三级小视频在线观看| 一级毛片精品| 免费看十八禁软件| 亚洲成人精品中文字幕电影| 脱女人内裤的视频| 日本 欧美在线| 久久久久久人人人人人| www.熟女人妻精品国产| 香蕉丝袜av| 老汉色∧v一级毛片| 免费久久久久久久精品成人欧美视频| 国产成人精品在线电影| 日本黄色视频三级网站网址| 色综合欧美亚洲国产小说| 欧美激情极品国产一区二区三区| 变态另类成人亚洲欧美熟女 | 国产精品免费一区二区三区在线| 两性午夜刺激爽爽歪歪视频在线观看 | 黄色女人牲交| 国产伦一二天堂av在线观看| 别揉我奶头~嗯~啊~动态视频| 国产av一区二区精品久久| 国产伦一二天堂av在线观看| 久久香蕉激情| 丰满的人妻完整版| 日韩国内少妇激情av| 一级作爱视频免费观看| 他把我摸到了高潮在线观看| 欧美 亚洲 国产 日韩一| 国产精品美女特级片免费视频播放器 | 国产97色在线日韩免费| АⅤ资源中文在线天堂| 国产精品一区二区精品视频观看| 国产成人一区二区三区免费视频网站| 99热只有精品国产| 亚洲色图av天堂| 最新在线观看一区二区三区| 19禁男女啪啪无遮挡网站| 色老头精品视频在线观看| 日韩一卡2卡3卡4卡2021年| 十八禁网站免费在线| 一级黄色大片毛片| 99久久综合精品五月天人人|