袁 暉 坪
(重慶工商大學(xué) 電子商務(wù)及供應(yīng)鏈系統(tǒng)重慶市重點(diǎn)實(shí)驗(yàn)室, 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院, 重慶 400067)
定義1設(shè)A=(aij)∈Cm×n, 則稱(chēng)
分別為矩陣A的行轉(zhuǎn)置矩陣與列轉(zhuǎn)置矩陣, 并記為AR和AC. 特別地, 若AR=A(AC=A), 則稱(chēng)A為行(列)對(duì)稱(chēng)矩陣; 若AR=-A(AC=-A), 則稱(chēng)A為行(列)反對(duì)稱(chēng)矩陣.
引理1[15]設(shè)A∈Cm×n, 則對(duì)任何酉矩陣U∈Cm×m,V∈Cn×n有UAV的Moore-Penrose逆:
(UAV)+=VHA+UH.
2) 由1)、 引理1及文獻(xiàn)[15], 有
證明:
定理3的證明與定理1的證明類(lèi)似, 故略.
定理4的證明與定理2的證明類(lèi)似, 故略.
證明: 1) 與定理1和定理3的證明類(lèi)似, 故略. 2) 與定理2和定理4的證明類(lèi)似, 故略.
引理2設(shè)a1,a2,…,an,b1,b2,…,bn均為復(fù)數(shù), 則
證明: 由復(fù)數(shù)的性質(zhì)及Cauchy-Schwarz不等式, 有
引理3設(shè)A∈Cm×n,Bij∈Cn×s,i,j=1,2,…,k, 則
證明: 由矩陣Frobenius范數(shù)的定義和引理2可知結(jié)論成立.
證明: 由定理1知1)成立; 由引理3和引理4知
證明: 由定理2知1)成立; 由引理3和引理4知:
綜上所述, 本文研究了行(列)反對(duì)稱(chēng)矩陣的極分解、 廣義逆和擾動(dòng)界, 得出了行(列)反對(duì)稱(chēng)矩陣與母矩陣兩者的極分解、 廣義逆和擾動(dòng)界之間的定量關(guān)系. 結(jié)果表明, 用母矩陣代替行(列)反對(duì)稱(chēng)矩陣計(jì)算極分解、 廣義逆和擾動(dòng)界, 既減少了計(jì)算量和儲(chǔ)存量, 又保證了數(shù)值精度.
[1] SUN Ji-guang, CHEN Chun-hui. Generalized Polar Decomposition [J]. Math Numer Sinica, 1989, 11(3): 262-273.
[2] CHEN Xiao-shan, LI Wen, SUN Wei-wei. Some New Perturbation Bounds for the Generalized Polar Decomposition [J]. BIT Numerical Mathematics, 2004, 44(2): 237-244.
[3] LI Wen, SUN Wei-wei. New Perturbation Bounds for Unitary Polar Factors [J]. SIAM J Matrix Anal and Appl, 2003, 25(2): 362-372.
[4] Chaitin-chatelin F, Gratton S. On the Condition Numbers Associated with the Polar Factorization of a Matrix [J]. Numer Linear Algebra with Appl, 2000, 7(5): 337-354.
[5] LI Wen, SUN Wei-wei. Perturbation Bounds of Unitary and Subunitary Polar Factors [J]. SIAM J Matrix Anal and Appl, 2002, 23(4): 1183-1193.
[6] YANG Hu, LI Han-yu. Perturbation Bounds for Weighted Polar Decomposition in the Weighted Unitarily Invariant Norm [J]. Numer Linear Algebra with Appl, 2008, 15(8): 685-700.
[7] YANG Hu, LI Han-yu. Weighted Polar Decomposition [J]. J Math Res Exposition, 2009, 29(5): 787-798.
[8] YANG Hu, LI Han-yu. Weighted Polar Decomposition and WGL Partial Ordering of Rectangular Complex Matrices [J]. SIAM J on Matrix Anal and Appl, 2008, 30(2): 898-924.
[9] LI Ren-cang. Relative Perturbation Bounds for Positive Polar Factors of Graded Matrices [J]. SIAM J Matrix Anal and Appl, 2006, 27(2): 424-433.
[10] LI Wen, SUN Wei-wei. Combinatorial Perturbation Bound: Ⅱ.Polar Factorization [J]. Science of China Series A: Mathematics, 2007, 37(6): 701-708. (黎穩(wěn), 孫偉偉. 組合擾動(dòng)界: Ⅱ.極分解 [J]. 中國(guó)科學(xué)A輯: 數(shù)學(xué), 2007, 37(6): 701-708.)
[11] WANG Wei-guo, LIU Xin-guo. Several New Results on the Polar Decomposition and Generalized Polar Decomposition [J]. Mathematica Numerica Sinica, 2008, 30(2): 147-156. (王衛(wèi)國(guó), 劉新國(guó). 關(guān)于極分解和廣義極分解的一些新結(jié)果 [J]. 計(jì)算數(shù)學(xué), 2008, 30(2): 147-156.)
[12] LIU Yong-hui, TIAN Yong-ge. A Mixed-Type Reverse Order Law for Generalized Inverse of a Triple Matrix Product [J]. Acta Mathematica Sinica: Chinese Series, 2009, 52(1): 197-204. (劉永輝, 田永革. 矩陣廣義逆的一個(gè)混合反序律 [J]. 數(shù)學(xué)學(xué)報(bào): 中文版, 2009, 52(1): 197-204.)
[13] ZOU Hong-xing, WANG Dian-jun, DAI Qiong-hai, et al. QR Factorization for Row or Column Symmetric Matrix [J]. Science of China: Series A, 2002, 32(9): 842-849. (鄒紅星, 王殿軍, 戴瓊海, 等. 行(或列)對(duì)稱(chēng)矩陣的QR分解 [J]. 中國(guó)科學(xué): A輯, 2002, 32(9): 842-849.)
[14] YUAN Hui-ping. Determinantal Inequality of Generalized Positive Subdefinite Matrices [J]. Journal of Jilin University: Science Edition, 2004, 42(3): 346-350. (袁暉坪. 廣義次正定矩陣的行列式不等式 [J]. 吉林大學(xué)學(xué)報(bào): 理學(xué)版, 2004, 42(3): 346-350.)
[15] 張賢達(dá). 矩陣分析與應(yīng)用 [M]. 北京: 清華大學(xué)出版社, 2004: 85-89.