• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    SOFT IMAGE SEGMENTATION BASED ON CENTER-FREE FUZZY CLUSTERING

    2013-12-02 01:39:06MaRuning馬儒寧ZhuYan朱燕DingJundi丁軍娣

    Ma Runing(馬儒寧),Zhu Yan(朱燕),Ding Jundi(丁軍娣)

    (1.College of Science,Nanjing University of Aeronautics and Astronautics,Nanjing,210016,P.R.China;2.School of Computer Science and Technology,Nanjing University of Science and Technology,Nanjing,210094,P.R.China)

    INTRODUCTION

    Image segmentation is a technique of partitioning agiven image into multiple uniform and nonoverlapping regions[1-2].It is an important operation in several applications of image processing,since it represents the first step of low-level processing of image.

    The concept of soft image segmentation is not a new one.Each pixel has a″degree of belonging″to more than one region in soft segmentation[3].The approaches to soft segmentation contain fuzzy clustering algorithms,fuzzy rulebased approach,relative fuzzy connectedness algorithms[4],PDE model for soft segmentation[5],stochastic model based approaches[6]and so on.A great many improved techniques have been proposed in recent years,such as the approaches based on Gaussian mixture model[7-8].

    Clustering methods are one of the most used algorithms in image segmentation,because they are intuitive and,some of them,easy to be implemented.Fuzzy clustering algorithms are precise for their flexibility.Therefore they can reflect the fuzziness and uncertainty of image[9].The experimental results demonstrate the validity of segmentation based on fuzzy clustering.

    Fuzzy clustering algorithm is an unsupervised clustering algorithm based on iterative optimization of objective function.The traditional fuzzy clustering algorithms,such as the classical fuzzy C-means clustering (FCM)[10],possibilistic C-means clustering (PCM)[11-13],need calculate the cluster center. Many questions arise because there may be no″true″cluster centers[14].Each cluster is represented by all of the points in this cluster instead of its center point.So there is no need to calculate the cluster center.We just need formulate the similarity between the sample and the cluster to confirm the cluster which the samples belong to.The above idea is the center-free fuzzy clustering[14].

    A new soft image segmentation method based on center-free clustering is proposed in this paper.The method merges the small regions instead of the pixels.It is too complex to merge the pixels because of the huge number.Some proposed methods that merge the regions are initially segmented by mean-shift segmentation[15-16].Meanshift is proven in generating robust and accurate segmentation results for color images[17].So it is chosen for initial segmenting in the new method.After initial segmentation,many small available regions can be obtained.Then center-free clustering is used to merge these small regions.Quantitative analyses prove that center-free cluster is less sensitive with respect to noise.Because of the capabilities and advantages of center-free clustering algorithm,soft image segmentation based on center-free fuzzy clustering is suitable to be implemented.Compared with traditional image segmentation methods based on clustering,the experimental results show that the new method can get much better effect.

    1 CENTER-FREE FUZZY CLUSTERING AND DATA CLUSTERING RESULTS

    The idea of center-free fuzzy clustering algorithm is that every point in one cluster has its own contribution in presenting that cluster.The similarity between the sample and the cluster ensure the cluster which the sample should belong to.Now the center-free clustering algorithm is introduced.

    For the dataset X={x1,x2,…,xn}∈Rd×n,each sample has a membership of more than one cluster.So each cluster is considered to be a fuzzy set of the sample-set.Every classification result is represented by the membership matrix U,and uijis the membership of the jth sample belonging to the ith cluster.Obviously,uijshould satisfy

    (1)uij∈[0,1],i=1,2,…,c;j=1,2,…,n,where cis the number of expected clusters,nthe size of the given dataset X.

    Point-to-cluster similarity is defined: The similarityρijbetween the jth sample xjand the ith cluster Viis an average weighted similarity fromxjto any number of the ith cluster.That is

    According to the definition,the objective function of the center-free fuzzy clustering algorithm can be formulated as follows

    In Eq.(1),because the item umik·rkjindicates the similarity of xjto sample xkin the ith cluster that is weighted by the membership ofcan be considered as a sum of the linearly weighted similarity between xjto any number of the ith cluster.Therefore,it is easy to know that whenρijgets the maximum,the sample xjwill belong to the ith cluster.Minimizing the objective function is to assign each sample to the cluster which the sample is most similar to.

    Obviously,this objective function is independent on any cluster center.It only involves the fuzzy membership.So the similarity between the sample and the cluster is changed by fuzzy membership matrix.

    When we deal with the dataset,the goal is to find the fuzzy membership matrix U=(uij)c×n,so that objective function Jccfr(U)is minimized under

    The steps and the iterative formulas of this algorithm are described in detail.For the dataset X={x1,x2,…,xn},where xj=(xj1,xj2,…,xjd)T∈Rd,c∈{1,2,…,n}is the number of expected clusters,fuzzy factor m>1.Jccfr(U)under the re-will reach its minimum when Eq.(3)is true.

    This condition can be easily proved with Lagrange multiple method.

    Proof

    The Lagrange function is constructed as follows

    In Eq.(4),we take the derivative of L,partial with respect to uij.The equation equals to zero.Eq.(5)can be obtained.

    That is

    Finally we get

    The proof is finished.

    The steps of the center-free fuzzy clustering algorithm are given as follows:

    Step 1 Give the number of clusters c (1≤c≤n),the fuzzy factor m,a threshold parameter ε,the time of iteration t=1.Initialize the fuzzy membership matrix U(0).

    Step 2 Compute the point-to-cluster similarity by using Eq.(1).

    Step 3 Update the fuzzy membership matrix Uby using Eq.(3).

    Step 4 The algorithm stop if E=‖U(t+1)-U(t)‖<ε.Otherwise,t=t+1and go to Step 2.

    This paper uses four artificial different databases to test center-free fuzzy clustering algorithm.The artificial databases,as shown in Fig.1,include″Normrand2″(Fig.1(a)),″Normrand2 with noises″(Fig.1(b)),″Semicircle″(Fig.1(c)),and″Block5″(Fig.1(d)).

    Fig.1 Four synthetic data sets

    The clustering results of the center-free fuzzy clustering algorithm,F(xiàn)CM,PCM,F(xiàn)PCM,and PCA are shown in Figs.2-6.Comparing these clustering results,it is easy to find that the center-free fuzzy clustering algorithm is much better than the other four methods.If we analyze in detail,to the manifold-structured clusters,only the center-free clustering algorithm can obtain correct results.For Block5,although these five methods all have errors,the center-free clustering algorithm has the minimum error rate.

    The error rates of above experimental results are counted,as shown in following Table 1.

    Fig.2 Clustering results of center-free fuzzy clustering

    Fig.3 Clustering results of FCM

    Fig.4 Clustering results of FPCM

    Fig.5 Clustering results of PCM

    Table 1 Classification error rates of five clustering methods%

    2 PROPOSED SOFT IMAGE SEGMENTATION METHOD

    Considering the superiority of center-free fuzzy clustering algorithm in data experiment,the soft image segmentation based on center-free fuzzy clustering is proposed.The framework of this method is as follows.Firstly the mean-shift method is chosen for initial segmentation,then center-free fuzzy clustering is used to merge regions(the color vector is extracted as feature),and the final segmented image is obtained.

    Fig.6 Clustering results of PCA

    Thinking about the difficulty of merging pixels,we want to extend the merging of pixel to the merging of region.For this purpose,the initial image segmentation is necessary.This step needs to segment an original image into many small regions.There are so many methods to realize this step,such as mean-shift method, watershed method and otsu's method.Although image segmentation using these methods can obtain the over-segmented image,these low-level segmentation methods provide a good basis for region merging.In this paper,the mean-shift method is chosen for initial segmentation.It can obtain smaller number of regions and maintain the image edge better.Because the number of regions is smaller,every region contains much more pixels.Its advantage is that it can reduce the impact of noise.So the actual conditions of the area can be reflected.Some experiments can illustrate the advantage of mean-shift method.The initial segmentation results by mean-shift,watershed and otsu′s methods are shown in Fig.7.

    Mean-shift is a non-parametric probability density analysis technique.Application domains include clustering and image processing.Meanshift segmentation is a clustering algorithm that performs color and texture segmentation[18].For the principle of mean-shift vector always pointing to probability density gradient direction,it is an iterative method.When mean-shift is used in image segmentation,each pixel is treated as an initial sample and calculated by using mean-shift.As a result,they can"shift"to the local maximum value.This algorithm needs to input color and spatial information.Each pixel is expressed by ap+2-dimensional vector(If it is a color image,p=3.If it is a gray image,p=1).Suppose(xs,xr)is the vector,in which xsis the coordinate of pixel and xrthe color information.The pixels belonging to the same region will″shift″to the same local maximum value.The pixels that shift to the same local maximum value are divided into one class.This is the general process of segmentation by using mean-shift.

    Fig.7 Initial segmentation results of three different methods

    After mean-shift initial segmentation,many small regions are obtained.Features of these small regions should be extracted.Generally,different image characteristics are analyzed such as texture,color,central location,edge and size to achieve image segmentation purpose.As for the color images,each pixel has three components,R,G,B,so the color space can be a feature space.The average value of the color is chosen in these small regions as feature in this paper.When the center-free clustering algorithm is used in data,the samples are the two-dimensional points.In image segmentation,these points can be changed into three dimensions.Obviously,this three-dimensional point represents the RGB average of one region.The reason for extracting this feature is that there is no relationship among the shapes or the sizes of the small regions after initial segmentation.In addition,the color of different regions which belong to the same object will have higher similarity.So it is easy to achieve segmentation results if the color vector is clustered.At last,center-free fuzzy clustering is used to merge these small regions.So we extend the cluster of pixel to cluster of region.Theoretically speaking,the number of expected clusters can be arbitrary constant.But in most cases,the choice of the number depends on the tested picture.Object and background are distinguished according to the general situation.

    As for the similarity among the small regions,it is unscientific if the similarity measure is wholly used between the data points as Eq.(1).That is because the small regions which are not adjacency cannot be clustered.That is to say,the small regions should satisfy the property of connectedness.So the similarity measure Rbetween the small regions is modified as

    where ris the same as rin Eq.(1).

    3 SEGMENTATION RESULTS OF DIFFERENT METHODS

    To analyze the effect of image segmentation method based on center-free clustering,experiments in OBIC image database are performed.EDISON system—the mean-shift software is used to obtain initial segmentation map.Matlab is used to cluster the small regions.Now the results of final segmentation by different segmentation methods based on fuzzy clustering are shown in Fig.8,and the rows of images in Fig.8are numbered as Fig.8-1—Fig.8-11.

    F-measure (Eq.(11))is a measure of the test accuracy.It considers both the precision(Np)and the recall(Nr)of the test to compute the score:Precision is the number of correct results divided by the number of all returned results and recall is the number of correct results divided by the number of results that should be returned.To explain this definition,precision can be seen as a measure of exactness or quality,whereas recall is a measure of completeness or quantity.That is to say,high precision means that the algorithm returns more relevant results than irrelevant ones,and high recall means that the algorithm returns most of the relevant results.F-measure reaches its best value at 1and worst value at 0.

    Fig.8 Segmentation results of different methods

    The values of Np,Nrand Fof Fig.8are obtained,as shown in Table 2.

    Table 2demonstrates that the effect of soft image segmentation based on FCM is almost the same as the segmentation based on FPCM.The segmentation results based on PCM are unsa-tisfied because of the unstable property of PCM.Under the complex conditions,soft segmentation based on center-free clustering is better than the other methods.The cluster number is 3in Fig.8-7and Fig.8-9,so it cannot be measured by F-measure.The quantitative analysis illustrates the superiority of the proposed method.

    Table 2 Values of precision,recall,and F-Measure of above experiment

    4 CONCLUSION

    In this paper,the soft segmentation based on center-free clustering algorithm is propsed.Different from traditional fuzzy clustering,it defines an objective function by using the similarity between the sample and the cluster.The center-free clustering algorithm does not need a center.So it solves the problem of noise sensitivity.Experimental results show that the proposed segmentation method is better than the traditional segmentation methods.Although the method cannot get the best effect of segmentation under some conditions,it has the superiority compared with some other segmentation methods.However,centerfree clustering algorithm can easily entrap into local minimum.The weakness will influence the effect of the proposed method,so it needs to be improved in the later work.

    [1] Senthilkumaran N,Rajesh R.Image segmentation—A survey of soft computing approaches[C]∥2009International Conference on Advances in Recent Technologies in Communication and Computing(Artcom 2009).Kottayam,Kerala,India:IEEE,2009:844-846.

    [2] Naz S,Majeed H,Irshad H.Image segmentation using fuzzy clustering:A survey[C]∥2010 6th International Conference on Emerging Technologies(ICET).Islamabad:IEEE,2010:181-186.

    [3] Prewer D,Kitchen L.Soft image segmentation by weighted linked pyramid[J].Pattern Recognition Letters,2001,22(2):123-132.

    [4] Udupa J K,Saha P K,Lotufo R A.Relative fuzzy connectedness and object definition:Theory,algorithms,and applications in image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(11):1485-1500.

    [5] Posirca I,Chen Y M,Barcelos C Z.A new stochastic variational PDE model for soft Mumford-Shah segmentation[J].Journal of Mathematical Analysis and Applications,2011,384(1):104-114.

    [6] Fuhua C,Yunmei C.A stochastic variational model for multi-phase soft segmentation with bias correction[J].Advanced Modeling and Optimization,2010,12(3):339-345.

    [7] Barcelos C A Z,Chen Y M,Chen F H,et al.A soft multiphase segmentation model via Gaussian mixture[C]∥2009 16th IEEE International Conference on Image Processing.Cairo,Eqypt:IEEE,2009:3997-4000.

    [8] Tang H,Dillenseger J L,Bao X D,et al.A vectorial image soft segmentation method based on neighborhood weighted Gaussian mixture model[J].Computerized Medical Imaging and Graphics,2009,33(8):644-650.

    [9] Wang Zhen,Yang Meng.A fast clustering algorithm in image segmentation[C]∥2010 2nd International Conference on Computer Engineering and Technology(ICCET).Chengdu,China:IEEE,2010:V6-592-V6-594.

    [10]Hung Ming-chuan,Yang Don-lin.An efficient fuzzy C-means clustering algorithm[C]∥Proceedings IEEE International Conference on Data Mining.California,USA:IEEE,2001:225-232.

    [11]Krishnapuram R,Keller J M.A possibilistic approach to clustering[J].IEEE Transactions on Fuzzy Systems,1993,1(2):98-110.

    [12]Yang M S,Wu K L.Unsupervised possibilistic clustering[J].Pattern Recognition,2006,39(1):5-21.

    [13]Pal N R,Pal K,Keller J M,et al.A possibilistic fuzzy C-means clustering algorithm[J].IEEE Transactions on Fuzzy Systems,2005,13(4):517-530.

    [14]Ding Jundi,Ma Runing,Hu Xiaoqing,et al.Fuzzy C-means revisited:Towards a cluster-center-free reformulation[C]∥2010Chinese Conference on Pattern Recognition (CCPR).Chongqing,China:IEEE,2010:1-5.

    [15]Ning J F,Zhang L,Zhang D,et al.Interactive image segmentation by maximal similarity based region merging[J].Pattern Recognition,2010,43(2):445-456.

    [16]Li Junxia,Ma Runing,Ding Jundi.Saliency-seeded region merging automatic object segmentation[C]∥First Asian Conference on Pattern Recognition(ACPR).Beijing,China:IEEE,2011:691-695.

    [17]Luo Q M,Khoshgoftaar T A.Efficient image segmentation by mean-shift clustering and MDL-guided region merging[C]∥16th IEEE International Conference on Tools with Artificial Intelligence.Boca Raton,F(xiàn)L:IEEE,2004:337-343.

    [18]Tai Y W,Jia J Y,Tang C K.Soft color segmentation and its applications[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(9):1520-1537.

    国产欧美日韩一区二区三区在线| netflix在线观看网站| 脱女人内裤的视频| 欧美成人午夜精品| 天天影视国产精品| 久久国产精品大桥未久av| 黑丝袜美女国产一区| 青草久久国产| 国产人伦9x9x在线观看| 老司机亚洲免费影院| 亚洲 国产 在线| 午夜福利一区二区在线看| 99精国产麻豆久久婷婷| 精品一区二区三区四区五区乱码| 国产人伦9x9x在线观看| 男男h啪啪无遮挡| 亚洲成人免费电影在线观看| 日本欧美视频一区| 51午夜福利影视在线观看| 亚洲熟女精品中文字幕| 青青草视频在线视频观看| 老熟妇乱子伦视频在线观看| 欧美在线黄色| 亚洲七黄色美女视频| 久久这里只有精品19| 人人妻人人添人人爽欧美一区卜| 激情视频va一区二区三区| avwww免费| 国产精品一区二区在线观看99| 国产精品偷伦视频观看了| av网站在线播放免费| netflix在线观看网站| 成人av一区二区三区在线看| 一二三四社区在线视频社区8| 久久天躁狠狠躁夜夜2o2o| av又黄又爽大尺度在线免费看| 午夜福利视频精品| 成人国产一区最新在线观看| 80岁老熟妇乱子伦牲交| av有码第一页| 国产精品偷伦视频观看了| 亚洲欧洲日产国产| 亚洲精品av麻豆狂野| 女人爽到高潮嗷嗷叫在线视频| 不卡av一区二区三区| 日韩一区二区三区影片| 亚洲第一青青草原| 这个男人来自地球电影免费观看| 欧美精品av麻豆av| 亚洲精品成人av观看孕妇| 午夜福利欧美成人| 啪啪无遮挡十八禁网站| 夫妻午夜视频| 在线观看www视频免费| 另类亚洲欧美激情| 日本av免费视频播放| 9色porny在线观看| 狠狠精品人妻久久久久久综合| 国产在线免费精品| 一区二区av电影网| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲第一av免费看| 久久久久久久精品吃奶| 丰满人妻熟妇乱又伦精品不卡| 国产精品一区二区精品视频观看| 久久精品aⅴ一区二区三区四区| 亚洲一码二码三码区别大吗| 亚洲精品国产一区二区精华液| 老司机亚洲免费影院| 日本欧美视频一区| a在线观看视频网站| 亚洲欧洲精品一区二区精品久久久| 下体分泌物呈黄色| 日韩欧美三级三区| 最黄视频免费看| 日日夜夜操网爽| 黄色 视频免费看| 欧美激情极品国产一区二区三区| 两人在一起打扑克的视频| 99久久99久久久精品蜜桃| av线在线观看网站| 亚洲av日韩在线播放| 大码成人一级视频| 又紧又爽又黄一区二区| 一二三四社区在线视频社区8| 国产熟女午夜一区二区三区| netflix在线观看网站| 精品亚洲成a人片在线观看| 国产精品av久久久久免费| 十分钟在线观看高清视频www| 成人永久免费在线观看视频 | 在线播放国产精品三级| 黑人巨大精品欧美一区二区mp4| 蜜桃在线观看..| 黄片大片在线免费观看| 国产1区2区3区精品| 日韩欧美国产一区二区入口| 高清黄色对白视频在线免费看| 国产亚洲欧美精品永久| 在线观看www视频免费| 亚洲成av片中文字幕在线观看| 69精品国产乱码久久久| 亚洲中文日韩欧美视频| 99re在线观看精品视频| 久久九九热精品免费| 一级毛片女人18水好多| 老熟妇仑乱视频hdxx| 午夜福利免费观看在线| 国产成人免费观看mmmm| 国产精品98久久久久久宅男小说| www.999成人在线观看| 精品熟女少妇八av免费久了| 欧美 亚洲 国产 日韩一| 日韩 欧美 亚洲 中文字幕| 色精品久久人妻99蜜桃| 啦啦啦在线免费观看视频4| 999久久久国产精品视频| 露出奶头的视频| e午夜精品久久久久久久| 超碰成人久久| 亚洲成av片中文字幕在线观看| 精品熟女少妇八av免费久了| 国产精品熟女久久久久浪| 久久久精品免费免费高清| 嫁个100分男人电影在线观看| 久久人人爽av亚洲精品天堂| 女人高潮潮喷娇喘18禁视频| 久久久久国内视频| 国产成人av激情在线播放| 国产亚洲午夜精品一区二区久久| 女人被躁到高潮嗷嗷叫费观| 高清黄色对白视频在线免费看| www.熟女人妻精品国产| 麻豆成人av在线观看| 亚洲全国av大片| 欧美黄色片欧美黄色片| 女人精品久久久久毛片| 97人妻天天添夜夜摸| 日韩欧美三级三区| 午夜老司机福利片| 午夜激情av网站| 美女高潮喷水抽搐中文字幕| 老司机午夜十八禁免费视频| 麻豆成人av在线观看| 亚洲熟妇熟女久久| av片东京热男人的天堂| 女同久久另类99精品国产91| 一二三四社区在线视频社区8| 日本wwww免费看| 亚洲va日本ⅴa欧美va伊人久久| 久久精品aⅴ一区二区三区四区| 国产黄频视频在线观看| 一区二区三区乱码不卡18| 久久狼人影院| 大香蕉久久成人网| 精品少妇内射三级| 国产精品国产av在线观看| 波多野结衣一区麻豆| 久久精品国产综合久久久| 国产xxxxx性猛交| 这个男人来自地球电影免费观看| 精品久久久精品久久久| 久久久精品免费免费高清| 国产欧美日韩一区二区精品| 岛国在线观看网站| 欧美激情极品国产一区二区三区| 亚洲欧洲日产国产| 成人av一区二区三区在线看| 久久人妻熟女aⅴ| 伦理电影免费视频| 女人高潮潮喷娇喘18禁视频| cao死你这个sao货| 国产成人免费无遮挡视频| 悠悠久久av| 人妻 亚洲 视频| 别揉我奶头~嗯~啊~动态视频| av电影中文网址| 一区二区日韩欧美中文字幕| 精品一区二区三区四区五区乱码| 精品少妇一区二区三区视频日本电影| 久久人妻福利社区极品人妻图片| 午夜免费鲁丝| h视频一区二区三区| 亚洲色图 男人天堂 中文字幕| 搡老熟女国产l中国老女人| 两个人免费观看高清视频| 两性夫妻黄色片| 一区二区三区乱码不卡18| 日韩欧美一区二区三区在线观看 | 欧美黄色淫秽网站| 国产视频一区二区在线看| 国产欧美亚洲国产| 国产欧美日韩综合在线一区二区| 汤姆久久久久久久影院中文字幕| 老汉色av国产亚洲站长工具| 欧美日韩中文字幕国产精品一区二区三区 | 天堂8中文在线网| 超碰成人久久| 美女国产高潮福利片在线看| 亚洲国产成人一精品久久久| 久久久欧美国产精品| 欧美激情高清一区二区三区| 亚洲精品中文字幕一二三四区 | 999精品在线视频| 美女午夜性视频免费| a级片在线免费高清观看视频| 日韩视频一区二区在线观看| av有码第一页| 中国美女看黄片| 欧美日韩一级在线毛片| 久久久久国产一级毛片高清牌| 国产成人av激情在线播放| 欧美 亚洲 国产 日韩一| 好男人电影高清在线观看| 美女高潮到喷水免费观看| 亚洲熟女精品中文字幕| 激情在线观看视频在线高清 | 一区二区av电影网| 亚洲成人免费电影在线观看| 亚洲国产精品一区二区三区在线| 精品国内亚洲2022精品成人 | 亚洲熟妇熟女久久| 国产人伦9x9x在线观看| 在线观看一区二区三区激情| 黄色片一级片一级黄色片| 老司机亚洲免费影院| 19禁男女啪啪无遮挡网站| www.精华液| 日韩制服丝袜自拍偷拍| 如日韩欧美国产精品一区二区三区| 日韩免费高清中文字幕av| 欧美激情 高清一区二区三区| 成人国产av品久久久| 久久精品91无色码中文字幕| 精品少妇内射三级| 日本黄色日本黄色录像| 91大片在线观看| 精品人妻1区二区| 久久精品成人免费网站| 岛国在线观看网站| 中文字幕另类日韩欧美亚洲嫩草| 亚洲欧美日韩高清在线视频 | 精品少妇久久久久久888优播| 欧美在线黄色| 在线av久久热| 日韩欧美国产一区二区入口| 桃红色精品国产亚洲av| 亚洲色图av天堂| 露出奶头的视频| 国产精品一区二区免费欧美| 精品视频人人做人人爽| 老司机午夜福利在线观看视频 | 国产黄色免费在线视频| 国产精品久久久久久精品电影小说| 欧美日韩中文字幕国产精品一区二区三区 | 一二三四在线观看免费中文在| 露出奶头的视频| 欧美久久黑人一区二区| 国产精品久久久人人做人人爽| 日本vs欧美在线观看视频| 丰满饥渴人妻一区二区三| 久久99一区二区三区| 久久 成人 亚洲| 精品少妇久久久久久888优播| av网站免费在线观看视频| 又大又爽又粗| av天堂久久9| 侵犯人妻中文字幕一二三四区| 国产精品麻豆人妻色哟哟久久| 香蕉丝袜av| 精品国产乱码久久久久久小说| 在线播放国产精品三级| 久热爱精品视频在线9| 国产av一区二区精品久久| 亚洲九九香蕉| 久久这里只有精品19| 亚洲 欧美一区二区三区| 热re99久久精品国产66热6| 宅男免费午夜| 久久免费观看电影| 国产国语露脸激情在线看| 欧美日韩国产mv在线观看视频| 日韩 欧美 亚洲 中文字幕| 亚洲国产av影院在线观看| 欧美亚洲日本最大视频资源| 日韩人妻精品一区2区三区| 91九色精品人成在线观看| 日本黄色日本黄色录像| 最新美女视频免费是黄的| 国产真人三级小视频在线观看| 人人妻人人澡人人看| 成人特级黄色片久久久久久久 | 正在播放国产对白刺激| 国产免费av片在线观看野外av| 成年女人毛片免费观看观看9 | 99re在线观看精品视频| 午夜老司机福利片| 在线观看66精品国产| 免费观看av网站的网址| 国产在视频线精品| 国产精品自产拍在线观看55亚洲 | 999精品在线视频| 一边摸一边抽搐一进一小说 | 一边摸一边做爽爽视频免费| 国产成人精品久久二区二区91| 男男h啪啪无遮挡| 国产欧美日韩精品亚洲av| 欧美国产精品一级二级三级| 天天躁夜夜躁狠狠躁躁| 欧美精品人与动牲交sv欧美| 久久精品亚洲熟妇少妇任你| 18禁国产床啪视频网站| 久久久精品国产亚洲av高清涩受| 自线自在国产av| 日本av免费视频播放| 精品少妇一区二区三区视频日本电影| 亚洲国产欧美一区二区综合| 九色亚洲精品在线播放| av网站免费在线观看视频| 不卡av一区二区三区| 99国产综合亚洲精品| 日日摸夜夜添夜夜添小说| 日韩欧美三级三区| 黄片播放在线免费| 高清视频免费观看一区二区| 精品一区二区三区av网在线观看 | 欧美一级毛片孕妇| 波多野结衣av一区二区av| 99久久国产精品久久久| 亚洲专区中文字幕在线| 18禁黄网站禁片午夜丰满| 国产无遮挡羞羞视频在线观看| 久久精品91无色码中文字幕| 国产亚洲av高清不卡| 久久免费观看电影| av免费在线观看网站| 狠狠狠狠99中文字幕| netflix在线观看网站| 欧美日韩中文字幕国产精品一区二区三区 | 女同久久另类99精品国产91| 亚洲国产欧美一区二区综合| 亚洲午夜精品一区,二区,三区| 亚洲欧美一区二区三区黑人| 日韩免费高清中文字幕av| 日韩视频一区二区在线观看| 午夜福利影视在线免费观看| 欧美日韩亚洲综合一区二区三区_| 王馨瑶露胸无遮挡在线观看| 大陆偷拍与自拍| 国产成人精品久久二区二区免费| 精品久久久久久久毛片微露脸| 91精品国产国语对白视频| 亚洲精品美女久久av网站| 亚洲欧美日韩高清在线视频 | 丰满少妇做爰视频| 香蕉丝袜av| av电影中文网址| 精品国产一区二区三区久久久樱花| 午夜福利视频精品| 黑丝袜美女国产一区| 色播在线永久视频| 极品教师在线免费播放| 我要看黄色一级片免费的| 国产av精品麻豆| 王馨瑶露胸无遮挡在线观看| 精品国产乱码久久久久久男人| 精品国产国语对白av| 90打野战视频偷拍视频| 香蕉久久夜色| 亚洲国产精品一区二区三区在线| 黄色视频在线播放观看不卡| 亚洲av国产av综合av卡| 一二三四在线观看免费中文在| 久久天躁狠狠躁夜夜2o2o| 一级a爱视频在线免费观看| 欧美在线一区亚洲| 侵犯人妻中文字幕一二三四区| 亚洲精品自拍成人| 日本黄色视频三级网站网址 | 午夜免费鲁丝| 亚洲中文av在线| 免费一级毛片在线播放高清视频 | 一边摸一边抽搐一进一出视频| 在线看a的网站| 不卡av一区二区三区| 亚洲国产精品一区二区三区在线| 国产精品99久久99久久久不卡| 交换朋友夫妻互换小说| 亚洲精品成人av观看孕妇| 十八禁人妻一区二区| 亚洲精品成人av观看孕妇| 欧美亚洲 丝袜 人妻 在线| 国产视频一区二区在线看| 免费人妻精品一区二区三区视频| 国产无遮挡羞羞视频在线观看| 欧美日韩视频精品一区| 亚洲 国产 在线| 日本wwww免费看| 新久久久久国产一级毛片| aaaaa片日本免费| 在线观看人妻少妇| 大片电影免费在线观看免费| 国产免费av片在线观看野外av| 久久午夜综合久久蜜桃| 91精品三级在线观看| 日本av手机在线免费观看| 国产一区二区三区综合在线观看| 亚洲国产欧美网| 亚洲九九香蕉| 欧美日韩av久久| 国产黄色免费在线视频| 悠悠久久av| 99热国产这里只有精品6| 999精品在线视频| 国产极品粉嫩免费观看在线| 亚洲成人免费av在线播放| 日韩中文字幕视频在线看片| 精品一品国产午夜福利视频| 国产高清国产精品国产三级| 91精品三级在线观看| 久久国产亚洲av麻豆专区| 2018国产大陆天天弄谢| 欧美黑人精品巨大| 91大片在线观看| 亚洲精品美女久久久久99蜜臀| 中文字幕av电影在线播放| 久久久国产精品麻豆| 国产亚洲精品一区二区www | 免费av中文字幕在线| 亚洲第一青青草原| 国产1区2区3区精品| 99国产综合亚洲精品| 岛国在线观看网站| 一区二区三区精品91| 婷婷成人精品国产| 99热国产这里只有精品6| 国产日韩欧美亚洲二区| av网站在线播放免费| 国产真人三级小视频在线观看| 成人18禁在线播放| 天堂动漫精品| 国产成人精品久久二区二区免费| 狠狠狠狠99中文字幕| 侵犯人妻中文字幕一二三四区| 日本av免费视频播放| 伊人久久大香线蕉亚洲五| 日韩大片免费观看网站| 欧美变态另类bdsm刘玥| 一级毛片女人18水好多| 久久中文字幕一级| 一本大道久久a久久精品| 国产一区二区三区在线臀色熟女 | 在线看a的网站| 久久人人爽av亚洲精品天堂| 国产真人三级小视频在线观看| 国产欧美日韩一区二区精品| 欧美日韩av久久| 90打野战视频偷拍视频| 最新美女视频免费是黄的| 啦啦啦免费观看视频1| 精品国产一区二区久久| 亚洲精品成人av观看孕妇| 人成视频在线观看免费观看| 高清欧美精品videossex| 日韩三级视频一区二区三区| 人妻久久中文字幕网| 久久久久久人人人人人| 国产成人影院久久av| www日本在线高清视频| 99国产综合亚洲精品| 精品高清国产在线一区| 久久国产精品男人的天堂亚洲| 亚洲成国产人片在线观看| 久久人人97超碰香蕉20202| 免费观看a级毛片全部| 午夜激情av网站| 亚洲av第一区精品v没综合| 成人永久免费在线观看视频 | 成人18禁高潮啪啪吃奶动态图| 亚洲伊人色综图| 最黄视频免费看| 超碰97精品在线观看| 麻豆av在线久日| 午夜福利视频精品| 少妇粗大呻吟视频| 一区二区三区精品91| 777久久人妻少妇嫩草av网站| 18禁美女被吸乳视频| 成人永久免费在线观看视频 | 女人精品久久久久毛片| 午夜激情久久久久久久| 97在线人人人人妻| 最新在线观看一区二区三区| 999久久久国产精品视频| 国产精品偷伦视频观看了| 一级a爱视频在线免费观看| 国产精品自产拍在线观看55亚洲 | 在线观看免费高清a一片| 国产欧美日韩精品亚洲av| 青青草视频在线视频观看| 久久中文看片网| svipshipincom国产片| 亚洲视频免费观看视频| 久久影院123| 久热这里只有精品99| www.熟女人妻精品国产| 欧美黑人精品巨大| 国产成人啪精品午夜网站| 久久天堂一区二区三区四区| 色视频在线一区二区三区| 亚洲,欧美精品.| 我的亚洲天堂| 1024香蕉在线观看| av天堂久久9| 欧美午夜高清在线| 午夜成年电影在线免费观看| av欧美777| 成人影院久久| 日韩三级视频一区二区三区| 国产1区2区3区精品| 一个人免费在线观看的高清视频| 国产免费视频播放在线视频| 国产精品一区二区在线观看99| 亚洲精品久久午夜乱码| 欧美日本中文国产一区发布| 人人澡人人妻人| 岛国毛片在线播放| 国精品久久久久久国模美| 大香蕉久久网| 丝袜美足系列| 91成年电影在线观看| 天天躁日日躁夜夜躁夜夜| 91av网站免费观看| 久久精品亚洲熟妇少妇任你| 啪啪无遮挡十八禁网站| 亚洲成人免费电影在线观看| 欧美成狂野欧美在线观看| 久久久久久人人人人人| 极品人妻少妇av视频| 免费看a级黄色片| 午夜激情久久久久久久| 日韩 欧美 亚洲 中文字幕| 国产成人啪精品午夜网站| 午夜福利一区二区在线看| 91大片在线观看| 91精品三级在线观看| 高潮久久久久久久久久久不卡| 宅男免费午夜| 精品国内亚洲2022精品成人 | 99国产极品粉嫩在线观看| 亚洲成人免费av在线播放| 久久久久国产一级毛片高清牌| 在线观看免费视频网站a站| 搡老乐熟女国产| 国产精品二区激情视频| 久久99热这里只频精品6学生| 欧美日本中文国产一区发布| 少妇猛男粗大的猛烈进出视频| 露出奶头的视频| 免费在线观看视频国产中文字幕亚洲| 国产成人精品无人区| 久久久久网色| 午夜福利在线观看吧| 动漫黄色视频在线观看| 在线观看免费午夜福利视频| 老熟女久久久| 亚洲第一欧美日韩一区二区三区 | 又大又爽又粗| 亚洲国产欧美日韩在线播放| 国产成人一区二区三区免费视频网站| 国产野战对白在线观看| 久久久久国产一级毛片高清牌| 精品一品国产午夜福利视频| av一本久久久久| 宅男免费午夜| 91九色精品人成在线观看| 91国产中文字幕| 日韩视频在线欧美| 美女福利国产在线| a在线观看视频网站| 国产成人系列免费观看| 中文字幕av电影在线播放| 久久精品91无色码中文字幕| videos熟女内射| 色视频在线一区二区三区| 欧美精品一区二区大全| av线在线观看网站| 9色porny在线观看| 99国产精品一区二区蜜桃av | 露出奶头的视频| 天堂俺去俺来也www色官网| 久久久久国产一级毛片高清牌| 国产精品九九99| 一级a爱视频在线免费观看| 最新在线观看一区二区三区| 99在线人妻在线中文字幕 | 亚洲视频免费观看视频| 免费在线观看视频国产中文字幕亚洲| 亚洲人成电影免费在线| 一进一出好大好爽视频| 高清欧美精品videossex| 日韩有码中文字幕| 蜜桃在线观看..| 在线十欧美十亚洲十日本专区| 无人区码免费观看不卡 | 亚洲欧美一区二区三区久久| 久久午夜亚洲精品久久| 久久精品aⅴ一区二区三区四区| 精品久久久精品久久久| 69精品国产乱码久久久| 另类亚洲欧美激情| 欧美性长视频在线观看| 国产国语露脸激情在线看| 亚洲第一青青草原| a级毛片黄视频|