• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    SOFT IMAGE SEGMENTATION BASED ON CENTER-FREE FUZZY CLUSTERING

    2013-12-02 01:39:06MaRuning馬儒寧ZhuYan朱燕DingJundi丁軍娣

    Ma Runing(馬儒寧),Zhu Yan(朱燕),Ding Jundi(丁軍娣)

    (1.College of Science,Nanjing University of Aeronautics and Astronautics,Nanjing,210016,P.R.China;2.School of Computer Science and Technology,Nanjing University of Science and Technology,Nanjing,210094,P.R.China)

    INTRODUCTION

    Image segmentation is a technique of partitioning agiven image into multiple uniform and nonoverlapping regions[1-2].It is an important operation in several applications of image processing,since it represents the first step of low-level processing of image.

    The concept of soft image segmentation is not a new one.Each pixel has a″degree of belonging″to more than one region in soft segmentation[3].The approaches to soft segmentation contain fuzzy clustering algorithms,fuzzy rulebased approach,relative fuzzy connectedness algorithms[4],PDE model for soft segmentation[5],stochastic model based approaches[6]and so on.A great many improved techniques have been proposed in recent years,such as the approaches based on Gaussian mixture model[7-8].

    Clustering methods are one of the most used algorithms in image segmentation,because they are intuitive and,some of them,easy to be implemented.Fuzzy clustering algorithms are precise for their flexibility.Therefore they can reflect the fuzziness and uncertainty of image[9].The experimental results demonstrate the validity of segmentation based on fuzzy clustering.

    Fuzzy clustering algorithm is an unsupervised clustering algorithm based on iterative optimization of objective function.The traditional fuzzy clustering algorithms,such as the classical fuzzy C-means clustering (FCM)[10],possibilistic C-means clustering (PCM)[11-13],need calculate the cluster center. Many questions arise because there may be no″true″cluster centers[14].Each cluster is represented by all of the points in this cluster instead of its center point.So there is no need to calculate the cluster center.We just need formulate the similarity between the sample and the cluster to confirm the cluster which the samples belong to.The above idea is the center-free fuzzy clustering[14].

    A new soft image segmentation method based on center-free clustering is proposed in this paper.The method merges the small regions instead of the pixels.It is too complex to merge the pixels because of the huge number.Some proposed methods that merge the regions are initially segmented by mean-shift segmentation[15-16].Meanshift is proven in generating robust and accurate segmentation results for color images[17].So it is chosen for initial segmenting in the new method.After initial segmentation,many small available regions can be obtained.Then center-free clustering is used to merge these small regions.Quantitative analyses prove that center-free cluster is less sensitive with respect to noise.Because of the capabilities and advantages of center-free clustering algorithm,soft image segmentation based on center-free fuzzy clustering is suitable to be implemented.Compared with traditional image segmentation methods based on clustering,the experimental results show that the new method can get much better effect.

    1 CENTER-FREE FUZZY CLUSTERING AND DATA CLUSTERING RESULTS

    The idea of center-free fuzzy clustering algorithm is that every point in one cluster has its own contribution in presenting that cluster.The similarity between the sample and the cluster ensure the cluster which the sample should belong to.Now the center-free clustering algorithm is introduced.

    For the dataset X={x1,x2,…,xn}∈Rd×n,each sample has a membership of more than one cluster.So each cluster is considered to be a fuzzy set of the sample-set.Every classification result is represented by the membership matrix U,and uijis the membership of the jth sample belonging to the ith cluster.Obviously,uijshould satisfy

    (1)uij∈[0,1],i=1,2,…,c;j=1,2,…,n,where cis the number of expected clusters,nthe size of the given dataset X.

    Point-to-cluster similarity is defined: The similarityρijbetween the jth sample xjand the ith cluster Viis an average weighted similarity fromxjto any number of the ith cluster.That is

    According to the definition,the objective function of the center-free fuzzy clustering algorithm can be formulated as follows

    In Eq.(1),because the item umik·rkjindicates the similarity of xjto sample xkin the ith cluster that is weighted by the membership ofcan be considered as a sum of the linearly weighted similarity between xjto any number of the ith cluster.Therefore,it is easy to know that whenρijgets the maximum,the sample xjwill belong to the ith cluster.Minimizing the objective function is to assign each sample to the cluster which the sample is most similar to.

    Obviously,this objective function is independent on any cluster center.It only involves the fuzzy membership.So the similarity between the sample and the cluster is changed by fuzzy membership matrix.

    When we deal with the dataset,the goal is to find the fuzzy membership matrix U=(uij)c×n,so that objective function Jccfr(U)is minimized under

    The steps and the iterative formulas of this algorithm are described in detail.For the dataset X={x1,x2,…,xn},where xj=(xj1,xj2,…,xjd)T∈Rd,c∈{1,2,…,n}is the number of expected clusters,fuzzy factor m>1.Jccfr(U)under the re-will reach its minimum when Eq.(3)is true.

    This condition can be easily proved with Lagrange multiple method.

    Proof

    The Lagrange function is constructed as follows

    In Eq.(4),we take the derivative of L,partial with respect to uij.The equation equals to zero.Eq.(5)can be obtained.

    That is

    Finally we get

    The proof is finished.

    The steps of the center-free fuzzy clustering algorithm are given as follows:

    Step 1 Give the number of clusters c (1≤c≤n),the fuzzy factor m,a threshold parameter ε,the time of iteration t=1.Initialize the fuzzy membership matrix U(0).

    Step 2 Compute the point-to-cluster similarity by using Eq.(1).

    Step 3 Update the fuzzy membership matrix Uby using Eq.(3).

    Step 4 The algorithm stop if E=‖U(t+1)-U(t)‖<ε.Otherwise,t=t+1and go to Step 2.

    This paper uses four artificial different databases to test center-free fuzzy clustering algorithm.The artificial databases,as shown in Fig.1,include″Normrand2″(Fig.1(a)),″Normrand2 with noises″(Fig.1(b)),″Semicircle″(Fig.1(c)),and″Block5″(Fig.1(d)).

    Fig.1 Four synthetic data sets

    The clustering results of the center-free fuzzy clustering algorithm,F(xiàn)CM,PCM,F(xiàn)PCM,and PCA are shown in Figs.2-6.Comparing these clustering results,it is easy to find that the center-free fuzzy clustering algorithm is much better than the other four methods.If we analyze in detail,to the manifold-structured clusters,only the center-free clustering algorithm can obtain correct results.For Block5,although these five methods all have errors,the center-free clustering algorithm has the minimum error rate.

    The error rates of above experimental results are counted,as shown in following Table 1.

    Fig.2 Clustering results of center-free fuzzy clustering

    Fig.3 Clustering results of FCM

    Fig.4 Clustering results of FPCM

    Fig.5 Clustering results of PCM

    Table 1 Classification error rates of five clustering methods%

    2 PROPOSED SOFT IMAGE SEGMENTATION METHOD

    Considering the superiority of center-free fuzzy clustering algorithm in data experiment,the soft image segmentation based on center-free fuzzy clustering is proposed.The framework of this method is as follows.Firstly the mean-shift method is chosen for initial segmentation,then center-free fuzzy clustering is used to merge regions(the color vector is extracted as feature),and the final segmented image is obtained.

    Fig.6 Clustering results of PCA

    Thinking about the difficulty of merging pixels,we want to extend the merging of pixel to the merging of region.For this purpose,the initial image segmentation is necessary.This step needs to segment an original image into many small regions.There are so many methods to realize this step,such as mean-shift method, watershed method and otsu's method.Although image segmentation using these methods can obtain the over-segmented image,these low-level segmentation methods provide a good basis for region merging.In this paper,the mean-shift method is chosen for initial segmentation.It can obtain smaller number of regions and maintain the image edge better.Because the number of regions is smaller,every region contains much more pixels.Its advantage is that it can reduce the impact of noise.So the actual conditions of the area can be reflected.Some experiments can illustrate the advantage of mean-shift method.The initial segmentation results by mean-shift,watershed and otsu′s methods are shown in Fig.7.

    Mean-shift is a non-parametric probability density analysis technique.Application domains include clustering and image processing.Meanshift segmentation is a clustering algorithm that performs color and texture segmentation[18].For the principle of mean-shift vector always pointing to probability density gradient direction,it is an iterative method.When mean-shift is used in image segmentation,each pixel is treated as an initial sample and calculated by using mean-shift.As a result,they can"shift"to the local maximum value.This algorithm needs to input color and spatial information.Each pixel is expressed by ap+2-dimensional vector(If it is a color image,p=3.If it is a gray image,p=1).Suppose(xs,xr)is the vector,in which xsis the coordinate of pixel and xrthe color information.The pixels belonging to the same region will″shift″to the same local maximum value.The pixels that shift to the same local maximum value are divided into one class.This is the general process of segmentation by using mean-shift.

    Fig.7 Initial segmentation results of three different methods

    After mean-shift initial segmentation,many small regions are obtained.Features of these small regions should be extracted.Generally,different image characteristics are analyzed such as texture,color,central location,edge and size to achieve image segmentation purpose.As for the color images,each pixel has three components,R,G,B,so the color space can be a feature space.The average value of the color is chosen in these small regions as feature in this paper.When the center-free clustering algorithm is used in data,the samples are the two-dimensional points.In image segmentation,these points can be changed into three dimensions.Obviously,this three-dimensional point represents the RGB average of one region.The reason for extracting this feature is that there is no relationship among the shapes or the sizes of the small regions after initial segmentation.In addition,the color of different regions which belong to the same object will have higher similarity.So it is easy to achieve segmentation results if the color vector is clustered.At last,center-free fuzzy clustering is used to merge these small regions.So we extend the cluster of pixel to cluster of region.Theoretically speaking,the number of expected clusters can be arbitrary constant.But in most cases,the choice of the number depends on the tested picture.Object and background are distinguished according to the general situation.

    As for the similarity among the small regions,it is unscientific if the similarity measure is wholly used between the data points as Eq.(1).That is because the small regions which are not adjacency cannot be clustered.That is to say,the small regions should satisfy the property of connectedness.So the similarity measure Rbetween the small regions is modified as

    where ris the same as rin Eq.(1).

    3 SEGMENTATION RESULTS OF DIFFERENT METHODS

    To analyze the effect of image segmentation method based on center-free clustering,experiments in OBIC image database are performed.EDISON system—the mean-shift software is used to obtain initial segmentation map.Matlab is used to cluster the small regions.Now the results of final segmentation by different segmentation methods based on fuzzy clustering are shown in Fig.8,and the rows of images in Fig.8are numbered as Fig.8-1—Fig.8-11.

    F-measure (Eq.(11))is a measure of the test accuracy.It considers both the precision(Np)and the recall(Nr)of the test to compute the score:Precision is the number of correct results divided by the number of all returned results and recall is the number of correct results divided by the number of results that should be returned.To explain this definition,precision can be seen as a measure of exactness or quality,whereas recall is a measure of completeness or quantity.That is to say,high precision means that the algorithm returns more relevant results than irrelevant ones,and high recall means that the algorithm returns most of the relevant results.F-measure reaches its best value at 1and worst value at 0.

    Fig.8 Segmentation results of different methods

    The values of Np,Nrand Fof Fig.8are obtained,as shown in Table 2.

    Table 2demonstrates that the effect of soft image segmentation based on FCM is almost the same as the segmentation based on FPCM.The segmentation results based on PCM are unsa-tisfied because of the unstable property of PCM.Under the complex conditions,soft segmentation based on center-free clustering is better than the other methods.The cluster number is 3in Fig.8-7and Fig.8-9,so it cannot be measured by F-measure.The quantitative analysis illustrates the superiority of the proposed method.

    Table 2 Values of precision,recall,and F-Measure of above experiment

    4 CONCLUSION

    In this paper,the soft segmentation based on center-free clustering algorithm is propsed.Different from traditional fuzzy clustering,it defines an objective function by using the similarity between the sample and the cluster.The center-free clustering algorithm does not need a center.So it solves the problem of noise sensitivity.Experimental results show that the proposed segmentation method is better than the traditional segmentation methods.Although the method cannot get the best effect of segmentation under some conditions,it has the superiority compared with some other segmentation methods.However,centerfree clustering algorithm can easily entrap into local minimum.The weakness will influence the effect of the proposed method,so it needs to be improved in the later work.

    [1] Senthilkumaran N,Rajesh R.Image segmentation—A survey of soft computing approaches[C]∥2009International Conference on Advances in Recent Technologies in Communication and Computing(Artcom 2009).Kottayam,Kerala,India:IEEE,2009:844-846.

    [2] Naz S,Majeed H,Irshad H.Image segmentation using fuzzy clustering:A survey[C]∥2010 6th International Conference on Emerging Technologies(ICET).Islamabad:IEEE,2010:181-186.

    [3] Prewer D,Kitchen L.Soft image segmentation by weighted linked pyramid[J].Pattern Recognition Letters,2001,22(2):123-132.

    [4] Udupa J K,Saha P K,Lotufo R A.Relative fuzzy connectedness and object definition:Theory,algorithms,and applications in image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(11):1485-1500.

    [5] Posirca I,Chen Y M,Barcelos C Z.A new stochastic variational PDE model for soft Mumford-Shah segmentation[J].Journal of Mathematical Analysis and Applications,2011,384(1):104-114.

    [6] Fuhua C,Yunmei C.A stochastic variational model for multi-phase soft segmentation with bias correction[J].Advanced Modeling and Optimization,2010,12(3):339-345.

    [7] Barcelos C A Z,Chen Y M,Chen F H,et al.A soft multiphase segmentation model via Gaussian mixture[C]∥2009 16th IEEE International Conference on Image Processing.Cairo,Eqypt:IEEE,2009:3997-4000.

    [8] Tang H,Dillenseger J L,Bao X D,et al.A vectorial image soft segmentation method based on neighborhood weighted Gaussian mixture model[J].Computerized Medical Imaging and Graphics,2009,33(8):644-650.

    [9] Wang Zhen,Yang Meng.A fast clustering algorithm in image segmentation[C]∥2010 2nd International Conference on Computer Engineering and Technology(ICCET).Chengdu,China:IEEE,2010:V6-592-V6-594.

    [10]Hung Ming-chuan,Yang Don-lin.An efficient fuzzy C-means clustering algorithm[C]∥Proceedings IEEE International Conference on Data Mining.California,USA:IEEE,2001:225-232.

    [11]Krishnapuram R,Keller J M.A possibilistic approach to clustering[J].IEEE Transactions on Fuzzy Systems,1993,1(2):98-110.

    [12]Yang M S,Wu K L.Unsupervised possibilistic clustering[J].Pattern Recognition,2006,39(1):5-21.

    [13]Pal N R,Pal K,Keller J M,et al.A possibilistic fuzzy C-means clustering algorithm[J].IEEE Transactions on Fuzzy Systems,2005,13(4):517-530.

    [14]Ding Jundi,Ma Runing,Hu Xiaoqing,et al.Fuzzy C-means revisited:Towards a cluster-center-free reformulation[C]∥2010Chinese Conference on Pattern Recognition (CCPR).Chongqing,China:IEEE,2010:1-5.

    [15]Ning J F,Zhang L,Zhang D,et al.Interactive image segmentation by maximal similarity based region merging[J].Pattern Recognition,2010,43(2):445-456.

    [16]Li Junxia,Ma Runing,Ding Jundi.Saliency-seeded region merging automatic object segmentation[C]∥First Asian Conference on Pattern Recognition(ACPR).Beijing,China:IEEE,2011:691-695.

    [17]Luo Q M,Khoshgoftaar T A.Efficient image segmentation by mean-shift clustering and MDL-guided region merging[C]∥16th IEEE International Conference on Tools with Artificial Intelligence.Boca Raton,F(xiàn)L:IEEE,2004:337-343.

    [18]Tai Y W,Jia J Y,Tang C K.Soft color segmentation and its applications[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(9):1520-1537.

    国产精品久久久久久av不卡| 在线精品无人区一区二区三| 大话2 男鬼变身卡| 国产成人免费观看mmmm| 国产成人a∨麻豆精品| 亚洲五月色婷婷综合| 91成人精品电影| 五月开心婷婷网| av在线观看视频网站免费| 久久久久国产一级毛片高清牌| 大片免费播放器 马上看| 妹子高潮喷水视频| 亚洲国产精品999| 成人毛片60女人毛片免费| 亚洲一级一片aⅴ在线观看| 91精品国产国语对白视频| 精品国产超薄肉色丝袜足j| 人妻 亚洲 视频| 久久精品国产亚洲av高清一级| 亚洲国产av影院在线观看| 亚洲色图综合在线观看| 三上悠亚av全集在线观看| 尾随美女入室| 青草久久国产| 综合色丁香网| 国产欧美日韩一区二区三区在线| 久久久国产精品麻豆| av免费观看日本| 亚洲av电影在线观看一区二区三区| 亚洲国产色片| 两个人免费观看高清视频| 中文天堂在线官网| 成人影院久久| 美女视频免费永久观看网站| 亚洲成av片中文字幕在线观看 | 国产一区二区在线观看av| 亚洲 欧美一区二区三区| 免费看av在线观看网站| 成年人免费黄色播放视频| 两性夫妻黄色片| 中文字幕最新亚洲高清| 婷婷色av中文字幕| 国产欧美亚洲国产| 少妇人妻久久综合中文| 免费在线观看视频国产中文字幕亚洲 | 亚洲成av片中文字幕在线观看 | 91精品伊人久久大香线蕉| 国产精品久久久久久精品古装| 1024香蕉在线观看| 亚洲精品久久久久久婷婷小说| 97在线视频观看| 9热在线视频观看99| 久久国产精品男人的天堂亚洲| 欧美激情高清一区二区三区 | 亚洲综合精品二区| 国产淫语在线视频| 久久99精品国语久久久| 啦啦啦中文免费视频观看日本| 美女视频免费永久观看网站| 国产精品一区二区在线观看99| 少妇人妻 视频| 午夜福利视频精品| 天天躁狠狠躁夜夜躁狠狠躁| 满18在线观看网站| av一本久久久久| 免费黄色在线免费观看| 高清视频免费观看一区二区| 亚洲欧洲国产日韩| 日本欧美国产在线视频| 蜜桃在线观看..| 1024视频免费在线观看| 国产精品一区二区在线不卡| 久久久久久人人人人人| 90打野战视频偷拍视频| 免费不卡的大黄色大毛片视频在线观看| 欧美人与性动交α欧美软件| 日韩电影二区| 大香蕉久久成人网| 91精品国产国语对白视频| 久久精品国产亚洲av天美| 人人妻人人澡人人爽人人夜夜| 日韩精品有码人妻一区| videossex国产| 十八禁高潮呻吟视频| 99国产综合亚洲精品| 日韩大片免费观看网站| 最近2019中文字幕mv第一页| 亚洲精品美女久久av网站| 激情视频va一区二区三区| 免费看不卡的av| 大香蕉久久成人网| 91精品伊人久久大香线蕉| 亚洲国产精品国产精品| 亚洲精品aⅴ在线观看| 国产亚洲午夜精品一区二区久久| 热re99久久精品国产66热6| 午夜免费男女啪啪视频观看| 一区二区三区精品91| 日韩成人av中文字幕在线观看| 美女视频免费永久观看网站| 亚洲第一区二区三区不卡| 亚洲av福利一区| 欧美日韩精品网址| 91精品三级在线观看| 黄片无遮挡物在线观看| 精品卡一卡二卡四卡免费| 香蕉精品网在线| 看十八女毛片水多多多| 大片电影免费在线观看免费| 国产成人欧美| 亚洲欧美一区二区三区黑人 | 欧美+日韩+精品| 69精品国产乱码久久久| 欧美人与性动交α欧美软件| 日韩精品免费视频一区二区三区| 国产熟女午夜一区二区三区| 国产成人a∨麻豆精品| 国产日韩欧美亚洲二区| 日韩av不卡免费在线播放| 久久午夜综合久久蜜桃| 伊人久久国产一区二区| 永久网站在线| 国产精品女同一区二区软件| 久久久久久人妻| 人人妻人人澡人人爽人人夜夜| 一本—道久久a久久精品蜜桃钙片| 老司机影院成人| av视频免费观看在线观看| 日本av免费视频播放| 91精品国产国语对白视频| av在线老鸭窝| 国产精品国产三级专区第一集| av国产精品久久久久影院| 老熟女久久久| 汤姆久久久久久久影院中文字幕| av国产久精品久网站免费入址| 波多野结衣av一区二区av| av网站免费在线观看视频| 成人漫画全彩无遮挡| 18禁观看日本| 永久网站在线| av在线播放精品| 国产亚洲av片在线观看秒播厂| 在线看a的网站| 久久ye,这里只有精品| 黄色 视频免费看| 99精国产麻豆久久婷婷| 久久午夜综合久久蜜桃| 老女人水多毛片| 交换朋友夫妻互换小说| 高清不卡的av网站| 久久久精品免费免费高清| 久久精品亚洲av国产电影网| 我要看黄色一级片免费的| 精品人妻在线不人妻| 久久99精品国语久久久| 亚洲综合精品二区| 国产在线视频一区二区| 日韩大片免费观看网站| 国产一级毛片在线| 你懂的网址亚洲精品在线观看| 国产精品 欧美亚洲| 一区二区三区激情视频| 国产av码专区亚洲av| 色哟哟·www| 青春草国产在线视频| 女性生殖器流出的白浆| 搡老乐熟女国产| 精品99又大又爽又粗少妇毛片| 免费观看在线日韩| 亚洲精品久久午夜乱码| 丁香六月天网| 午夜av观看不卡| videossex国产| 80岁老熟妇乱子伦牲交| 一级毛片 在线播放| 国产成人aa在线观看| 黄色一级大片看看| 亚洲精品乱久久久久久| 中文字幕亚洲精品专区| 男女边摸边吃奶| 午夜免费鲁丝| 久久久精品免费免费高清| 久久精品国产自在天天线| 欧美 亚洲 国产 日韩一| 国产午夜精品一二区理论片| 美女国产视频在线观看| 侵犯人妻中文字幕一二三四区| 久久久久精品人妻al黑| 国产精品三级大全| 老熟女久久久| 这个男人来自地球电影免费观看 | www.自偷自拍.com| 成人毛片a级毛片在线播放| 免费观看性生交大片5| 天天躁狠狠躁夜夜躁狠狠躁| 26uuu在线亚洲综合色| 国产精品熟女久久久久浪| 人妻一区二区av| 国产成人免费观看mmmm| 成人二区视频| 1024视频免费在线观看| 亚洲婷婷狠狠爱综合网| 91精品三级在线观看| 可以免费在线观看a视频的电影网站 | 日日啪夜夜爽| 欧美精品一区二区免费开放| 我要看黄色一级片免费的| 人妻一区二区av| 亚洲成国产人片在线观看| 国产日韩欧美视频二区| 制服丝袜香蕉在线| 91精品伊人久久大香线蕉| 欧美变态另类bdsm刘玥| 中文字幕色久视频| 亚洲美女搞黄在线观看| freevideosex欧美| 亚洲四区av| 欧美日本中文国产一区发布| 亚洲av福利一区| 女的被弄到高潮叫床怎么办| 亚洲av欧美aⅴ国产| 一二三四中文在线观看免费高清| 久久亚洲国产成人精品v| 成人国产av品久久久| 国产野战对白在线观看| 99香蕉大伊视频| 中文乱码字字幕精品一区二区三区| 亚洲在久久综合| 日韩三级伦理在线观看| 久久精品国产亚洲av天美| 1024视频免费在线观看| 午夜老司机福利剧场| 亚洲,欧美,日韩| 99热网站在线观看| 纯流量卡能插随身wifi吗| 精品人妻偷拍中文字幕| 一本大道久久a久久精品| 超碰97精品在线观看| 国产高清不卡午夜福利| 一区二区三区四区激情视频| 国产精品不卡视频一区二区| 国产亚洲欧美精品永久| videos熟女内射| 欧美精品一区二区免费开放| 午夜激情av网站| 成人亚洲欧美一区二区av| 欧美精品av麻豆av| 成年女人在线观看亚洲视频| 日韩一卡2卡3卡4卡2021年| 在线观看www视频免费| 美女脱内裤让男人舔精品视频| 青青草视频在线视频观看| 涩涩av久久男人的天堂| 国产国语露脸激情在线看| 97精品久久久久久久久久精品| 大陆偷拍与自拍| 9色porny在线观看| 久热这里只有精品99| 搡女人真爽免费视频火全软件| 秋霞在线观看毛片| 久久免费观看电影| 日韩免费高清中文字幕av| 久久精品国产亚洲av涩爱| 日本猛色少妇xxxxx猛交久久| 国产在线一区二区三区精| 超色免费av| www日本在线高清视频| 美女高潮到喷水免费观看| www.熟女人妻精品国产| h视频一区二区三区| 亚洲av男天堂| 国产无遮挡羞羞视频在线观看| 国产成人精品无人区| 美女福利国产在线| 国产成人午夜福利电影在线观看| 日韩av免费高清视频| 新久久久久国产一级毛片| 观看av在线不卡| 最近的中文字幕免费完整| 熟女电影av网| 色播在线永久视频| 久久久国产精品麻豆| 青青草视频在线视频观看| 日韩一区二区视频免费看| 国产成人免费观看mmmm| 久久久久久人妻| 欧美精品一区二区免费开放| 国产精品一二三区在线看| 高清黄色对白视频在线免费看| 好男人视频免费观看在线| 捣出白浆h1v1| 成人18禁高潮啪啪吃奶动态图| 国产淫语在线视频| 大片电影免费在线观看免费| 国产免费又黄又爽又色| 国产精品亚洲av一区麻豆 | 国产一区二区激情短视频 | 大陆偷拍与自拍| 国产av国产精品国产| 1024香蕉在线观看| 久久午夜综合久久蜜桃| 少妇的逼水好多| 免费不卡的大黄色大毛片视频在线观看| 男人舔女人的私密视频| 最新中文字幕久久久久| 亚洲国产成人一精品久久久| 欧美日韩精品成人综合77777| 亚洲精品第二区| 国产成人精品久久久久久| 热re99久久国产66热| 国产在线视频一区二区| 亚洲精品久久午夜乱码| 国产一区二区三区综合在线观看| 精品少妇久久久久久888优播| 考比视频在线观看| 一边亲一边摸免费视频| 精品一区二区三卡| xxx大片免费视频| 精品亚洲成a人片在线观看| 26uuu在线亚洲综合色| 婷婷色av中文字幕| 亚洲天堂av无毛| 日韩一区二区三区影片| 亚洲精品,欧美精品| 一二三四在线观看免费中文在| 高清黄色对白视频在线免费看| 一本久久精品| 一级毛片黄色毛片免费观看视频| 我要看黄色一级片免费的| 国产av精品麻豆| 91精品伊人久久大香线蕉| 久久久久国产网址| 高清不卡的av网站| videosex国产| 国产精品久久久久久av不卡| 看十八女毛片水多多多| 好男人视频免费观看在线| 伦理电影大哥的女人| 久久精品久久精品一区二区三区| 人人妻人人爽人人添夜夜欢视频| 午夜免费鲁丝| 欧美激情极品国产一区二区三区| 少妇猛男粗大的猛烈进出视频| 亚洲国产日韩一区二区| 在线观看免费高清a一片| 亚洲国产日韩一区二区| 卡戴珊不雅视频在线播放| 中文字幕人妻丝袜一区二区 | 啦啦啦啦在线视频资源| 国产黄色免费在线视频| 韩国av在线不卡| 午夜日本视频在线| 一边摸一边做爽爽视频免费| 国产精品国产三级专区第一集| 亚洲欧美日韩另类电影网站| 午夜日本视频在线| 性色av一级| freevideosex欧美| 亚洲精品在线美女| 中文字幕人妻熟女乱码| 纯流量卡能插随身wifi吗| 99香蕉大伊视频| 18禁动态无遮挡网站| 制服诱惑二区| 18禁观看日本| 性少妇av在线| 午夜影院在线不卡| 国产激情久久老熟女| 日韩电影二区| 91久久精品国产一区二区三区| av视频免费观看在线观看| 97在线视频观看| av视频免费观看在线观看| www.熟女人妻精品国产| 午夜福利,免费看| 美女xxoo啪啪120秒动态图| 国产午夜精品一二区理论片| 久久综合国产亚洲精品| 大香蕉久久网| 色播在线永久视频| 天堂中文最新版在线下载| 欧美国产精品va在线观看不卡| 日本免费在线观看一区| 老司机影院成人| 午夜福利网站1000一区二区三区| 久久精品夜色国产| 两性夫妻黄色片| 黄色 视频免费看| 免费观看a级毛片全部| 国产成人欧美| 日韩制服骚丝袜av| 免费黄频网站在线观看国产| 午夜激情久久久久久久| 免费看不卡的av| 久久热在线av| 在线天堂中文资源库| 啦啦啦视频在线资源免费观看| 伦理电影大哥的女人| 亚洲成人手机| 亚洲欧美精品自产自拍| 黄色视频在线播放观看不卡| 亚洲一区二区三区欧美精品| 久久久精品区二区三区| 最新中文字幕久久久久| av在线老鸭窝| 欧美少妇被猛烈插入视频| 精品人妻在线不人妻| 国产人伦9x9x在线观看 | 亚洲国产欧美网| 夫妻性生交免费视频一级片| 老司机亚洲免费影院| 母亲3免费完整高清在线观看 | 中文字幕另类日韩欧美亚洲嫩草| 欧美国产精品va在线观看不卡| 边亲边吃奶的免费视频| 天堂俺去俺来也www色官网| 午夜av观看不卡| 狠狠精品人妻久久久久久综合| 精品一区二区三区四区五区乱码 | 99久久精品国产国产毛片| 午夜福利在线观看免费完整高清在| a级毛片黄视频| 欧美日韩精品成人综合77777| 久热久热在线精品观看| 国产一区二区在线观看av| videos熟女内射| 自拍欧美九色日韩亚洲蝌蚪91| 男人添女人高潮全过程视频| 伦理电影免费视频| 亚洲精品美女久久久久99蜜臀 | 黄片播放在线免费| 国产免费现黄频在线看| 一本大道久久a久久精品| 人成视频在线观看免费观看| 少妇人妻精品综合一区二区| 亚洲熟女精品中文字幕| 新久久久久国产一级毛片| 自拍欧美九色日韩亚洲蝌蚪91| 午夜福利一区二区在线看| 久久影院123| kizo精华| 久久国产亚洲av麻豆专区| 熟女电影av网| 一二三四在线观看免费中文在| 青草久久国产| 亚洲伊人色综图| 爱豆传媒免费全集在线观看| 欧美变态另类bdsm刘玥| av在线播放精品| 国产av精品麻豆| 曰老女人黄片| 久久99蜜桃精品久久| 熟妇人妻不卡中文字幕| 国产男人的电影天堂91| 久久av网站| av国产精品久久久久影院| 国产av精品麻豆| 9热在线视频观看99| 久久精品亚洲av国产电影网| 日韩制服丝袜自拍偷拍| 女人精品久久久久毛片| 亚洲三级黄色毛片| 久久热在线av| 亚洲成人av在线免费| 亚洲国产色片| 成人黄色视频免费在线看| 精品亚洲乱码少妇综合久久| 一边亲一边摸免费视频| 精品少妇黑人巨大在线播放| 一本久久精品| 国产黄色免费在线视频| 日韩制服丝袜自拍偷拍| 国产激情久久老熟女| 亚洲久久久国产精品| 9191精品国产免费久久| 交换朋友夫妻互换小说| 如何舔出高潮| 日韩三级伦理在线观看| 欧美黄色片欧美黄色片| 天天躁日日躁夜夜躁夜夜| 母亲3免费完整高清在线观看 | 丝袜人妻中文字幕| 欧美成人午夜免费资源| 国产男女内射视频| 老汉色av国产亚洲站长工具| 天天躁日日躁夜夜躁夜夜| 国产精品 国内视频| 亚洲国产欧美日韩在线播放| 中文字幕色久视频| 人妻一区二区av| 亚洲欧美一区二区三区久久| 电影成人av| 婷婷成人精品国产| 中国三级夫妇交换| 亚洲精华国产精华液的使用体验| 国产成人免费无遮挡视频| 亚洲av日韩在线播放| 另类精品久久| 一本—道久久a久久精品蜜桃钙片| 午夜免费男女啪啪视频观看| 大片免费播放器 马上看| 美女大奶头黄色视频| 国产精品蜜桃在线观看| 一本色道久久久久久精品综合| 日韩在线高清观看一区二区三区| 国产免费一区二区三区四区乱码| 亚洲精品自拍成人| 亚洲伊人色综图| 97在线视频观看| 亚洲中文av在线| 女性被躁到高潮视频| 亚洲天堂av无毛| 亚洲第一av免费看| xxxhd国产人妻xxx| 久久人妻熟女aⅴ| 妹子高潮喷水视频| 中文字幕色久视频| 亚洲在久久综合| 欧美 亚洲 国产 日韩一| 在线观看免费日韩欧美大片| 国产亚洲av片在线观看秒播厂| 国产精品一区二区在线不卡| 99国产综合亚洲精品| 少妇熟女欧美另类| 桃花免费在线播放| 亚洲精品一二三| 午夜日韩欧美国产| 这个男人来自地球电影免费观看 | 欧美激情高清一区二区三区 | 不卡视频在线观看欧美| 日本欧美国产在线视频| 日本午夜av视频| 国产一区有黄有色的免费视频| 久久人人爽av亚洲精品天堂| 香蕉丝袜av| 性色av一级| 爱豆传媒免费全集在线观看| 国产探花极品一区二区| 超碰成人久久| 99香蕉大伊视频| 久久婷婷青草| 大片免费播放器 马上看| 午夜日本视频在线| 精品亚洲成a人片在线观看| 久久久久人妻精品一区果冻| 香蕉丝袜av| 亚洲av综合色区一区| 777米奇影视久久| 亚洲成av片中文字幕在线观看 | 欧美最新免费一区二区三区| 韩国av在线不卡| 色吧在线观看| 亚洲精品美女久久久久99蜜臀 | 日韩免费高清中文字幕av| 久久99蜜桃精品久久| 一级爰片在线观看| 亚洲精品av麻豆狂野| 久久久久久久久久久久大奶| 老熟女久久久| 精品第一国产精品| 午夜福利在线观看免费完整高清在| 国产精品久久久久久久久免| 国产男女内射视频| 国产成人精品在线电影| 少妇熟女欧美另类| 各种免费的搞黄视频| 日韩,欧美,国产一区二区三区| 女性被躁到高潮视频| 又大又黄又爽视频免费| 蜜桃在线观看..| 又黄又粗又硬又大视频| 中文字幕人妻熟女乱码| 赤兔流量卡办理| 亚洲综合精品二区| 观看av在线不卡| 国产av一区二区精品久久| 亚洲国产最新在线播放| 国产黄频视频在线观看| 精品国产一区二区三区四区第35| 亚洲精品av麻豆狂野| 亚洲激情五月婷婷啪啪| 十八禁高潮呻吟视频| 在线观看美女被高潮喷水网站| 国产成人精品无人区| 黑人巨大精品欧美一区二区蜜桃| 亚洲精品国产色婷婷电影| 中文字幕人妻丝袜制服| 中文字幕制服av| 伦理电影免费视频| 久久人妻熟女aⅴ| 18禁观看日本| 久久影院123| 久久99一区二区三区| 丝瓜视频免费看黄片| 国产一区二区 视频在线| 国产福利在线免费观看视频| 黑人巨大精品欧美一区二区蜜桃| 久久热在线av| 亚洲精品aⅴ在线观看| 亚洲国产精品国产精品| 黄色怎么调成土黄色| 一级片免费观看大全| 日本91视频免费播放| 日日爽夜夜爽网站| 国产精品国产三级专区第一集| 国产又爽黄色视频| 丝袜美足系列| 中文欧美无线码| 午夜免费观看性视频| 人妻人人澡人人爽人人| av福利片在线| 欧美老熟妇乱子伦牲交| 欧美国产精品va在线观看不卡| 亚洲美女视频黄频|