• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ACTIVE VIBRATION CONTROL OF TWO-BEAM STRUCTURES

    2013-12-02 01:39:36ChenTao陳濤WangLigang王立剛FengGuofeng馮國(guó)鋒
    關(guān)鍵詞:陳濤

    Chen Tao(陳濤),Wang Ligang(王立剛),F(xiàn)eng Guofeng(馮國(guó)鋒)

    (College of Science,Harbin Engineering University,Harbin,150001,P.R.China)

    INTRODUCTION

    Two-beam structures are commonly used as elements in the construction of many practical engineering structures such as spacecraft and large space structures.All these structures have flexible extensions which are made as light and slender as possible.Such slender elements lack the necessary damping properties of being able to function effectively under dynamic loads.In order to damp out excessive vibrations and improve the performance of structures,conventional approaches of additional passive damping treatments are not often implemented on these systems because of weights or other constraints.Therefore there has been an increasing interest in active vibration control[1-4].In active vibration control,desirable performance characteristics are achieved through the application of control forces to a structure.

    Vibrations can be described in a number of ways,with the most common descriptions in terms of modes and wave motion.In modal active vibration control,the aim is to control the characteristics of the modes of vibration,i.e.,their damping factors,natural frequencies or mode shapes.Modal control aims to control the global behavior of the structure,whereas wave control aims to control the flow of vibration energy through the structure.Wave designs are based on the local properties of the structure,and are inherently much less sensitive to system properties and more robust than global models of structures[5-6].In a continuous structure,vibrations can alternatively be regarded as the superposition of waves traveling through the structure.These waves are reflected and transmitted at the structural discontinuities.Active wave control aims to control the distribution of energy in the structure by either reducing the transmission of waves from one part of the structure to another or absorbing the energy carried by the waves.Here the disturbance is detected,and a control force is used somewhere upstream or downstream to absorb the energy associated with the propagating wave.

    Physical modes of flexural wave propagation in beam or plate are developed in order to implement wave control.Gardonio and Elliott controlled a one-dimensional structure with a scattering termination by means of active control of waves[7].Brennan described an analytical and experimental investigation into the use of a tunable vibration neutralizer to control the transmission of flexural propagating waves on an infinite beam[8].Mei,et al studied hybrid wave/mode active vibration control of an Euler-Bernoulli beam[5].Carvalho and Zindeluk modeled and tackled active control of waves in a Timoshenko beam[9].Halkyard and Mace analyzed adaptive control of flexural vibration in a beam using wave amplitudes[10].EL-Khatib,et al concerned with the control of flexural waves in a beam using a tuned vibration absorber[11].Hu,et al studied vibration control of Timoshenko beam based on hybrid wave/mode method,and compared wave control with modal control[12].Chen,et al investigated wave control of a cantilevered Mindlintype plate[6].Some authors,like Mace and Mead,dedicated their efforts to the wave reflection mechanism[13-14].

    In previous investigations,wave control only has been used to control the wave motion in a beam or plate[6-12].Less frequently,the wave control of two-beam structures has been investigated.Although Svensson,et al theoretically studied the wave scattering and the active modification of wave scattering at structural junctions[15],wave control has not been investigated.In the present work,a cantilever structure is modeled as two-beam structures. Wave-control approach is applied to the structures.In the twobeam structures,the incident propagating wave is reflected and transmitted at the beam junction and control location. Proportional-plus-derivative(PD)feedback wave control is implemented.

    This paper presents a theoretical investigation using active control to attenuate the responses associated with two-beam structures.Based on the substructure synthesis method and Hamilton theory,motion equations of the structures are given in terms of the modal coordinates.And wave-control approach is used to absorb vibration energy.In particular,if the beam material is the same on both sides of the beam junction,wave reflection and transmission coefficients at control location are determined by the thickness ratio of the structures.At last,numerical examples are given,and numerical results show the influences of the thickness ratio of two-beam structures on wave control.

    1 MOTION EQUATIONS OF COUPLED BEAM STRUCTURE

    The general form of the structures considered in this paper is illustrated in Fig.1.Two uniform beams are joined rigidly along a common edge.U-sing the substructure synthesis method,a cantilever beam and a free-free beam are coupled,as shown in Fig.2.

    Fig.1 Cantilever structure of coupled beam

    Fig.2 Cantilever and free-free beams

    In the absence of damping,the motion equation of single uniform Euler-Bernoulli beam with constant cross-section may be written in the form

    where w(x1,t)and w(x2,t)are the transversal deflection of the first beam and the second beam,respectively,f(x1,t)and f(x2,t)the external disturbance of the first beam and the second beam,respectively,Edenotes the Young′s modulus,Ithe area moment of inertia,ρthe density,Athe cross-sectional area.

    The bending moment Mand shear force Q transmitted through an arbitrary section of the beam may be expressed as

    Using assumed mode method,the displacement of the beam 1and beam 2can be discretized as

    whereΦ (x1)andΨ (x2)represent the mode functions of transverse vibrations of beam 1and beam 2,respectively,q(t)and p(t)the modal coordinates of transverse vibrations of beam 1and beam 2,respectively.The quantities are given by

    The kinetic energy of the beam 1can be expressed as

    The potential energy of the beam 1can be written as

    The kinetic energy of the beam 2is given by

    the mass per unit length of the beam 2.Here,the mode shapes are assumed to be mass-normalized such that

    The potential energy of the beam 2is expressed as

    Therefore,the kinetic energy of two-beam structures can be written as

    The potential energy of the structures is expressed as

    Substructure synthesis is a method whereby a structure is regarded as an assemblage of substructures,each of which is modeled separately and made to act as a single structure by imposing certain geometric compatibility at boundaries between two adjacent substructures[16].Therefore,using the substructure synthesis method,the coupled structure is regarded as a cantilever beam and a free-free beam,and applying continuity and equilibrium of the beam junction,dependent modal coordinates [qTpT]of substructures can be transformed the independent modal coordinates of the coupled structure.

    Since the displacement and slope are continuous,furthermore,by considering the equilibrium of the beam junction,constraint equations can be written as

    From Eqs.(14-15),the following can be obtained.

    where Iis the identical matrix,matrix Gcan be determined by Eqs.(14-15),and z=[z1z2…zt]Trepresents modal coordinates of transverse vibrations of two-beam structures.

    Substituting Eq.(16)into Eqs.(12-13),we have

    According to the Clapeyron Principle,the work done by the external load can be expressed as

    Obviously,the natural frequencies of the structures can be determined by Mand K.

    2 FEEDBACK WAVE CONTROL

    Vibrations can be regarded as the superstition of the waves traveling through the structure.In this paper,collocated force/sensor negative feedback control is assumed to be applied.In the frequency domain,the wave-control force is given by

    where Hw(ω)is frequency-dependent and complex[5].Note that the amplitudes of any incident near-field waves are neglected.

    A propagating wave is incident on the discontinuity and gives rise to reflected and transmitted waves.In order to determin Hw(ω),the wave reflection and transmission coefficients at point discontinuities are needed to be calculated.

    2.1 Wave transmission and reflection at beam junction

    If a concentrated harmonic load is applied,at any point,to the beam,four free flexural waves will emanate from this point.

    Let two beams differed by wave-number and bending stiffness be joined at x3=0.A positivepropagating wave is incident on the beam junction and gives rise to reflected and transmitted propagating and near-field waves,as shown in Fig.3.

    Fig.3 Reflection and transmission of waves at beam junction

    The displacement of the beam w- (x3)and w+(x3)in the regions x3≤0and x3≥0are given by

    where the time dependence exp(iωt)has been suppressed,a+denotes the wave amplitude of incident propagating waves,a-the wave amplitude of reflected propagating waves,a-Nthe wave am-plitude of reflected near-field waves,b+the wave amplitude of transmitted propagating waves,and b+Nthe wave amplitude of transmitted near-field waves.The subscripts 1and 2refer to the incident and transmitted sides of the junction,respectively.

    Since the displacement,slope,bending moment and shear force are all continuous at the junction[13],we have

    where sign″-″and″+″denote the corresponding mechanical quantity in the regions x3≤0and x3≥0,respectively.

    Substituting Eq.(22)into Eq.(23),the reflection and transmission coefficients can be expressed as

    whereα=k2/k1andβ=(EIK2)2/(EIK)1represent the ratios of wave-number and bending wave impedance,t1and t2the transmission coefficients,and r1and r2the reflection coefficients.

    If the material is the same on both sides of the beam junction,we have

    whereσ=h2/h1denotes the thickness ratio of two beams.

    For an incident propagating wave,the power carried in a propagating wave is proportional to the square of wave amplitude[6,13].The reflection efficiency,the ratio of reflected to incident power is given by Er(σ)=|r1|2,and the power transmitted is given by Et=1-Er(σ)=|t1|2σ3/2.Therefore the power reflected and transmitted per unit incident power is Ep(σ)=|r1|2+|t1|2σ3/2.Transmitted energy depends onσ.

    2.2 Wave transmission and reflection at control location

    The power is mostly transmitted at the beam junction whenσis close to 1.The power is mostly reflected at the beam junction whenσapproaches 0.Therefore wave control is used somewhere downstream to absorb energy associated with the transmitted propagating wave of the beam junction whenσis close to 1as shown in Fig.4(a).Whenσapproaches 0,wave control is used somewhere upstream to absorb energy associated with the transmitted propagating wave of beam junction as shown in Fig.4(b).Transmitted (or reflected)propagating wave of the beam junction is incident on the control location and gives rise to reflected and transmitted propagating and nearfield waves.

    Fig.4 Schematic diagram of feedback control

    At first,consider the first case whenσis close to 1as shown in Fig.4(a).Wave control is applied at position x4=0.The displacement of the beamw-(x4)and w+(x4)in the regions x4≤0and x4≥0are given by

    where the time dependence exp(iωt)has been suppressed.

    For the same reason described in Section 2.1,the reflection and transmission coefficients at the control location can be expressed as

    where t3and t4are the transmission coefficients,and r3and r4the reflection coefficients.

    In this paper,the controller is designed to absorb vibrational energy by adding optimal damping to the structure.SupposingH(ω)=(1+i)ωg,the power carried in a propagating wave is proportional to the square of the wave amplitude.The performance index of optimal control is to make the dissipated energy at control location the maximum.In other words,the optimal control gain gcan be found by assuming that a wave is incident on onside of the control location and then by designing the control gain so as to maximize the absorb incoming energy,namely to minimize|r3|2|t1|2σ3/2+|t3|2|t1|2σ3/2.

    Therefore the power reflected and transmitted at control location is given by

    Then the frequency response of the optimal controller is given by

    where g=2/ω.

    Next,consider the second case when the power is mostly reflected at the beam junction (σ approaches 0)as shown in Fig.4(b).

    For the same reason as stated above,the reflection and transmission coefficients at the control location can be expressed as

    where t3and t4are the transmission coefficients,r3and r4the reflection coefficients.

    2.3 Controller design

    The optimal controller is noncausal[5-6].Hence,a real-time implementation must be some approximations to this ideal.PD feedback control is implemented,with the controller tuned so that it is equal to the optimal controller at some specific frequenciesωd.The controller then has the frequency response

    where c1=ωdgand c2=g.

    If the force is applied at a point xi=xw(i=1,2),then the wave-control force is fw=(w,xi,t)δ(xitxw).For tuned PD control,substituting Eq.(31)to Eq.(20),using Laplace transform,this becomes

    For collocated wave control,and with the control force approximated by Eq.(32),the equations of motion can thus be written in matrix form as

    3 NUMERICAL EXAMPLES

    In this section,some numerical results are presented.In what follows,several dimensionless parameters are:L=1,the first natural frequency of the first beamω1=1,the thickness ratio of two beamsσ=0.90,0.21and 0.05,and the corresponding non-dimensional natural frequencies ωi(i=1,2,…,9)are given in Tables 1-3.

    Table 1 First nine nondimensional natural frequencies of system (σ=0.90)

    Table 2 First nine nondimensional natural frequencies of system (σ=0.21)

    Table 3 First nine nondimensional natural frequencies of system (σ=0.05)

    A disturbance force is applied at x1=0.10L.Simulation results are shown in Figs.5-14.In Figs.6,14,the wave-control force is applied at x2=Lwhenσ=0.90.In Fig.8,the wave-control force is applied at x1=0.15L whenσ=0.05.In Fig.10,the wave-control force is applied at x2=L whenσ=0.21 (reflected energy at the beam junction is almost equal to transmitted energy of the beam junction).In Fig.11,the wave-control force is applied at x1=0.15L.In Fig.12,two wave controllers are applied at x1=0.15L and x2=L.Numerical results show the response at x2=0.75L per unit disturbance force. In Figs.5-12,the value of ordinate is prescribed as common logarithm of the actual deflection.

    Fig.5 Frequency response before wave control(σ=0.90)

    Fig.6 Frequency response after wave control(σ=0.90,x2=L)

    The positions of these points are chosen so as to avoid the nodes of the modes.The controlled and uncontrolled frequency responses are compared.In the approximation that tuned PD control,the controller is tuned to be optimal atωd=10.

    Figs.5,6show that the frequency responses before and after wave control whenσ=0.90.The power is mostly transmitted at the beam junction whenσis close to 1,so wave controller is applied at the second beam for good performance.Without control,sharp resonances can be observed.While after wave control,controllers add damping to the structure.Energy of structure is absorbed.Sharp resonances are weakened.

    Figs.7,8show that the frequency responses before and after wave control whenσ=0.05.The power is mostly reflected at the beam junction whenσapproaches 0.Therefore,wave control is applied at the first beam.In Figs.6,8,relatively poor performance can be seen.The degradation of the performance is due to the fact that the point of application of the wave controller lies to the nodes of the modes.Such effects depend on the specific form and location of the wave controller,the conclusion is same as Refs.[5,12].They can be minimized by the suitable application of two or more wave controllers.

    Fig.7 Frequency response before wave control(σ=0.05)

    Fig.8 Frequency response after wave control(σ=0.05,x1=0.15L)

    Fig.9 Frequency response before wave control(σ=0.21)

    Fig.10 Frequency response after wave control(σ=0.21,x2=L)

    Fig.11 Frequency response after wave control(σ=0.21,x1=0.15L)

    Figs.9-12show that the frequency respon-ses before and after wave control whenσ=0.21.Fig.10shows wave controller absorbs vibrational energy,especially at lower frequencies.Fig.11 shows wave controller absorbs vibrational energy,especially at higher frequencies.In Figs.10,11,relatively poor performance can be seen when wave controller is only applied at the downstream of the beam junction or upstream of the beam junction,whereas Fig.12gives better performance.In fact,reflected energy at the beam junc-tion is almost equal to transmitted energy at the beam junction whenσapproaches 0.21,so wave controllers are ought to be applied at not only the first beam but also the second beam for better performance.One controller absorbs reflected energy,and the other absorbs transmitted energy.Figs.13,14show that the time responses before and after wave control whenσ=0.90.

    Fig.12 Frequency response after wave control(σ=0.21,x1=0.15L,x2=L)

    Fig.13 Time response before wave control(σ=0.90)

    Fig.14 Time response after wave control(σ=0.90)

    4 CONCLUSION

    This paper presents the theoretical analysis and numerical results of wave control of twobeam structures.Wave control is used to control the wave motion of the structures.The incident propagating wave is reflected and transmitted at beam junction,and wave reflection and transmission coefficients at beam junction are also be decided by the thickness ratio of two coupled beams.The power is mostly transmitted at the beam junction when the thickness ratioσis close to 1.Whenσis close to 0,the power is mostly reflected at the beam junction.Therefore wave control is used somewhere downstream to absorb energy associated with the transmitted propagating wave of the beam junction whenσis close to 1.Whenσis close to 0,wave control is used somewhere upstream to absorb energy associated with the transmitted propagating wave of the beam junction.In other circumstances,there is not only reflected energy at the beam junction but also transmitted energy.Now,better performance can be achieved by applying wave controllers to two sides of beam junction.One controller absorbs reflected energy,and the other absorbs transmitted energy.

    Control gain is designed in frequency domain.PD control is adopted.In the time domain,this corresponds to a tuned spring-damper combination.The results show that the wave control is efficient for two coupled beams.Similarly,the wave controller is designed for two coupled plates lying in the x-y plane and its efficiency is proved.

    [1] Ma Xingrui,Gou Xingyu,Li Tieshou,et al.Development generalization of spacecraft dynamics[J].Journal of Astronautics,2000,21(3):1-5.(in Chinese)

    [2] Wang Liang,Chen Huaihai,He xudong,et al.Active vibration control of axially moving cantilever beam by magnetic force[J].Journal of Nanjing University of Aeronautics & Astronautics,2010,42(5):568-573.(in Chinese)

    [3] Miller D,Hall S,F(xiàn)lotow A von.Optimal control of power flow at structural junctions[J].Journal of Sound and Vibration,1990,140(3):475-497.

    [4] Jha R,Bailey A,Ahmadi G.Combined active and passive control of space structure vibrations during launch[C]//44th AIAA/ASME/AHS Structures,Structural Dynamics,and Materials Conference.Norfolk,Virginia,USA:AIAA,2003.

    [5] Mei C,Mace B R,Jones R W.Hybrid wave/mode active vibration control[J].Journal of Sound and Vibration,2001,247(5):765-784.

    [6] Chen T,Hu C,Huang W H.Vibration control of cantilevered Mindlin-type plates[J].Journal of Sound and Vibration,2009,320(1/2):221-234.

    [7] Gardonio P,Elliott S J.Active control of waves on a one-dimensional structure with a scattering termination[J].Journal of Sound and Vibration,1996,192(3):701-730.

    [8] Brennan M J.Control of flexural waves on a beam using a tunable vibration neutralizer[J].Journal of Sound and Vibration,1998,222(3):389-407.

    [9] Carvalho M O M,Zindeluk M.Active control of waves in a Timoshenko beam[J].International Journal of Solids and Structures,2001,38(10-13):1749-1764.

    [10]Halkyard C R,Mace B R.Feedforward adaptive control of flexural vibration in a beam using wave amplitudes[J].Journal of Sound and Vibration,2002,254(1):117-141.

    [11]EL-Khatib H M,Mace B R,Brennan M J.Suppression of bending waves in a beam using a tuned vibration absorber[J].Journal of Sound and Vibration,2005,288(4/5):1157-1175.

    [12]Hu Chao,Chen Tao,Huang Wenhu.Active vibration control of Timoshenko beam based on hybrid wave/mode method[J].Acta Aeronautica et Astronautica Sinica,2007,28(2):301-308.(in Chinese)

    [13]Mace B R.Wave reflection and transmission in beams[J].Journal of Sound and Vibration,1984,97(2):237-246.

    [14]Mead D J.Waves and modes in finite beams:Application of the phase-closure principle[J].Journal of Sound and Vibration,1994,71(5):695-702.

    [15]Svensson J L,Andersson P B U,Kropp W.On the design of structure junctions for the purpose of hybrid passive-active vibration control[J].Journal of Sound and Vibration,2010,329(9):1274-1288.

    [16]Meirovitch L.Dynamics and control of structures[M].New York:Wiley,1990.

    猜你喜歡
    陳濤
    An extended social force model on unidirectional flow considering psychological and behavioral impacts of hazard source
    神奇符號(hào) ——姓與名
    Simulation of crowd dynamics in pedestrian evacuation concerning panic contagion: A cellular automaton approach
    助人為樂的護(hù)士
    封二 春姑姑走啦
    猴爸爸的百寶箱
    陳濤吉祥物設(shè)計(jì)作品選登
    Interaction induced non-reciprocal three-level quantum transport?
    Adaptive Human Tracking Across Non-overlapping Cameras in Depression Angles
    Experimental validation method of elastic thin rod model for simulating the motional cable harness
    2021天堂中文幕一二区在线观| 舔av片在线| 一区二区三区四区激情视频| 18禁裸乳无遮挡免费网站照片| 日韩亚洲欧美综合| videos熟女内射| 伊人久久精品亚洲午夜| 村上凉子中文字幕在线| 国国产精品蜜臀av免费| 亚洲四区av| 中文在线观看免费www的网站| 大香蕉久久网| 亚洲精品成人久久久久久| av在线天堂中文字幕| 亚洲人与动物交配视频| 人人妻人人看人人澡| 一区二区三区高清视频在线| 亚洲精品国产成人久久av| 国产淫片久久久久久久久| 久久久a久久爽久久v久久| 在线a可以看的网站| 免费播放大片免费观看视频在线观看 | 国产黄片视频在线免费观看| 女的被弄到高潮叫床怎么办| 搞女人的毛片| 26uuu在线亚洲综合色| 天美传媒精品一区二区| 99热这里只有精品一区| 美女脱内裤让男人舔精品视频| 国产极品天堂在线| 我要看日韩黄色一级片| 午夜激情福利司机影院| 伊人久久精品亚洲午夜| 99久久精品热视频| 2021少妇久久久久久久久久久| 精品人妻一区二区三区麻豆| 午夜福利在线观看免费完整高清在| 深夜a级毛片| 18禁在线播放成人免费| 蜜桃亚洲精品一区二区三区| 网址你懂的国产日韩在线| 26uuu在线亚洲综合色| 成人午夜高清在线视频| 亚洲精品乱码久久久v下载方式| 大香蕉久久网| 在线免费观看的www视频| 成人无遮挡网站| 尤物成人国产欧美一区二区三区| 一级黄色大片毛片| 长腿黑丝高跟| 狂野欧美白嫩少妇大欣赏| 联通29元200g的流量卡| 2022亚洲国产成人精品| 嫩草影院新地址| 久久久国产成人精品二区| 91狼人影院| av在线观看视频网站免费| 91久久精品国产一区二区三区| 国产黄色视频一区二区在线观看 | 综合色丁香网| 九九爱精品视频在线观看| 国产精品.久久久| 在线观看一区二区三区| 亚洲综合精品二区| 国产欧美日韩精品一区二区| 久久99精品国语久久久| av视频在线观看入口| 免费看日本二区| 日韩国内少妇激情av| www日本黄色视频网| 亚洲国产精品成人综合色| 国产精品久久电影中文字幕| 黄色日韩在线| 国产男人的电影天堂91| 国产精品一二三区在线看| 中文资源天堂在线| 久久精品久久久久久噜噜老黄 | 国产精品一区二区性色av| av又黄又爽大尺度在线免费看 | 久久久久国产网址| 神马国产精品三级电影在线观看| 国产一区二区三区av在线| 日韩欧美精品v在线| 少妇人妻一区二区三区视频| 日本五十路高清| 久久久久精品久久久久真实原创| 五月玫瑰六月丁香| 国产精品爽爽va在线观看网站| 99久久无色码亚洲精品果冻| 久久久久网色| 又爽又黄无遮挡网站| 亚洲av电影不卡..在线观看| 欧美一区二区亚洲| 欧美一区二区亚洲| 日本一二三区视频观看| 国产视频内射| 级片在线观看| 欧美高清成人免费视频www| 中国美白少妇内射xxxbb| 久久久久久久久久成人| 日本-黄色视频高清免费观看| 日本五十路高清| 亚洲伊人久久精品综合 | 久久精品夜色国产| 国产毛片a区久久久久| 成人国产麻豆网| 欧美成人一区二区免费高清观看| 亚洲av成人精品一区久久| 纵有疾风起免费观看全集完整版 | 丝袜美腿在线中文| 亚洲在线观看片| 男的添女的下面高潮视频| 噜噜噜噜噜久久久久久91| 麻豆av噜噜一区二区三区| 天天一区二区日本电影三级| 久久久久久久久久黄片| 国产精品国产三级国产专区5o | 好男人视频免费观看在线| 超碰97精品在线观看| 国产在视频线在精品| 日本欧美国产在线视频| av线在线观看网站| 中国美白少妇内射xxxbb| 亚洲中文字幕一区二区三区有码在线看| 免费播放大片免费观看视频在线观看 | 久久精品夜夜夜夜夜久久蜜豆| 欧美性猛交黑人性爽| 日本欧美国产在线视频| 一卡2卡三卡四卡精品乱码亚洲| 日本一本二区三区精品| 欧美+日韩+精品| 熟女电影av网| 国产精品无大码| 亚州av有码| 99久久无色码亚洲精品果冻| 亚洲av中文字字幕乱码综合| 搡女人真爽免费视频火全软件| 国语对白做爰xxxⅹ性视频网站| 久久精品熟女亚洲av麻豆精品 | 国产精品av视频在线免费观看| 国内精品宾馆在线| 国内精品一区二区在线观看| 亚洲av免费在线观看| 国产黄色视频一区二区在线观看 | 看片在线看免费视频| 99久久成人亚洲精品观看| 看片在线看免费视频| www.av在线官网国产| 欧美激情久久久久久爽电影| 国产一级毛片七仙女欲春2| av免费在线看不卡| 岛国在线免费视频观看| 在线免费观看不下载黄p国产| 国产探花极品一区二区| 日韩三级伦理在线观看| 久久精品国产99精品国产亚洲性色| h日本视频在线播放| 国产精品人妻久久久影院| 简卡轻食公司| 国产白丝娇喘喷水9色精品| 亚洲精品色激情综合| 非洲黑人性xxxx精品又粗又长| 人妻制服诱惑在线中文字幕| 色综合站精品国产| 亚洲欧美精品综合久久99| 插逼视频在线观看| 国产视频首页在线观看| 国产一区有黄有色的免费视频 | 亚洲中文字幕日韩| 欧美性感艳星| 午夜精品一区二区三区免费看| av在线观看视频网站免费| 六月丁香七月| 高清视频免费观看一区二区 | 亚洲欧美清纯卡通| 国产成人freesex在线| 在线免费观看的www视频| 国产精品国产三级国产专区5o | 国产成人aa在线观看| 看免费成人av毛片| 欧美性猛交黑人性爽| 亚洲美女搞黄在线观看| 日日啪夜夜撸| 精品欧美国产一区二区三| 久久久久免费精品人妻一区二区| 免费播放大片免费观看视频在线观看 | 真实男女啪啪啪动态图| 自拍偷自拍亚洲精品老妇| 美女内射精品一级片tv| 小蜜桃在线观看免费完整版高清| 99久久中文字幕三级久久日本| 午夜激情福利司机影院| 天堂中文最新版在线下载 | 国产午夜精品久久久久久一区二区三区| 好男人视频免费观看在线| 少妇的逼水好多| 久久这里只有精品中国| 啦啦啦啦在线视频资源| 精品人妻偷拍中文字幕| 最近手机中文字幕大全| 国产成人freesex在线| 亚洲av福利一区| 女人被狂操c到高潮| 九九在线视频观看精品| 久久综合国产亚洲精品| 国产色婷婷99| 久久久久久久久大av| 久久人人爽人人片av| 三级男女做爰猛烈吃奶摸视频| 久久久久久国产a免费观看| 久久久久久久国产电影| 神马国产精品三级电影在线观看| 中文乱码字字幕精品一区二区三区 | 伊人久久精品亚洲午夜| 日韩精品有码人妻一区| 欧美人与善性xxx| 夫妻性生交免费视频一级片| 边亲边吃奶的免费视频| 国产一区二区在线av高清观看| 亚洲国产最新在线播放| 色尼玛亚洲综合影院| 国产精品一区二区在线观看99 | 中文字幕亚洲精品专区| 日韩在线高清观看一区二区三区| 三级国产精品欧美在线观看| 亚洲欧洲国产日韩| 中国国产av一级| 一级av片app| 亚洲av日韩在线播放| av在线播放精品| 看片在线看免费视频| 日韩制服骚丝袜av| 欧美成人精品欧美一级黄| 三级国产精品欧美在线观看| 亚洲va在线va天堂va国产| 亚洲国产日韩欧美精品在线观看| 天堂√8在线中文| 精品99又大又爽又粗少妇毛片| 日本免费一区二区三区高清不卡| 国产亚洲av嫩草精品影院| 免费看光身美女| 国产av不卡久久| 久热久热在线精品观看| 日韩av在线免费看完整版不卡| 亚洲精品影视一区二区三区av| 天堂av国产一区二区熟女人妻| 国产成人91sexporn| 麻豆av噜噜一区二区三区| 三级国产精品欧美在线观看| 亚洲精品国产av成人精品| 国产成人freesex在线| 国产精品三级大全| 国产探花在线观看一区二区| 久久久久久久久久黄片| 级片在线观看| 久久婷婷人人爽人人干人人爱| 非洲黑人性xxxx精品又粗又长| 你懂的网址亚洲精品在线观看 | av.在线天堂| 日本爱情动作片www.在线观看| 久久精品熟女亚洲av麻豆精品 | 亚洲精品国产成人久久av| 丝袜喷水一区| av免费在线看不卡| 精品99又大又爽又粗少妇毛片| 国产精品国产三级专区第一集| 禁无遮挡网站| 精品不卡国产一区二区三区| 免费观看性生交大片5| 欧美变态另类bdsm刘玥| 少妇的逼好多水| 中文字幕人妻熟人妻熟丝袜美| 五月伊人婷婷丁香| 久热久热在线精品观看| 日韩欧美精品v在线| 国产美女午夜福利| 成人毛片60女人毛片免费| 欧美成人a在线观看| 亚洲,欧美,日韩| 久久精品综合一区二区三区| 欧美97在线视频| 搡女人真爽免费视频火全软件| 免费看av在线观看网站| 91久久精品电影网| 欧美色视频一区免费| 色网站视频免费| 两个人视频免费观看高清| 欧美变态另类bdsm刘玥| 97在线视频观看| 成人美女网站在线观看视频| 色吧在线观看| 亚洲天堂国产精品一区在线| 日本wwww免费看| 国产v大片淫在线免费观看| 日韩av不卡免费在线播放| 亚洲av免费高清在线观看| 国产精品1区2区在线观看.| 国产一区二区在线av高清观看| 老女人水多毛片| 亚洲av成人精品一二三区| 日本黄色片子视频| 中文欧美无线码| 最近的中文字幕免费完整| 免费观看在线日韩| 99久久精品国产国产毛片| 国产白丝娇喘喷水9色精品| 校园人妻丝袜中文字幕| 日韩国内少妇激情av| 久久久精品欧美日韩精品| 秋霞伦理黄片| 日本猛色少妇xxxxx猛交久久| 丝袜喷水一区| 亚洲av免费在线观看| 亚洲精品一区蜜桃| 在线观看av片永久免费下载| 国产av不卡久久| 看非洲黑人一级黄片| 日日干狠狠操夜夜爽| 日韩一区二区三区影片| 黄色一级大片看看| 亚洲伊人久久精品综合 | 最近2019中文字幕mv第一页| 国产成人午夜福利电影在线观看| 成人三级黄色视频| 能在线免费看毛片的网站| 国产在线男女| 搡女人真爽免费视频火全软件| 中文乱码字字幕精品一区二区三区 | 午夜视频国产福利| 又粗又硬又长又爽又黄的视频| 最近最新中文字幕大全电影3| 菩萨蛮人人尽说江南好唐韦庄 | 老司机影院毛片| 久久久精品欧美日韩精品| 免费看美女性在线毛片视频| 精品人妻熟女av久视频| 伦理电影大哥的女人| 久久人人爽人人爽人人片va| 成年免费大片在线观看| 美女脱内裤让男人舔精品视频| 一级二级三级毛片免费看| 欧美一级a爱片免费观看看| www日本黄色视频网| 日韩 亚洲 欧美在线| 人妻制服诱惑在线中文字幕| 中文精品一卡2卡3卡4更新| 国产一级毛片在线| 亚洲中文字幕一区二区三区有码在线看| 一级毛片久久久久久久久女| 国产又黄又爽又无遮挡在线| 国产午夜精品久久久久久一区二区三区| 最近手机中文字幕大全| 欧美人与善性xxx| 国产男人的电影天堂91| 18禁动态无遮挡网站| 男的添女的下面高潮视频| 91精品伊人久久大香线蕉| 麻豆一二三区av精品| 日韩制服骚丝袜av| 国产精品国产三级国产专区5o | 一个人免费在线观看电影| 国产一区有黄有色的免费视频 | 精品国产一区二区三区久久久樱花 | 最近中文字幕2019免费版| 国产精品人妻久久久影院| 干丝袜人妻中文字幕| 亚洲中文字幕日韩| 久久久久久大精品| 超碰97精品在线观看| 国产一级毛片七仙女欲春2| 欧美性感艳星| 中文字幕av在线有码专区| 成人特级av手机在线观看| 赤兔流量卡办理| 综合色av麻豆| 内射极品少妇av片p| 91在线精品国自产拍蜜月| 中文资源天堂在线| 两个人视频免费观看高清| 亚洲国产精品合色在线| 国模一区二区三区四区视频| 人妻制服诱惑在线中文字幕| 国产视频首页在线观看| 日本一二三区视频观看| 非洲黑人性xxxx精品又粗又长| 国产探花在线观看一区二区| 日韩欧美精品v在线| 水蜜桃什么品种好| 夫妻性生交免费视频一级片| 一级毛片久久久久久久久女| 久久久精品大字幕| 91av网一区二区| 人妻系列 视频| 中文天堂在线官网| 天天躁日日操中文字幕| 欧美人与善性xxx| 91aial.com中文字幕在线观看| 2021少妇久久久久久久久久久| 国产精品不卡视频一区二区| 99久久精品热视频| 国产精品一二三区在线看| 亚洲中文字幕一区二区三区有码在线看| 我要搜黄色片| 久久这里有精品视频免费| 久久亚洲精品不卡| 国产色爽女视频免费观看| 国产成人精品婷婷| 久久久欧美国产精品| 一级二级三级毛片免费看| 不卡视频在线观看欧美| 亚洲婷婷狠狠爱综合网| 中文亚洲av片在线观看爽| 好男人在线观看高清免费视频| 亚洲精品aⅴ在线观看| 热99re8久久精品国产| 亚洲精品,欧美精品| 嘟嘟电影网在线观看| 日韩中字成人| 尤物成人国产欧美一区二区三区| 天堂√8在线中文| 亚洲人成网站在线观看播放| 最近中文字幕高清免费大全6| 亚洲色图av天堂| 天美传媒精品一区二区| 精品久久久久久久久久久久久| 久久久久久国产a免费观看| 国产美女午夜福利| 人体艺术视频欧美日本| 日本爱情动作片www.在线观看| 人人妻人人看人人澡| 国产av不卡久久| 少妇的逼水好多| 我要搜黄色片| 三级男女做爰猛烈吃奶摸视频| 2021少妇久久久久久久久久久| 男的添女的下面高潮视频| 青春草国产在线视频| av免费观看日本| 尤物成人国产欧美一区二区三区| 一边亲一边摸免费视频| 国产伦一二天堂av在线观看| 少妇猛男粗大的猛烈进出视频 | 日韩视频在线欧美| 亚洲av电影在线观看一区二区三区 | 一个人看的www免费观看视频| 午夜免费激情av| 国产精品综合久久久久久久免费| 欧美丝袜亚洲另类| 国内揄拍国产精品人妻在线| 十八禁国产超污无遮挡网站| 九九热线精品视视频播放| 国产午夜精品论理片| 国产高清有码在线观看视频| 最近中文字幕2019免费版| 麻豆成人午夜福利视频| 黄片无遮挡物在线观看| 久久精品国产鲁丝片午夜精品| 日韩三级伦理在线观看| 欧美日本视频| 天天躁日日操中文字幕| 国产高潮美女av| 韩国高清视频一区二区三区| 亚洲欧洲国产日韩| 免费人成在线观看视频色| 99九九线精品视频在线观看视频| 人人妻人人澡人人爽人人夜夜 | 国产单亲对白刺激| 久久久成人免费电影| 国产探花在线观看一区二区| 视频中文字幕在线观看| 夫妻性生交免费视频一级片| 熟女人妻精品中文字幕| 黄片wwwwww| 国产大屁股一区二区在线视频| 男女边吃奶边做爰视频| 亚洲欧美日韩东京热| 最后的刺客免费高清国语| 两个人的视频大全免费| 国产视频内射| 99热网站在线观看| 赤兔流量卡办理| 女人十人毛片免费观看3o分钟| 成年女人看的毛片在线观看| 三级国产精品片| 亚洲国产精品sss在线观看| 亚洲一区高清亚洲精品| 久久久欧美国产精品| 精品一区二区三区人妻视频| 69人妻影院| kizo精华| 综合色av麻豆| 国产精品人妻久久久久久| 变态另类丝袜制服| 免费人成在线观看视频色| 国产成人福利小说| 最近最新中文字幕大全电影3| 亚洲乱码一区二区免费版| 精品无人区乱码1区二区| 久久精品人妻少妇| 1024手机看黄色片| 成年女人看的毛片在线观看| 男人的好看免费观看在线视频| 插逼视频在线观看| 性色avwww在线观看| 精品国产露脸久久av麻豆 | 久久99热这里只有精品18| 国产淫语在线视频| 一个人免费在线观看电影| 日本黄色视频三级网站网址| 国产69精品久久久久777片| 99热网站在线观看| kizo精华| 亚洲va在线va天堂va国产| 亚洲精品久久久久久婷婷小说 | 亚洲欧美精品专区久久| videos熟女内射| 激情 狠狠 欧美| 一级黄色大片毛片| 人妻系列 视频| 日日撸夜夜添| 91狼人影院| 亚洲欧美清纯卡通| 亚洲成人精品中文字幕电影| 国产高清三级在线| 少妇裸体淫交视频免费看高清| av.在线天堂| 女人被狂操c到高潮| 亚洲精品色激情综合| 欧美人与善性xxx| 2021少妇久久久久久久久久久| 中文欧美无线码| 99热这里只有是精品50| 日韩成人av中文字幕在线观看| 亚洲第一区二区三区不卡| 女人被狂操c到高潮| 亚洲自偷自拍三级| 少妇熟女aⅴ在线视频| 亚洲综合精品二区| 精品不卡国产一区二区三区| 国内精品宾馆在线| 成年免费大片在线观看| 亚洲精品亚洲一区二区| 非洲黑人性xxxx精品又粗又长| 日韩av在线免费看完整版不卡| 国产黄色视频一区二区在线观看 | 亚洲人与动物交配视频| 久久婷婷人人爽人人干人人爱| 国产又色又爽无遮挡免| videossex国产| 日产精品乱码卡一卡2卡三| 国产 一区 欧美 日韩| 青青草视频在线视频观看| 亚洲中文字幕一区二区三区有码在线看| 91精品国产九色| 国产成人福利小说| 夫妻性生交免费视频一级片| 青春草国产在线视频| 亚州av有码| 黄色配什么色好看| 久久精品夜色国产| 色吧在线观看| 国产成人freesex在线| 国产真实乱freesex| 亚洲美女视频黄频| 欧美高清成人免费视频www| 午夜免费激情av| 97人妻精品一区二区三区麻豆| 亚洲三级黄色毛片| 色播亚洲综合网| 男人舔奶头视频| av在线老鸭窝| 99国产精品一区二区蜜桃av| 午夜福利高清视频| 午夜久久久久精精品| 一个人免费在线观看电影| 日韩欧美 国产精品| 午夜福利成人在线免费观看| 一级毛片电影观看 | 岛国在线免费视频观看| 日韩av不卡免费在线播放| 国产在视频线在精品| 校园人妻丝袜中文字幕| 午夜福利高清视频| 亚洲天堂国产精品一区在线| 精品免费久久久久久久清纯| 中文字幕av成人在线电影| 国产大屁股一区二区在线视频| 久久99热这里只频精品6学生 | 男人的好看免费观看在线视频| 精华霜和精华液先用哪个| 午夜视频国产福利| 午夜福利视频1000在线观看| 亚洲成人中文字幕在线播放| 亚洲人成网站在线观看播放| 久久国内精品自在自线图片| 色噜噜av男人的天堂激情| 在线播放无遮挡| 国产精品嫩草影院av在线观看| 成人国产麻豆网| 亚洲性久久影院| 人妻少妇偷人精品九色| av免费在线看不卡| www.av在线官网国产| 人妻系列 视频| 国产国拍精品亚洲av在线观看| 波野结衣二区三区在线| 麻豆av噜噜一区二区三区| 日本猛色少妇xxxxx猛交久久| 九九在线视频观看精品| 特大巨黑吊av在线直播| 狂野欧美激情性xxxx在线观看| 日本黄大片高清| 亚洲不卡免费看| 日韩成人av中文字幕在线观看| 亚洲精品自拍成人|