• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    GDF9/BMP15對(duì)卵泡發(fā)育的調(diào)控

    2013-11-30 01:22:06應(yīng)詩(shī)家于建寧施振旦
    家畜生態(tài)學(xué)報(bào) 2013年9期
    關(guān)鍵詞:顆粒細(xì)胞卵母細(xì)胞卵泡

    應(yīng)詩(shī)家,于建寧,施振旦

    (江蘇省農(nóng)業(yè)科學(xué)院 畜牧所,江蘇 南京 210014)

    卵巢卵泡發(fā)育到排卵需要從原始階段發(fā)育到腔前階段的非促性腺激素依賴階段、早期有腔卵泡階段的促性腺激素反應(yīng)階段和卵泡進(jìn)一步發(fā)育的促性腺激素依賴階段,下丘腦-垂體-性腺軸調(diào)節(jié)促性腺激素反應(yīng)和依賴階段卵泡發(fā)育,而在非促性腺激素依賴階段卵泡發(fā)育受卵巢內(nèi)細(xì)胞因子調(diào)控。生長(zhǎng)分化因子9 (GDF9)和骨形態(tài)發(fā)生蛋白15(BMP15)屬于轉(zhuǎn)化生長(zhǎng)因子β (TGFβ) 超家族,在卵母細(xì)胞中特異表達(dá),對(duì)早期卵泡發(fā)育、顆粒細(xì)胞和膜細(xì)胞功能起重要調(diào)控作用,是卵巢內(nèi)重要的旁分泌因子[1]。熟悉其信號(hào)通路對(duì)我們進(jìn)一步研究其在卵巢中的功能啟動(dòng)規(guī)律以及促性腺激素低反應(yīng)者繁殖疾病機(jī)理具有重要的意義。本文綜述了GDF9和BMP15的結(jié)構(gòu),受體和Smads信號(hào)的表達(dá)特性以及在卵巢中的生物學(xué)功能。

    1 GDF9/BMP15的結(jié)構(gòu)和表達(dá)

    GDF9/BMP15具有與其他TGFβ超家族成員相同的結(jié)構(gòu)特性,但也有其特異性。TGFβ超家族由信號(hào)肽、前導(dǎo)肽和成熟肽構(gòu)成。前導(dǎo)肽與成熟肽由一個(gè)堿性氨基酸酶切位點(diǎn)連接,該位點(diǎn)可被前導(dǎo)肽轉(zhuǎn)化酶家族識(shí)別;成熟區(qū)含有7或9個(gè)半胱氨酸,其中6個(gè)形成胱氨酸節(jié)。大多數(shù)TGFβ超家族成員通過保守的半胱氨酸以共價(jià)鍵結(jié)合形成同質(zhì)或異質(zhì)二聚體,然而,GDF9/BMP15只有6個(gè)半胱氨酸,以非共價(jià)鍵結(jié)合形成同質(zhì)和異質(zhì)二聚體(見圖1),這種結(jié)構(gòu)差異是GDF9/BMP15與其他成員功能差別的主要原因[2]。

    GDF9/BMP15主要在卵母細(xì)胞中特異表達(dá)[3],但存在種間差異,如綿羊、山羊、牛、負(fù)鼠、倉(cāng)鼠GDF9表達(dá)始于原始卵泡階段,而小鼠、大鼠和人GDF9表達(dá)始于初級(jí)卵泡階段;在綿羊、人、小鼠、大鼠卵巢中,BMP15表達(dá)始于初級(jí)卵泡卵母細(xì)胞,而在負(fù)鼠中表達(dá)始于原始卵泡[2]。種間差異BMP15表達(dá)[4]和GDF9:BMP15比值[5]可能解釋其種間功能差異的原因。另一方面,GDF9/BMP15具有更廣泛的生殖功能,因?yàn)?,其也在顆粒細(xì)胞[6]和睪丸組織[7]中表達(dá)。

    2 GDF9/BMP15的信號(hào)通路

    2.1 GDF9/BMP15的受體和Smads信號(hào)

    目前發(fā)現(xiàn),有三種受體參與TGFβ超家族信號(hào)轉(zhuǎn)導(dǎo):I型受體、II型受體和TGFβRIII。I型和II型受體與配體結(jié)合轉(zhuǎn)導(dǎo)信號(hào),而TGFβRIII主要促進(jìn)紅色表示一個(gè)單體,藍(lán)色表示另一單體,綠色表示鏈間二硫鍵,而黃色表示胱氨酸節(jié)中的半胱氨酸[2]。

    圖1 綿羊BMP15和人TGF-β1同質(zhì)二聚體模型。

    Fig.1 Model of an ovine bone morphogenetic protein 15 (BMP15) and human transforming growth factor-β1 (TGF-β1) dimmer. For both growth factors, one monomer is in red and the other is in blue. Green: interchain disulphide bond. Yellow: cysteines involved in the cystine knots

    TGFβ2與II型受體結(jié)合,增強(qiáng)信號(hào)轉(zhuǎn)導(dǎo)。I型受體包括七個(gè)家族(ALK1-7),II型受體包括五個(gè)家族 (ActrII、ActRIIB、BMPRII、TGFβII和AMHRII)。TGFβRI(ALK5)為GDF9的I型受體,在人、綿羊和小鼠卵巢各等級(jí)卵泡卵母細(xì)胞中表達(dá),而只在腔前卵泡的顆粒細(xì)胞中表達(dá),但其表達(dá)譜存在種間差異,如小鼠表達(dá)始于原始階段,人表達(dá)于原始到初級(jí)階段,綿羊在小腔卵泡顆粒細(xì)胞表達(dá)[8]。BMPRIB(ALK6)是BMP15的I型受體,在大鼠、綿羊和牛卵母細(xì)胞,顆粒細(xì)胞和膜細(xì)胞表達(dá)[9]。BMPRII是GDF9和BMP15的II型受體,在綿羊的原始到有腔階段卵母細(xì)胞及顆粒細(xì)胞表達(dá)。

    GDF9/BMP15與其受體復(fù)合物結(jié)合引起Smad信號(hào)分子磷酸化,目前共發(fā)現(xiàn)8種Smad蛋白。GDF9主要激活Smad2和3信號(hào)通路,而BMP15激活Smad 1,5和8信號(hào)通路,Smad6和Smad7是抑制性Smads,阻斷Smads信號(hào)通路[10]。

    圖2 TGFβ超家族信號(hào)調(diào)節(jié)簡(jiǎn)化示意圖[2]。從上到下為信號(hào)轉(zhuǎn)導(dǎo)方向Fig.2 Simplified schematic of regulation of transforming growth factor-β (TGF-β) superfamily signaling[2].The orientation of the figure is looking down onto the cell surface.

    2.2 卵巢中GDF9/BMP15的信號(hào)通路

    GDF9/BMP15通過結(jié)合I型、II型絲氨酸-蘇氨酸激酶受體,啟動(dòng)胞內(nèi)Smads信號(hào)轉(zhuǎn)導(dǎo),調(diào)控靶基因表達(dá),發(fā)揮生物學(xué)功能,同時(shí),某些抑制因子參與調(diào)節(jié)GDF9/BMP15信號(hào)通路(見圖2[2])。TGFβ超家族配體(L)與兩個(gè)I型和兩個(gè)II型結(jié)合,激活I(lǐng)I型受體絲氨酸-蘇氨酸激酶,使II型受體磷酸化,進(jìn)而激活I(lǐng)型受體,激活的I型受體促使Smads受體(rSmad)磷酸化,磷酸化的rSmad與通用Smad(cSmad,Smad4)形成復(fù)合體,進(jìn)入核內(nèi)與特異的DNA識(shí)別位點(diǎn)或調(diào)節(jié)轉(zhuǎn)錄的某些蛋白(X)作用調(diào)控表達(dá)。然而,GDF9/BMP15信號(hào)傳導(dǎo)存在微調(diào)節(jié)機(jī)制,在膜外傳導(dǎo)中,當(dāng)配體與可溶性連接蛋白(BP),可溶性I型受體或“誘導(dǎo)受體”結(jié)合時(shí),配體與超家族受體結(jié)合受阻,信號(hào)傳導(dǎo)中斷;在Smad激活階段,Smad抑制物(iSmad)與I型受體作用,阻斷I型受體磷酸化及隨后的rSmad激活,導(dǎo)致信號(hào)中斷。

    最新的研究發(fā)現(xiàn)Pin1(一種肽基脯氨酰順反異構(gòu)酶)有助于Smurf2(Smad泛素調(diào)節(jié)因子2)與Smads作用,增強(qiáng)Smad泛素化,下調(diào)Smad2/3蛋白水平,調(diào)節(jié)信號(hào)轉(zhuǎn)導(dǎo)[11]。GDF9和BMP15信號(hào)通路需信號(hào)調(diào)節(jié)激酶(signal-regulated kinase 1 and 2 ;ERK1/2)介導(dǎo)[12]。BMP15的前導(dǎo)肽調(diào)節(jié)其與GDF9間的協(xié)同作用[13],并且GDF9/BMP15先與BMP II型受體結(jié)合發(fā)揮協(xié)同作用[14]。

    3 GDF9/BMP15對(duì)卵泡發(fā)育的作用

    GDF9/BMP15是哺乳動(dòng)物[15]和卵生動(dòng)物[16]重要的卵巢內(nèi)調(diào)節(jié)因子,對(duì)早期卵泡發(fā)育,卵泡細(xì)胞增殖,類固醇激素合成和卵丘擴(kuò)展具有重要的作用。

    3.1 影響卵泡發(fā)育

    研究表明GDF9[17]和BMP15[18]調(diào)節(jié)早期卵泡發(fā)育。敲除GDF9的小鼠卵泡停止發(fā)育[19],小卵泡膜細(xì)胞比大卵泡膜細(xì)胞對(duì)GDF9更敏感[20],早期卵泡異常發(fā)育可能與缺少GDF9的轉(zhuǎn)錄無關(guān)[21],而且,應(yīng)激引起的卵泡發(fā)育抑制與GDF9密切相關(guān)[22]。但是,GDF9和BMP15差異性影響早期卵泡發(fā)育[23]。

    GDF9/BMP15影響綿羊排卵率,雜合子促進(jìn)排卵,純合子引起不育。除了早前發(fā)現(xiàn)影響綿羊排卵率的FecXI、FecXH、FecXG、FecXB、FecXL、FecXR和FecG突變[24-26],近年來發(fā)現(xiàn)GDF9錯(cuò)義突變(c. 1111G>A)引起纈氨酸替換為蛋氨酸,與羅威白羊產(chǎn)羔數(shù)密切相關(guān)[27];GDF9第一內(nèi)含子A485T和A625T突變與中國(guó)荷斯坦奶牛超數(shù)排卵和可移植胚胎數(shù)密切相關(guān)[28];GDF9基因成熟肽保守區(qū)苯丙氨酸替換為半胱氨酸導(dǎo)致綿羊產(chǎn)羔數(shù)顯著相關(guān)[29];而且,排卵率的種間差異與GDF9:BMP15比值密切相關(guān)[5,30]。

    3.2 影響卵泡細(xì)胞功能

    GDF9/BMP15促進(jìn)顆粒細(xì)胞和膜細(xì)胞增殖分化[20]。GDF9促進(jìn)小鼠[31]、反芻動(dòng)物[20]和禽類[32]顆粒細(xì)胞胸腺嘧啶滲入,促進(jìn)顆粒細(xì)胞增殖,抑制FSH誘導(dǎo)的顆粒細(xì)胞分化。然而,GDF9僅促進(jìn)人膜細(xì)胞數(shù)增殖,而對(duì)顆粒細(xì)胞生長(zhǎng)沒有影響[33]。

    卵母細(xì)胞發(fā)育受GDF9/BMP15調(diào)節(jié)。GDF9/BMP15是卵丘擴(kuò)展重要因子[34],在FSH調(diào)節(jié)[35]下協(xié)同作用發(fā)揮卵丘擴(kuò)展功能[36]。GDF9:BMP15比值通過ALK4/5/7和BMPR2激活SMAD2/3信號(hào)促進(jìn)卵丘擴(kuò)展及相關(guān)基因表達(dá),如Ptx3、Has2和Ptags2[30]。卵巢BMP15水平與體外受精胚著床率、妊娠率和活胎率密切相關(guān)[37],BMP15通過調(diào)節(jié)卵丘卵母細(xì)胞氧化磷酸化過程促進(jìn)卵母細(xì)胞發(fā)育能力[38]。

    GDF9/BMP15抑制促性腺激素誘導(dǎo)的顆粒細(xì)胞孕酮合成,這種作用可能通過促性腺激素調(diào)控,因?yàn)?,GDF9抑制LHR mRNA表達(dá)[39],BMP15抑制FSH-R mRNA和LH-R mRNA表達(dá)[40]。GDF9抑制人顆粒細(xì)胞P450arom mRNA表達(dá),表明GDF9可能影響雌二醇分泌,但BMP15不影響雌二醇分泌。GDF9也促進(jìn)顆粒細(xì)胞抑制素A表達(dá)。

    4 結(jié)語與展望

    GDF9/BMP15對(duì)哺乳動(dòng)物早期卵泡發(fā)育、卵母細(xì)胞及其緊密連接的體細(xì)胞功能起著重要的作用。盡管其信號(hào)通路在卵巢功能中的作用研究已取得很大進(jìn)展,然而,仍有一些問題尚未解決,如:GDF9/BMP15通過Smads信號(hào)調(diào)節(jié)靶基因表達(dá),調(diào)節(jié)卵泡功能,何種信號(hào)調(diào)控GDF9/BMP15的表達(dá);不同綿羊品種高繁殖力性狀與GDF9/BMP15基因不同突變密切相關(guān),這些突變引起的空間構(gòu)象變化如何促進(jìn)卵泡排卵;GDF9/BMP15協(xié)同作用具有加性效應(yīng)[5],其信號(hào)通路間是否存在聯(lián)系;GDF9/BMP15是否通過影響卵泡類固醇激素分泌而調(diào)節(jié)卵泡功能。總之, GDF9/BMP15信號(hào)通路及其在卵巢中的功能是一個(gè)重要的研究?jī)?nèi)容,深入研究將為調(diào)控動(dòng)物生殖,治療動(dòng)物繁殖障礙性疾病和人類不孕不育具有重要意義。

    參考文獻(xiàn):

    [1] Alves A M, Chaves R N, Rocha R M, et al. Dynamic medium containing growth differentiation factor-9 and FSH maintains survival and promotes in vitro growth of caprine preantral follicles after long-term in vitro culture[J]. Reprod Fertil Dev, 2012.

    [2] Juengel Jl, McNatty Kp. The role of proteins of the transforming growth factor-beta superfamily in the intraovarian regulation of follicular development[J]. Hum Reprod Update, 2005, 11(2): 143-160.

    [3] Monti M, Redi C. Oogenesis specific genes (Nobox, Oct4, Bmp15, Gdf9, Oogenesin1 and Oogenesin2) are differentially expressed during natural and gonadotropin-induced mouse follicular development[J]. Mol Reprod Dev, 2009.

    [4] Al-Musawi S L, Walton K L, Heath D, et al. Species differences in the expression and activity of bone morphogenetic protein 15[J]. Endocrinology, 2013, 154(2): 888-899.

    [5] Crawford J L, McNatty K P. The ratio of growth differentiation factor 9: bone morphogenetic protein 15 mRNA expression is tightly co-regulated and differs between species over a wide range of ovulation rates[J]. Mol Cell Endocrinol, 2012, 348(1): 339-343.

    [6] Hosoe M, Kaneyama K, Ushizawa K, et al. Quantitative analysis of bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) gene expression in calf and adult bovine ovaries[J]. Reprod Biol Endocrinol, 2011, 9: 33.

    [7] Zhao L, He J, Guo Q, et al. Expression of growth differentiation factor 9 (GDF9) and its receptor in adult cat testis[J]. Acta Histochem, 2011, 113(8): 771-776.

    [8] Mazerbourg S, Klein C, Roh J, et al. Growth differentiation factor-9 signaling is mediated by the type I receptor, activin receptor-like kinase 5[J]. Mol Endocrinol, 2004, 18(3): 653-665.

    [9] Glister C, Kemp C F, Knight P G. Bone morphogenetic protein (BMP) ligands and receptors in bovine ovarian follicle cells: actions of BMP-4, -6 and -7 on granulosa cells and differential modulation of Smad-1 phosphorylation by follistatin[J]. Reproduction, 2004, 127(2): 239-254.

    [10] Moore R K, Otsuka F, Shimasaki S. Molecular basis of bone morphogenetic protein-15 signaling in granulosa cells[J]. J Biol Chem, 2003, 278(1): 304-310.

    [11] Nakano A, Koinuma D, Miyazawa K, et al. Pin1 down-regulates transforming growth factor-beta (TGF-beta) signaling by inducing degradation of Smad proteins[J]. J Biol Chem, 2009, 284(10): 6 109-6 115.

    [12] Sasseville M, Ritter L J, Nguyen T M, et al. Growth differentiation factor 9 signaling requires ERK1/2 activity in mouse granulosa and cumulus cells[J]. J Cell Sci, 2010, 123(Pt 18): 3 166-3 176.

    [13] McIntosh C J, Lun S, Lawrence S, et al. The proregion of mouse BMP15 regulates the cooperative interactions of BMP15 and GDF9[J]. Biol Reprod, 2008, 79(5): 889-896.

    [14] Edwards Sj, Reader Kl, Lun S, et al. The cooperative effect of growth and differentiation factor-9 and bone morphogenetic protein (BMP)-15 on granulosa cell function is modulated primarily through BMP receptor II[J]. Endocrinology, 2008, 149(3): 1 026-1 030.

    [15] Wu Y Q, Chen L Y, Zhang Z H, et al.[Effects of phosphatidylinositol-3 kinase/protein kinase b/bone morphogenetic protein-15 pathway on the follicular development in the mammalian ovary][J].Acta Academiae Medicinae Sinicae, 2013, 35(2): 224-228.

    [16] Peng C, Clelland E, Tan Q. Potential role of bone morphogenetic protein-15 in zebrafish follicle development and oocyte maturation[J]. Comp Biochem Physiol A Mol Integr Physiol, 2009, 153(1): 83-87.

    [17] Juengel J, Hudson N, Berg M, et al. Effects of Active Immunization Against Growth Differentiation Factor 9 (GDF9) and/or Bone Morphogenetic Protein 15 (BMP15) on Ovarian Function in Cattle[J]. Reproduction, 2009, 138(1): 107-114.

    [18] Celestino J J, Lima-Verde I B, Bruno J B, et al. Steady-state level of bone morphogenetic protein-15 in goat ovaries and its influence on in vitro development and survival of preantral follicles[J]. Mol Cell Endocrinol, 2011, 338(1-2): 1-9.

    [19] Dong J, Albertini D F, Nishimori K, et al. Growth differentiation factor-9 is required during early ovarian folliculogenesis[J]. Nature, 1996, 383(6600): 531-535.

    [20] Spicer Lj, Aad Py, Allen Dt, et al. Growth differentiation factor 9 (GDF9) stimulates proliferation and inhibits steroidogenesis by bovine theca cells: influence of follicle size on responses to GDF9[J]. Biol Reprod, 2008, 78(2): 243-253.

    [21] Sadeu J C, Adriaenssens T, Smitz J. Expression of growth differentiation factor 9, bone morphogenetic protein 15, and anti-Mullerian hormone in cultured mouse primary follicles[J]. Reproduction, 2008, 136(2): 195-203.

    [22] Wu L M, Liu Y S, Tong X H, et al. Inhibition of follicular development induced by chronic unpredictable stress is associated with growth and differentiation factor 9 and gonadotropin in mice[J]. Biol Reprod, 2012, 86(4): 121.

    [23] Fenwick M A, Mora J M, Mansour Y T, et al. Investigations of transforming growth factor beta (TGF-beta) signalling in preantral follicles of female mice reveal differential roles for bone morphogenetic protein 15 (BMP15)[J]. Endocrinology, 2013.doi:10.1210/en.2012-2251.

    [24] Javanmard A, Azadzadeh N, Esmailizadeh A K. Mutations in bone morphogenetic protein 15 and growth differentiation factor 9 genes are associated with increased litter size in fat-tailed sheep breeds[J]. Vet Res Commun, 2011, 35(3): 157-167.

    [25] McNatty K P, Heath D A, Hudson N L, et al. Gonadotrophin-responsiveness of granulosa cells from bone morphogenetic protein 15 heterozygous mutant sheep[J]. Reproduction, 2009, 138(3): 545-551.

    [26] Monteagudo L V, Ponz R, Tejedor M T, et al. A 17 bp deletion in the Bone Morphogenetic Protein 15 (BMP15) gene is associated to increased prolificacy in the Rasa Aragonesa sheep breed[J]. Anim Reprod Sci, 2009, 110(1-2): 139-146.

    [27] Vage D I, Husdal M, Kent M P, et al. A missense mutation in growth differentiation factor 9 (GDF9) is strongly associated with litter size in sheep[J]. BMC Genet, 2013, 14: 1.

    [28] Tang K Q, Yang W C, Li S J, et al. Polymorphisms of the bovine growth differentiation factor 9 gene associated with superovulation performance in Chinese Holstein cows[J]. Genet Mol Res, 2013, 12(1): 390-399.

    [29] Silva B D, Castro E A, Souza C J, et al. A new polymorphism in the Growth and Differentiation Factor 9 (GDF9) gene is associated with increased ovulation rate and prolificacy in homozygous sheep[J]. Anim Genet, 2011, 42(1): 89-92.

    [30] Peng J, Li Q, Wigglesworth K, et al. Growth differentiation factor 9:bone morphogenetic protein 15 heterodimers are potent regulators of ovarian functions[J]. Proc Natl Acad Sci USA, 2013,110(8): E776-785.

    [31] Vitt U A, Hayashi M, Klein C, et al. Growth differentiation factor-9 stimulates proliferation but suppresses the follicle-stimulating hormone-induced differentiation of cultured granulosa cells from small antral and preovulatory rat follicles[J]. Biol Reprod, 2000, 62(2): 370-377.

    [32] Johnson Pa, Dickens Mj, Kent Tr, et al. Expression and function of growth differentiation factor-9 in an oviparous species, Gallus domesticus[J]. Biol Reprod, 2005, 72(5): 1095-1100.

    [33] Yamamoto N, Christenson L K, McAllister J M, et al. Growth differentiation factor-9 inhibits 3'5'-adenosine monophosphate-stimulated steroidogenesis in human granulosa and theca cells[J]. J Clin Endocrinol Metab, 2002, 87(6): 2 849-2 856.

    [34] Caixeta E S, Sutton-McDowall M L, Gilchrist R B, et al. Bone morphogenetic protein 15 and fibroblast growth factor 10 enhance cumulus expansion, glucose uptake, and expression of genes in the ovulatory cascade during in vitro maturation of bovine cumulus-oocyte complexes[J]. Reproduction, 2013, 146(1): 27-35.

    [35] Chen Y, Zhao S, Qiao J, et al. Expression of bone morphogenetic protein-15 in human oocyte and cumulus granulosa cells primed with recombinant follicle-stimulating hormone followed by human chorionic gonadotropin[J]. Fertil Steril, 2009, 92(6): 2 045-2 046.

    [36] Gui Lm, Joyce Im. RNA interference evidence that growth differentiation factor-9 mediates oocyte regulation of cumulus expansion in mice[J]. Biol Reprod, 2005, 72(1): 195-199.

    [37] Wu Y T, Wang T T, Chen X J, et al. Bone morphogenetic protein-15 in follicle fluid combined with age may differentiate between successful and unsuccessful poor ovarian responders[J]. Reprod Biol Endocrinol, 2012, 10: 116.

    [38] Sutton-McDowall M L, Mottershead D G, Gardner D K, et al. Metabolic differences in bovine cumulus-oocyte complexes matured in vitro in the presence or absence of follicle-stimulating hormone and bone morphogenetic protein 15[J]. Biol Reprod, 2012, 87(4): 87.

    [29] Elvin J A, Clark A T, Wang P, et al. Paracrine actions of growth differentiation factor-9 in the mammalian ovary[J]. Mol Endocrinol, 1999, 13(6): 1 035-1 048.

    [40] Otsuka F, Yamamoto S, Erickson G F, et al. Bone morphogenetic protein-15 inhibits follicle-stimulating hormone (FSH) action by suppressing FSH receptor expression[J]. J Biol Chem, 2001, 276(14): 11 387-11 392.

    猜你喜歡
    顆粒細(xì)胞卵母細(xì)胞卵泡
    MicroRNA調(diào)控卵巢顆粒細(xì)胞功能的研究進(jìn)展
    促排卵會(huì)加速 卵巢衰老嗎?
    小鼠竇前卵泡二維體外培養(yǎng)法的優(yōu)化研究
    大腿肌內(nèi)顆粒細(xì)胞瘤1例
    補(bǔ)腎活血方對(duì)卵巢早衰小鼠顆粒細(xì)胞TGF-β1TGF-βRⅡ、Smad2/3表達(dá)的影響
    中成藥(2017年9期)2017-12-19 13:34:22
    牛卵母細(xì)胞的體外成熟培養(yǎng)研究
    凋亡抑制劑Z-VAD-FMK在豬卵母細(xì)胞冷凍保存中的應(yīng)用
    卵巢卵泡膜細(xì)胞瘤的超聲表現(xiàn)
    卵泡的生長(zhǎng)發(fā)育及其腔前卵泡體外培養(yǎng)研究進(jìn)展
    科技視界(2014年29期)2014-08-15 00:54:11
    微囊藻毒素LR對(duì)大鼠卵巢顆粒細(xì)胞氧化損傷和凋亡的影響
    赤壁市| 郴州市| 运城市| 凭祥市| 武强县| 浦江县| 农安县| 安顺市| 丰顺县| 无为县| 沧州市| 九台市| 东平县| 巴林左旗| 栖霞市| 阳泉市| 崇文区| 卓资县| 阳泉市| 驻马店市| 萨嘎县| 富蕴县| 思茅市| 九龙城区| 泸水县| 江永县| 哈密市| 上杭县| 大连市| 维西| 弥勒县| 洛川县| 彰化市| 嘉义市| 简阳市| 雅安市| 梁平县| 上杭县| 武义县| 邯郸县| 罗山县|