• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Self-diagnosis method for faulty modules on wireless sensor node

    2013-11-05 07:30:56ZHAOJun趙軍CHENXiangguang陳祥光LIZhimin李智敏WULei吳磊
    關鍵詞:吳磊趙軍

    ZHAO Jun(趙軍), CHEN Xiang-guang(陳祥光), LI Zhi-min(李智敏), WU Lei(吳磊)

    (School of Chemical Engineering and Environment,Beijing Institute of Technology,Beijing 100081,China)

    With the advantage of the embedded systems technology,the usage of wireless sensor network has extended to various applications and the wireless sensor networks have emerged as the solution for remote sensing applications,such as military monitoring and environment detecting.

    In this paper,we study the wireless sensor network used in the airfield fuel oil supply system.Fig.1 shows the architecture of the wireless sensor network.The network includes several mobile sensor nodes and one sink node.The sensor node is installed on the oil trucks,which are movable and could not be connected by the wired fieldbus.The sink node is connected to the monitor computer via USB or serial port.Every sensor node gets the measuring values and sends them to the sink node,while the sink node collects and submits the measurements to the monitor computer.

    As the sensor nodes work outdoor,the electrical connections may be damaged due to malicious impacts or corrosion of metal.The modules of the sensor nodes may fail owing to the physical damage orthe fabrication process problems.These failed nodes will decrease the quality of service and make the entire wireless sensor network function improperly.

    Fig.1 Wireless sensor network architecture

    If we replace the whole node when only one module fails,that will cause the device wastes and increase costs.It will be more economic and proper if we can find the failed module and replace it.So we design every module as a separate circuit,and add a state detection module to detect the status of all modules in the node.Another reason of our design is that the wireless sensor network is applied at the airfield oil fuel supply system and the nodes of WSN may be installed on the devices which may be vary from each other in function and dimensions.

    Fig.2 shows the architecture of the sensor node we install on oil trucks.We design a fundamental circuit as a common part which contains the power supply module,processor module and state detection module.The other modules are designed as separate circuits.At last we connect these different function circuits together with electrical connections according to the function of different sensor node.

    Fig.2 Architecture of the sensor node

    In later chapters,we will discuss the self-diagnosis algorithm on the state detection module to detect the status of each module of sensor node and find the failure module timely in order to ensure the system more reliability.

    1 Related works

    Self-diagnosis is important especially in assuring the dependability of mission-critical information systems.Built-in self-test(BIST)is widely used in voting based systems or off-line testing.There are many methods[1-2]applied the self-diagnosis to hardware and design in some unconventional circuits,but they used the hardware resources extremely.Ref.[3] proposed an evolutionary method in designing the self-diagnostics circuits in nature exhibit self-diagnostic system.

    Ref.[4]evolved the digital circuits with online built-in self-test design.It describes the generational genetic algorithm(GA)as the theoretic of self-diagnosis method and designs the self-diagnosis analog circuits.But with the increasing number of sensors on each sensor node,the genetic algorithm will become complicated and the design of the self-diagnosis analog circuits will be more and more difficult.Ref.[5] described a method of introducing a level of fault tolerance into wireless sensor networks by monitoring the status of each wireless sensor node.It focuses on the detection of physical malfunctions caused by impacts or incorrect orientation,and designs a flexible circuit using accelerometers that acts as a sensing layer around a node,which will be capable of sensing the physical condition of a node.The software analyses the raw data from the accelerometers to determine the orientation of the node and access the damage probability.At last the whole sensor network should be made aware of the faulty nodes to ensure that faulty nodes are routed around.

    Ref.[6] proposed a built-in and self-organized diagnosis mechanism to monitor each node in real time and identify faulty nodes.This diagnosis is operated within a cluster of nodes.It can reduce power consumption and communication traffic.Ref.[7] presents a methodology for fault characterization.This self-learning approach is developed in initial and learning phases.The process units are simulated without and with different faults that will let the system(in an automated way)detect the key variables to characterize the faults.This method can be used on line,and key variables will be monitored in order to diagnose possible faults.

    Ref.[8] proposed an energy efficient faulttolerant detection scheme that explicitly introduces the sensor fault probability into the optimal event detection process.As the relationship between measurement noise and sensor faults is likely to be stochastical and unrelated,while the event measurements are likely to be spatially correlated,the authors attempted to disambiguate e-vents from both noise related measurement error and sensor fault simultaneously in fault-tolerant detection and limit the effects of faulty sensor on the event detection accuracy.Since the optimal detection error was shown to decrease exponentially with the increase of the neighborhood size,the Bayesian detection scheme is used to achieve the balance on the event detection accuracy and the energy consumption by choosing a proper neighborhood size for a sensor node in fault correction,as such the energy could be conserved.

    Although the self-diagnosing hardware can monitor the conditions of the node,this self-diagnosis suffers from two main disadvantages.The first is that they require the circuit’s operation to go off-line periodically to feed in the test patterns.The second is that we will never know what is derived from the node if the testing logic fails and the rest of the circuit is functioning properly.We propose a new distributed fault detection method in this paper to remedy the shortcomings above;there is a circuit as the self-diagnosing hardware around a sensor node to monitor the status of the sensor node and the software to analyze the measurements and check out the failed modules.

    2 Self-diagnosis algorithm

    As mentioned,we could not replace the entire sensor node because of the failure of one module,so we need an accurate diagnosis of each failure module, forexample, when the screen is not shown,we need to diagnose whether it is the failure of the screen or the processor module.In this paper,sensor nodes are distributed sparsely together with the oil tank trucks.Because the measurement of each sensor node may vary from each other and the operation of every sensor node may be different for each time,and the method of collecting and comparing its own measurement is not appropriate in this paper.

    The self-diagnosis algorithm on state detection module is working by observing the voltage changes of each module.This fault detection system can be expressed by the fault identification principle S=(U,A,R,P),where U is the diagnostic object,A={a[i],i=1,2,…,k}is condition attributes,R={r}is the results of condition attributes,P={s[i],i=1,2,…,k}is the working status of each module.We define a[i]=0 and s[i]=0 means the condition attribute is normal and the module is working well,and a[i]=1 and s[i]=1 means the condition attribute is abnormal and the module fails.We will discuss the parameters of each module separately below.

    2.1 Choice of condition attributes

    2.1.1 Power supply module

    The power supply module is the basis of the system to normal operation.The power supply module is running by the storage battery on the truck,and the source voltage may fluctuate according to the working state of the truck.Therefore,we add a voltage stabilization module before the regulation of voltage and the power supply module can be divided into two parts,voltage stabilization and voltage regulation.Most modules are ready-made.Fig.3 shows the architecture of the power supply module and the power supply for each module.

    In our sensor node,the voltage stabilization module is DLM20-24D12,the input range of which is 18-36 V and the output range is 12±1%V.The voltage regulation module is LM2596 step-down voltage regulator and the accuracy of each output voltage is 5%.The state detection module detects the input and output voltage of the voltage stabilization module and the four outputs voltage from the voltage regulation module supplied for each modules to diagnose whether there are some failures.Sometimes,when the battery power drops,the internal resistance will increase.If the printer energy consumption increases suddenly,the output voltage may be dropped,resulting in shortterm failure.

    Fig.3 Power supply for each module

    We define the condition attribute that the four outputs of the regulator and one output of the stabilizator are all in their normal range as a[1],and the working status of the power supply module as s[1].

    2.1.2 Wireless communication module

    The communication module we selected is coRE1 OEM long distance Ad-hoc wireless module.Tab.1 shows the mainly technical parameters of the module.

    Tab.1 Technology parameters of the wireless module

    We can distinguish the transmission working mode from the other working modes through the input current.Another method to distinguish the working mode transmission is the electrical level changes of the interface between the processor module and the wireless communication module.The electrical level change of interface TX means the wireless communication module need to switch the working mode to transmission and send data,resulting the increase of input current.If there is no change in consumption,we can diagnosis the transceiver fails.

    Also we define that results of two distinguish methods are the same as a condition attribute a[2]and the diagnosis result of working status as s[2].

    2.1.3 Sensor module

    The sensor module has two components,flow sensor and GPS.The most important components of flow sensor are photoelectric switch and photocoupler.When the photoelectric switch turns off the leakage current is 10 mA,and the breakover current is 40 mA when the photoelectric switch turns on.We can distinguish whether there is liquid flow by these current and diagnosis whether the current in the normal range as well as the photoelectric switch working normal.For the photocoupler,we can diagnose whether there is failure based on front-end and back-end voltage level changes.The GPS returns a set of data per second,based on which we can accomplish the diagnosis.

    We define a condition attribute a[3]to describe whether the relationship between the current and the output of photoelectric switch is normal.Also we define s[3]to describe whether the photoelectric switch is working normal.

    We define another condition attributes a[4]to describe whether the front-end and back-end voltage level changes of the photocoupler are correct,and another working state result s[4]to describe whether the photocoupler is working normal.

    Also,we define a condition attributes a[5]to describe whether the data format of the GPS are correct,and the working state result s[5]to describe whether GPS is working normal.

    2.1.4 Man-machine interface module

    The three components in the main-machine interface module are keyboard,screen and miniprinter.Because the keyboard is the initiation of some operations,we can diagnosis the working status of other modules according to the operation of the keyboard.Therefore,the fault diagnosis of keyboard is more important than the other components.The fault of keyboard usually comes from poor contact and interference,which will lead to instability of the keyboard and spikes in keyboard scanning.

    We define a condition attribute a[6]for the keyboard todescribe whether there are many spikes in keyboard scanning,and the key board working status s[6]to describe whether the keyboard is working normal.

    Thescreen and mini-printerare working when the“Print” and“Display” keys are pressed,and the“Busy”state on the interface can be taken as the reaction of the pressed keyboard.We can use the relationship between the keyboard and two modules’“Busy”state to detect whether they are working normal.Another condition is that the consumption of min-printer will increase rapidly when it is working,so we can distinguish its working state by its input current.

    We define a condition attribute a[7] for screen to describe whether the relationship between the pressed“Display”key and the“Busy”state on the interface is normal.Also we define s[7] to describe whether the screen is working normal.

    We define a condition attribute a[8]for minprinter to describe whether the relationship between the pressed“Print”key and the“Busy”state on the interface is normal.We define s[8]to describe whether the min-printer is working normal.We define another condition attribute a[9]for min-printer to describe whether the relationship between the pressed“Print”key and the input current is normal.

    2.1.5 Processor module

    Processor module is the most important part ofsensornode and the micro-processorwe choose is MSP430FG4618.Because of its low power consumption and its small input current,we could not diagnose working status by the input current changes.Like other nodes,we use the response of the processor to diagnose working status.Because wireless sensor node sends information after receiving the DSR(data sending request)from the sink node,the DSR can be taken as the incentive of the working of micro-processor,the electrical level of interface RX changes can be taken as a symbol of the incentive and the electrical level of interface TX changes can be taken as a symbol of the response.If all is normal,we set condition attribute a[10]=0 and the working status result s[9]=0.

    The condition attributes a[7]and a[8]are all take the micro-processor’s response into account in the diagnosis of the man-machine interface module,and these two condition attributes can also be used in the diagnosis of the processor module.

    2.2 Fault identification system

    According to the fault of each module and the changes of condition attributes,we can diagnose the module fault by the fault identification system.At first we collect statistics data about the condition attributes,and Tab.2 shows the condition attributesand theirdescriptions. Tab.3 shows the statistics of the module faults.

    3 Performance evaluation

    Asmentioned before,we determine the working state of each module according to the interface voltage changes and the input current changes.We achieve the interface voltage changes and the input current changes through the current transformer and the voltage transformer.

    Tab.2 Statistics of the condition attributes

    Tab.3 Statistics of the module faults

    Because digital signals with low energy capacity,the detection accuracy of digital signal in current changes or voltage changes is lower than that of the detection of power supply lines.

    We set the detection accuracy of digital signal as 0.85,while the detection accuracy of power supply lines as 0.95.Now we can discuss the accuracy of the fault detection method we mentioned previously.

    Tab.4 Correct detection probabilities of each condition attribute

    Because a[8]and a[9]are involved in the same module fault diagnosis,and P(a[8])is smaller than P(a[9]),so condition attribute a[8]can be removed.Tab.5 shows the changes of the module faults with improved condition attributes.

    Tab.5 Improved module faults

    These module faults can be expressed by:

    We set{P(s[i]),i=1,2,…,n}as the correct diagnosis probability of each module fault.According to the correct detection probability of each condition attribute,we can get the correct diagnosis probability of each module fault.Because the condition attribute a[7],a[9] and a[10]are involved in the fault detection of module faults s[7],s[8]and s[9],these three condition attributes are correlated in diagnosis of module fault and the fault detection of these are all based on the reaction of the sensor node,so the correct diagnosis probabilities of these three faults will be lower than the others as shown in Tab.6.On the other hand,these also improve the diagnostic accuracy of fault mode s[9].Tab.6 shows the correct diagnosis probabilities of each module fault.

    Tab.6 Correct diagnosis probabilities of each module fault

    When i=1 to 6,the condition attribute a[i]and module fault s[i]are one-to-one corresponding,there is no misdiagnosis between each module fault.And the missed-diagnosis probability of each module fault is the difference between 1and its correct diagnosis probability.

    When i=7,9 and 10,these three condition attributes a[7],a[9]and a[10]are involved in the fault detection of module faults s[7],s[8]and s[9].The fault diagnosis of the module fault s[9] may be a misdiagnosis to the other two faults s[7]and s[8].Tab.7 shows the misdiagnosis probabilities between s[9] and the other two faults when the fault s[9]happens.

    Tab.7 Misdiagnosis probability

    Another problem is that the miss-diagnosis probability of s[9]=0.477 7,which is too large to diagnose the module fault.The method reduces the time interval for each diagnosis to resolve this problem.If we operate the diagnosis algorithm everyoneminute,themiss-diagnosis probability will drop to less than 0.001 after ten minutes.

    4 Conclusion

    In this paper we propose a method to diagnose different faults for each module on sensor node by itself.It is based on the hardware of state detection module and the software of self-diagnosis algorithm.We will discuss the diagnosis method using intelligent algorithm based on the performance ofthe microprocessoron sensor node in next paper.The diagnosis accuracy of faulty modules for WSN nodes we proposed can meet the needs for real-field requirement and it will be improved with the development of processor performance.The experiment and simulation results show that the accuracy of this self-diagnosis method can be accepted in engineering application.

    [1] Koza J R.Genetic programming:on the programming of computers by means of natural selection[M].Cambridge,MA:MIT Press,1992.

    [2] Miller J F,Job D,Vassilev V K.Principles in the evolutionary design of digital circuits-part 1[J].Genetic Programming and Evolvable Machines,2000,1:7-35.

    [3] Avizienis A.Design diversity and the immune system paradigm:cornerstones for information system survivability[C]∥Information Survivability Workshop.Carnegie Mellon,USA:[s.n.],2000:27 -36.

    [4] Garvie M,Thompson A.Evolution of combinatonial and sequential on-line self-diagnosing hardware[C]∥Proceedings of the 2003 NASA/Dod Conference on Evolvable Hardware.Washington,D.C.,USA:NASA,2003:177-183.

    [5] Harte S,Rahman A,Razeeb K M.Fault tolerance in sensor networks using self-diagnosing sensor nodes[C]∥The IEEE International Workshop on Intelligent Environments.Colchester,UK:[s.n.],2005:7-12.

    [6] You Zhiyang,Zhao Xibin,Wan Hai.A novel fault diagnosis mechanism for wireless sensor networks[J].Mathematical and Computer Modelling,2011,54(1-2):330-343.

    [7] José Luis de la Mataa,Manuel Rodrígueza.Selflearning of fault diagnosis identification[J].Computer Aided Chemical Engineering,2011(29):885-889.

    [8] Luo X,Dong M,Huang Y.On distributed fault-tolerant detection in wireless sensor networks[J].IEEE Trans Comput,2006(55):58 -70.

    猜你喜歡
    吳磊趙軍
    “章節(jié)起始課”的教學觀察與比較
    湖北省“小個專”黨建工作思考
    黨員生活(2022年2期)2022-04-24 14:14:56
    意林2021年7月
    意林(2021年15期)2021-08-27 03:00:55
    吳磊:極簡設計的踐行者
    現代裝飾(2020年11期)2020-11-27 01:48:02
    隔離的松風
    金秋(2019年14期)2019-10-23 02:11:34
    抓住整體巧妙代入
    七分審題三分做
    對博物館工程建設特殊性的思考
    求和與求援
    深圳市吳磊歷史名師工作室簡介
    青春草视频在线免费观看| 黄色视频在线播放观看不卡| 国产亚洲一区二区精品| 在线观看一区二区三区激情| 欧美日韩综合久久久久久| 亚洲欧美一区二区三区黑人 | 青春草国产在线视频| 色视频www国产| 又爽又黄无遮挡网站| 国产一级毛片在线| 看黄色毛片网站| 成年版毛片免费区| 黄色配什么色好看| 在线观看一区二区三区激情| 极品教师在线视频| 婷婷色av中文字幕| 国产久久久一区二区三区| 在线观看人妻少妇| 国产午夜精品一二区理论片| 日韩av在线免费看完整版不卡| 亚洲av免费在线观看| 国产视频首页在线观看| 男女边吃奶边做爰视频| 中国三级夫妇交换| 国产精品av视频在线免费观看| 亚洲国产精品专区欧美| xxx大片免费视频| 午夜免费鲁丝| 亚洲成人久久爱视频| 精品一区二区三卡| 交换朋友夫妻互换小说| 99热网站在线观看| 日本午夜av视频| 亚洲av国产av综合av卡| 三级国产精品欧美在线观看| 在线观看av片永久免费下载| 国产精品偷伦视频观看了| av国产免费在线观看| av国产免费在线观看| 视频中文字幕在线观看| 国产一级毛片在线| 老女人水多毛片| 国产精品久久久久久精品古装| 一区二区三区乱码不卡18| videossex国产| 国产淫片久久久久久久久| 美女高潮的动态| 蜜桃久久精品国产亚洲av| 欧美老熟妇乱子伦牲交| 91午夜精品亚洲一区二区三区| 各种免费的搞黄视频| 国产精品偷伦视频观看了| 99视频精品全部免费 在线| 观看免费一级毛片| av专区在线播放| 永久免费av网站大全| 国产亚洲91精品色在线| 免费黄色在线免费观看| av在线亚洲专区| 亚洲自拍偷在线| 天美传媒精品一区二区| 国产精品久久久久久精品电影小说 | av国产久精品久网站免费入址| 国产精品国产三级国产专区5o| 国产成人午夜福利电影在线观看| 婷婷色综合大香蕉| 欧美日韩国产mv在线观看视频 | 国产欧美亚洲国产| 免费av毛片视频| 久久综合国产亚洲精品| 在线观看美女被高潮喷水网站| 国产精品爽爽va在线观看网站| 成人漫画全彩无遮挡| 男人爽女人下面视频在线观看| 精品一区二区三卡| 街头女战士在线观看网站| 成人特级av手机在线观看| 少妇 在线观看| 国产精品国产av在线观看| 91午夜精品亚洲一区二区三区| 亚洲一级一片aⅴ在线观看| 精品久久久久久久久av| 热re99久久精品国产66热6| 国产精品99久久99久久久不卡 | 免费电影在线观看免费观看| 乱系列少妇在线播放| 久久这里有精品视频免费| 亚洲av日韩在线播放| 97人妻精品一区二区三区麻豆| 爱豆传媒免费全集在线观看| 97在线视频观看| 国产成人免费无遮挡视频| 美女视频免费永久观看网站| 欧美日韩综合久久久久久| 97超视频在线观看视频| 在现免费观看毛片| 日日摸夜夜添夜夜添av毛片| 国产精品偷伦视频观看了| 偷拍熟女少妇极品色| 99热6这里只有精品| 老师上课跳d突然被开到最大视频| 国产欧美日韩精品一区二区| 91狼人影院| 久久久久久久久久久免费av| 精品国产三级普通话版| 日本欧美国产在线视频| 日韩成人伦理影院| www.色视频.com| 免费观看的影片在线观看| 国产色婷婷99| 国产真实伦视频高清在线观看| 久久99热这里只频精品6学生| 国产人妻一区二区三区在| 成年免费大片在线观看| 久久久久性生活片| 久久精品久久久久久久性| 国产大屁股一区二区在线视频| 99视频精品全部免费 在线| 在线观看三级黄色| 一级av片app| 久久女婷五月综合色啪小说 | 午夜爱爱视频在线播放| 免费看不卡的av| 在线看a的网站| 中文欧美无线码| 亚洲av成人精品一二三区| 18禁裸乳无遮挡动漫免费视频 | 永久网站在线| 久久久精品94久久精品| 亚洲图色成人| 精品人妻偷拍中文字幕| 亚洲精品久久午夜乱码| 精品一区二区三卡| 日韩伦理黄色片| 婷婷色综合www| 午夜免费观看性视频| 国产精品福利在线免费观看| 亚洲,一卡二卡三卡| 亚洲国产色片| 女人被狂操c到高潮| 女的被弄到高潮叫床怎么办| 国产亚洲av片在线观看秒播厂| 大话2 男鬼变身卡| 精品少妇久久久久久888优播| 女的被弄到高潮叫床怎么办| 国产女主播在线喷水免费视频网站| 国产视频首页在线观看| 别揉我奶头 嗯啊视频| 三级国产精品欧美在线观看| 久久综合国产亚洲精品| 国产高清三级在线| 精华霜和精华液先用哪个| 亚洲va在线va天堂va国产| 一级毛片aaaaaa免费看小| 一区二区三区精品91| 色播亚洲综合网| tube8黄色片| 国产乱人视频| 一区二区三区免费毛片| 国产一区有黄有色的免费视频| 久久精品国产亚洲av涩爱| 亚洲成人av在线免费| 精品国产一区二区三区久久久樱花 | 国产一区二区三区综合在线观看 | 亚洲欧美清纯卡通| 99re6热这里在线精品视频| 亚洲综合色惰| 国产片特级美女逼逼视频| 欧美日本视频| 亚洲精品乱久久久久久| 超碰97精品在线观看| 欧美区成人在线视频| 亚洲欧洲日产国产| 精品人妻一区二区三区麻豆| 亚洲av中文av极速乱| av国产精品久久久久影院| 老师上课跳d突然被开到最大视频| 国产永久视频网站| 免费观看无遮挡的男女| 亚洲人成网站在线观看播放| 精品国产三级普通话版| 狂野欧美激情性bbbbbb| 岛国毛片在线播放| 亚洲最大成人av| 丝瓜视频免费看黄片| 1000部很黄的大片| 亚洲,一卡二卡三卡| 黄色欧美视频在线观看| 亚洲欧美成人综合另类久久久| 一级毛片我不卡| av在线app专区| www.av在线官网国产| 亚洲精品亚洲一区二区| 五月伊人婷婷丁香| 中文精品一卡2卡3卡4更新| 日韩欧美精品免费久久| 国产精品国产三级国产专区5o| 成人午夜精彩视频在线观看| 精品久久久久久电影网| 午夜激情福利司机影院| 99视频精品全部免费 在线| 亚洲精品国产色婷婷电影| 蜜桃久久精品国产亚洲av| 日韩欧美 国产精品| 欧美日韩视频高清一区二区三区二| 伊人久久国产一区二区| 深夜a级毛片| 国产精品熟女久久久久浪| 亚洲在久久综合| 一本色道久久久久久精品综合| 在线免费观看不下载黄p国产| 欧美日韩视频精品一区| av卡一久久| 精品久久久久久久人妻蜜臀av| 久久精品久久久久久噜噜老黄| 国产淫片久久久久久久久| 九草在线视频观看| 搡老乐熟女国产| 亚洲国产精品国产精品| 国产乱人视频| 午夜老司机福利剧场| 日韩在线高清观看一区二区三区| 国产 一区精品| 欧美性猛交╳xxx乱大交人| 一级黄片播放器| 午夜免费男女啪啪视频观看| 午夜日本视频在线| 久久精品综合一区二区三区| 国产成人aa在线观看| av专区在线播放| 亚洲精品乱码久久久久久按摩| 亚洲婷婷狠狠爱综合网| 欧美日本视频| 男女边吃奶边做爰视频| 国产日韩欧美在线精品| 欧美bdsm另类| 性色av一级| 日本-黄色视频高清免费观看| 青青草视频在线视频观看| 国产成人精品一,二区| 亚洲欧美日韩无卡精品| 久久久久国产精品人妻一区二区| 亚洲欧美一区二区三区黑人 | 国国产精品蜜臀av免费| 国产中年淑女户外野战色| 免费人成在线观看视频色| 国产熟女欧美一区二区| 久久精品国产自在天天线| 国产精品女同一区二区软件| 国产爽快片一区二区三区| 久久精品人妻少妇| 18禁裸乳无遮挡免费网站照片| 欧美日本视频| 日韩av免费高清视频| 久久精品国产鲁丝片午夜精品| 午夜福利在线在线| 久久久久网色| 亚洲第一区二区三区不卡| 日韩强制内射视频| 国产一级毛片在线| 亚洲欧美日韩东京热| 国产精品国产三级专区第一集| 国国产精品蜜臀av免费| 乱系列少妇在线播放| av天堂中文字幕网| 卡戴珊不雅视频在线播放| 亚洲精品一二三| 免费不卡的大黄色大毛片视频在线观看| 超碰97精品在线观看| 国内少妇人妻偷人精品xxx网站| av卡一久久| 特级一级黄色大片| 丰满乱子伦码专区| 国产探花在线观看一区二区| 免费电影在线观看免费观看| 亚洲国产精品国产精品| 国产精品av视频在线免费观看| 国产亚洲一区二区精品| 蜜臀久久99精品久久宅男| 国产精品嫩草影院av在线观看| 岛国毛片在线播放| 啦啦啦中文免费视频观看日本| 国产午夜精品一二区理论片| 亚洲国产欧美人成| 在线观看人妻少妇| 亚洲av.av天堂| 91精品国产九色| 亚洲精品乱码久久久久久按摩| 国产亚洲精品久久久com| 网址你懂的国产日韩在线| 精品一区在线观看国产| a级一级毛片免费在线观看| 七月丁香在线播放| 亚洲精品国产av蜜桃| 久久久午夜欧美精品| 日本欧美国产在线视频| 亚洲电影在线观看av| 国产精品久久久久久av不卡| 白带黄色成豆腐渣| 校园人妻丝袜中文字幕| 国产探花极品一区二区| 亚洲精品久久午夜乱码| 日韩国内少妇激情av| av一本久久久久| 大又大粗又爽又黄少妇毛片口| 国产精品一及| 在线观看人妻少妇| 成人国产av品久久久| 久久99蜜桃精品久久| 狂野欧美白嫩少妇大欣赏| 三级国产精品欧美在线观看| 五月天丁香电影| 最近中文字幕2019免费版| 一区二区三区四区激情视频| 国产一区二区三区综合在线观看 | 色视频在线一区二区三区| 夜夜爽夜夜爽视频| 国产国拍精品亚洲av在线观看| av在线app专区| 少妇人妻 视频| 美女视频免费永久观看网站| 免费观看a级毛片全部| 99热这里只有是精品在线观看| 国内少妇人妻偷人精品xxx网站| 2021少妇久久久久久久久久久| 三级经典国产精品| 国产成人免费无遮挡视频| 精品少妇黑人巨大在线播放| 久久综合国产亚洲精品| 搞女人的毛片| 国产黄片视频在线免费观看| 亚洲国产日韩一区二区| 啦啦啦中文免费视频观看日本| 尾随美女入室| 18禁在线播放成人免费| 亚洲,欧美,日韩| av在线天堂中文字幕| 波多野结衣巨乳人妻| 爱豆传媒免费全集在线观看| 成人美女网站在线观看视频| 国产精品一及| 一级爰片在线观看| 又粗又硬又长又爽又黄的视频| 欧美3d第一页| 我的老师免费观看完整版| 午夜老司机福利剧场| 十八禁网站网址无遮挡 | 91aial.com中文字幕在线观看| 国产中年淑女户外野战色| 久久久亚洲精品成人影院| 丝袜脚勾引网站| 成人毛片a级毛片在线播放| 日本欧美国产在线视频| 国产女主播在线喷水免费视频网站| 男人和女人高潮做爰伦理| 九九在线视频观看精品| 亚洲精品影视一区二区三区av| 成年版毛片免费区| 国模一区二区三区四区视频| 人人妻人人爽人人添夜夜欢视频 | 春色校园在线视频观看| 极品少妇高潮喷水抽搐| 国产高潮美女av| 69人妻影院| 老师上课跳d突然被开到最大视频| 国产黄色免费在线视频| 18禁在线无遮挡免费观看视频| 天天一区二区日本电影三级| 亚洲欧美日韩卡通动漫| 精品酒店卫生间| 国产免费视频播放在线视频| 国产黄片美女视频| 插阴视频在线观看视频| 在线看a的网站| 国产片特级美女逼逼视频| 麻豆久久精品国产亚洲av| 国产老妇伦熟女老妇高清| 两个人的视频大全免费| 中文乱码字字幕精品一区二区三区| 国产午夜福利久久久久久| 热99国产精品久久久久久7| 国产成人精品久久久久久| 五月天丁香电影| 边亲边吃奶的免费视频| 少妇熟女欧美另类| 日韩欧美精品v在线| 亚洲精品中文字幕在线视频 | 成人高潮视频无遮挡免费网站| 啦啦啦中文免费视频观看日本| www.av在线官网国产| 一个人观看的视频www高清免费观看| 白带黄色成豆腐渣| 亚洲高清免费不卡视频| 肉色欧美久久久久久久蜜桃 | 91aial.com中文字幕在线观看| 亚洲精品中文字幕在线视频 | 网址你懂的国产日韩在线| 大片免费播放器 马上看| 色网站视频免费| 一区二区三区乱码不卡18| 亚洲第一区二区三区不卡| 中文乱码字字幕精品一区二区三区| 亚洲av欧美aⅴ国产| 狂野欧美白嫩少妇大欣赏| 国产亚洲5aaaaa淫片| 干丝袜人妻中文字幕| 3wmmmm亚洲av在线观看| 涩涩av久久男人的天堂| 一级片'在线观看视频| 久久这里有精品视频免费| 激情 狠狠 欧美| 人妻一区二区av| 国产av国产精品国产| 五月开心婷婷网| 亚洲婷婷狠狠爱综合网| 亚洲av日韩在线播放| 国产 精品1| 只有这里有精品99| 免费黄网站久久成人精品| 一级毛片 在线播放| 国产色婷婷99| 青春草亚洲视频在线观看| 不卡视频在线观看欧美| 亚洲国产最新在线播放| 91久久精品电影网| 欧美3d第一页| 久久久成人免费电影| 国产亚洲av片在线观看秒播厂| 亚洲av福利一区| 国产在线男女| 日本av手机在线免费观看| 大香蕉久久网| 亚洲四区av| 亚洲精品乱码久久久久久按摩| 美女高潮的动态| 男女下面进入的视频免费午夜| av黄色大香蕉| 男女边吃奶边做爰视频| 十八禁网站网址无遮挡 | 69人妻影院| 老司机影院毛片| 亚洲av免费高清在线观看| 久久久久久九九精品二区国产| 少妇熟女欧美另类| 国内揄拍国产精品人妻在线| 日本一本二区三区精品| 狂野欧美激情性xxxx在线观看| 久久精品国产亚洲av涩爱| 嫩草影院入口| 永久免费av网站大全| 国产视频内射| 亚洲欧美成人综合另类久久久| 国产精品麻豆人妻色哟哟久久| 国产一区二区亚洲精品在线观看| 国产成人精品婷婷| 波多野结衣巨乳人妻| 午夜亚洲福利在线播放| 夫妻性生交免费视频一级片| 男人爽女人下面视频在线观看| freevideosex欧美| 亚洲久久久久久中文字幕| 亚洲精品乱久久久久久| 97超碰精品成人国产| 国精品久久久久久国模美| 九九在线视频观看精品| 最近的中文字幕免费完整| 亚洲成人中文字幕在线播放| av在线app专区| 男女边吃奶边做爰视频| 国产欧美亚洲国产| 日本欧美国产在线视频| 国产精品成人在线| 国产日韩欧美亚洲二区| 成人特级av手机在线观看| 亚洲国产日韩一区二区| 最近手机中文字幕大全| 婷婷色麻豆天堂久久| 久久久久久久国产电影| 一级片'在线观看视频| 91狼人影院| 18禁在线无遮挡免费观看视频| 1000部很黄的大片| 国产一级毛片在线| 国产成年人精品一区二区| 亚洲欧美成人精品一区二区| 色播亚洲综合网| 三级国产精品欧美在线观看| 下体分泌物呈黄色| 中文天堂在线官网| 亚洲欧美一区二区三区国产| 18+在线观看网站| 日韩av不卡免费在线播放| 简卡轻食公司| av在线观看视频网站免费| 亚洲精品中文字幕在线视频 | 哪个播放器可以免费观看大片| 最近2019中文字幕mv第一页| 日韩欧美 国产精品| 亚洲人与动物交配视频| 男的添女的下面高潮视频| 国产精品99久久99久久久不卡 | 国产午夜精品久久久久久一区二区三区| 一区二区三区乱码不卡18| 熟女电影av网| 国产亚洲精品久久久com| 国产老妇女一区| 国产在视频线精品| 亚洲国产高清在线一区二区三| 性色avwww在线观看| 久久精品国产亚洲av涩爱| 最近中文字幕高清免费大全6| 亚洲最大成人中文| 一区二区三区四区激情视频| 成人高潮视频无遮挡免费网站| 国产高清有码在线观看视频| 黄色一级大片看看| 一区二区三区四区激情视频| 人人妻人人澡人人爽人人夜夜| 简卡轻食公司| 又大又黄又爽视频免费| a级一级毛片免费在线观看| 丝袜美腿在线中文| 欧美精品一区二区大全| 精品99又大又爽又粗少妇毛片| 一边亲一边摸免费视频| 日韩,欧美,国产一区二区三区| 国内精品宾馆在线| 亚洲熟女精品中文字幕| 国产成人精品一,二区| 观看美女的网站| 国产av码专区亚洲av| 秋霞在线观看毛片| 亚洲综合色惰| 亚洲国产精品999| 欧美日韩国产mv在线观看视频 | 欧美一区二区亚洲| 成年女人看的毛片在线观看| 女人被狂操c到高潮| 黑人高潮一二区| 十八禁网站网址无遮挡 | 一区二区三区乱码不卡18| 国产亚洲5aaaaa淫片| 国产综合懂色| 99九九线精品视频在线观看视频| 亚洲国产高清在线一区二区三| 干丝袜人妻中文字幕| 五月玫瑰六月丁香| 日韩,欧美,国产一区二区三区| 男人爽女人下面视频在线观看| av在线观看视频网站免费| 国产大屁股一区二区在线视频| 99九九线精品视频在线观看视频| 免费观看在线日韩| 国产精品蜜桃在线观看| 高清av免费在线| 成人免费观看视频高清| 国产中年淑女户外野战色| 亚洲av男天堂| 欧美激情国产日韩精品一区| 久久久色成人| 国内揄拍国产精品人妻在线| 免费看不卡的av| 亚洲欧美清纯卡通| 免费观看a级毛片全部| 成人一区二区视频在线观看| 少妇猛男粗大的猛烈进出视频 | 国产久久久一区二区三区| 亚洲精品国产色婷婷电影| 精品国产露脸久久av麻豆| 韩国高清视频一区二区三区| 亚洲av福利一区| 国产精品.久久久| 99热全是精品| 亚洲自偷自拍三级| 五月开心婷婷网| 韩国av在线不卡| 97超视频在线观看视频| 久久久久国产网址| 51国产日韩欧美| 亚洲av男天堂| 国产成人freesex在线| 黄色视频在线播放观看不卡| 美女国产视频在线观看| 欧美激情国产日韩精品一区| 简卡轻食公司| 七月丁香在线播放| 日韩国内少妇激情av| 日韩 亚洲 欧美在线| 色吧在线观看| www.av在线官网国产| 少妇熟女欧美另类| 在线观看三级黄色| 亚洲经典国产精华液单| 色视频www国产| 一边亲一边摸免费视频| 亚洲成人av在线免费| 嘟嘟电影网在线观看| 久久久国产一区二区| av天堂中文字幕网| 一级av片app| 一级毛片电影观看| av.在线天堂| 蜜桃久久精品国产亚洲av| av在线天堂中文字幕| 国产高潮美女av| 精品人妻一区二区三区麻豆| 最近中文字幕高清免费大全6| 久久精品人妻少妇| 国产精品麻豆人妻色哟哟久久| 亚洲aⅴ乱码一区二区在线播放| 亚洲av欧美aⅴ国产| 在线观看人妻少妇| 欧美zozozo另类| 日产精品乱码卡一卡2卡三| 国产探花在线观看一区二区|