• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Particle-filter-based walking prediction model for occlusion situations*

    2013-11-01 02:10:55YoonchangSungWoojinChung

    Yoonchang Sung, Woojin Chung

    (School of Mechanical Engineering, Korea University, Seoul 136-713, Korea)

    Particle-filter-based walking prediction model for occlusion situations*

    Yoonchang Sung, Woojin Chung

    (School of Mechanical Engineering, Korea University, Seoul 136-713, Korea)

    In the field of mobile robotics, human tracking has emerged as an important objective for facilitating human-robot interaction. In this paper, we propose a particle-filter-based walking prediction model that will address an occlusion situation. Since the target being tracked is a human leg, a motion model for a leg is required. The validity of the proposed model is verified experimentally.

    human-following; particle filter; motion model

    0 Introduction

    Human-following, combined with human-friendly technology, is currently being actively developed. Human-following can be applied in many service areas, including guide robots in a museum, nursing robots in a hospital, or porter robots in a factory.

    In order to achieve human-following functionality, an estimation process is required. There are many Bayesian approaches to estimate a target of interest. A particle filter is a well-known one of these approaches. The advantages of a particle filter over a Kalman filter or extended Kalman filter are that multimodal states of a target can be represented and that nonlinear and non-Gaussian motion can be handled. A description of a particle filter can be found in Ref.[1]. Moreover, a particle filter can deal with an occlusion over a short time period. In this paper, we propose a walking prediction model that considers the occlusion situation and implement it into a particle filter.

    Various sensors can be adopted to visualize a human from the viewpoint of a mobile robot. In the tracking community, Refs.[2] and [3], vision sensors and laser sensors are the most popular. In our method, we use a laser range finder (LRF) as our sensor. An LRF is able to obtain accurate distance information. The target being tracked is a human leg. A human leg is chosen, not only because obstacles are normally placed at the height of a human leg, but also because it is easy to integrate with an autonomous navigation function. There have been many human leg tracking studies, for example, Refs.[4] and [5]. Our proposed walking prediction model, therefore, is based on a leg motion.

    It is very important to keep track of a target when the target person is occluded from the robot's view by an obstacle. This paper is based on our previous research[6]. In Ref.[6], to extract leg data from sensor information, a novel outlier detection method, supported by a vector data description, is described. The walking prediction model is presented and applied using a particle filter.

    The rest of this paper is organized as follows. In section 1, sampling importance resampling related to a particle filter is explained briefly. Section 2 presents the proposed walking prediction model. Experimental results are shown in section 3. Section 4 concludes this paper.

    1 Particle filter

    Particle filtering is a Monte Carlo method that has been studied for several decades[7]. The method of particle filtering is to represent a set of random samples with associated weights for posterior probability, which is represented by

    {xi(k), wi(k)}Ni=1.

    Conventional particle filtering, however, has a problem of sample degeneracy that could lower the diversity of the samples. To address this problem, the use of a sampling importance resampling (SIR) filter is suggested in Refs.[8] and [9]. Due to its resampling step, the concentration of samples with large weights can be realized maintaining the diversity of samples. According to Ref.[1], the posterior probability of the particle filter at time k can be computed as

    (1)

    where N is the total number of samples used.

    (2)

    Eq.(2) presents the motion model for a leg. εkis the process noise at time k. In this manner, we implement stepped impedance resonator (SIR) filter to estimate the states of targets about legs. The next step is to define the motion model for a leg so that we can propose the walking prediction model.

    2 Walking prediction model

    We propose the walking prediction model as the motion model for application to an SIR filter in order to address occlusion situations.

    Human walking consists of straight walking and rotating walking in a 2-D plane. According to Mochon’s research[10], we can assume that straight walking is a uniformly accelerated motion. By using previously extracted leg data, we can predict rotating walking as well.

    In this paper, we consider the case when another pedestrian passes between the target person and the robot, that is, an occlusion over a short time period. The objective of the walking prediction model is to predict the motion of straight walking and that of rotating walking on next time step based on 10 time steps of extracted leg information before the occlusion occurs.

    As shown in Fig.1(a), assuming that straight walking is a uniformly accelerated motion, the maximum velocity of straight walking,V, for T seconds can be computed in the following equation using the previous walking information.

    (3)

    Fig.1 Walking prediction model

    In the case of rotating walking, previous walking information must be transformed into the local coordinate system of the time step that the target person is missed, as shown in Fig.1(b). The rotated degree can be obtained by the difference between θ1and θ2according to

    θ1=arctan2((y1-y0),(x1-x0))×180/π,

    θ2=arctan2((y2-y1),(x2-x1))×180/π.

    (4)

    For each time step, the values of Eqs.(3) and (4) are obtained for the prediction process. In other words, samples are predicted on the basis of this walking prediction model.

    3 Experimental results

    To evaluate the performance of our method, we experimented with a mobile robot, Pioneer 3DX, in a real-world environment. The used LRF is Sick LMS-200. The sensor frequency is set to 100 ms.

    Fig.2 shows the mobile robot platform and experimental environment where another pedestrian passes between the target person and mobile robot.

    Fig.2 Experimental environment for occlusion situation

    Fig.3 illustrates the results of the experiment is illustrated using a Matlab simulation. The different colored marks imply different samples for the target.

    In Fig.3(a), the target person is occluded by another pedestrian, and therefore the legs of the target person, at that time, cannot be detected. Consequently, samples for targets of the target person’s legs are diverged as there are no observed measurements with respect to the target person.

    However, after the occlusion has occurred, as shown in Fig.3(b), the target person is rediscovered. The time difference between Fig.3(a) and Fig.3(b) is 2 s.

    Fig.3 Results of the case

    Fig.4 indicates the error distance of the proposed walking prediction model applied to the experiment.

    Fig.4 Error distance of walking prediction model

    The errors are obtained by Euclidean distance between the measurement and the center of the samples of the targets. As seen in Fig.4, at the time of the occlusion, the amount of error is increases in order to search for the target in a larger area. According to the proposed walking prediction model, it can be seen that the mobile robot platform can retrack the target person after the occlusion.

    4 Conclusion

    In this paper, we propose a walking prediction model using a particle filter. The proposed walking prediction model considers both straight walking and rotating walking simultaneously. We conduct experiments to show that our method can robustly deal with an occlusion over a short time period.

    [1] Arulampalam M S, Maskell S, Gordon N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 2002, 50(2): 174-188.

    [2] Suzuki S, Mitsukura Y, Takimoto H, et al. A human tracking mobile-robot with face detection. In: Proceedings of the 35th Annual Conference of IEEE Industrial Electronics (IECON’09), Porto, Portugal, 2009: 4217-4222.

    [3] CUI Jin-shi, ZHA Hong-bin, ZHAO Hui-jing, et al. Laser based detection and tracking of multiple people in crowds. Computer Vision and Image Understanding, 2007, 106(2/3): 300-312.

    [4] SHAO Xiao-wei, ZHAO Hui-jing, Nakamura K, et al. Detection and tracking of multiple pedestrians by using laser range scanners. In: Proceedings of IEE/RSJ International Conference on Intelligence Robots and Systems, San Diego, California, USA, 2007: 2174-2179.

    [5] Lee J H, Tsubouchi T, Yammamoto K, et al. People tracking using a robot in motion with laser range finder. In: Proceedings of IEE/RSJ International Conference on Intelligence Robots and Systems, Beijing, China, 2006: 2936-2942.

    [6] Chung W J, Kim H Y, Yoo Y K, et al. The detection and following of human legs through inductive approaches for a mobile robot with a single laser range finder. IEEE Transactions on Industrial Electronics, 2012, 59(8): 3156-3166.

    [7] Doucet A, de Freitas N, Gordon N. An introduction to sequential Monte Carlo methods// Doucet A, de Freitas N, Gordon N. Sequential Monte Carlo methods in practice. Springer-Verlag, New York, 2001.

    [8] Gordon N J, Salmond D J, Smith A F M. Novel approach to nonlinear and non-Gaussian Bayesian models. In: IEE Proceedings on Radar and Signal Processing, 1993, 140(2): 107-113.

    [9] Almeida A, Almeida J, Araujo R. Real-time tracking of multiple moving objects using particle filters and probabilistic data association. Automatika, 2005, 46(1/2): 39-48.

    [10] Mochon S, McMahon T A. Ballistic walking. Journal of Biomechanics, 1980, 13(1): 49-57.

    date: 2013-05-11

    The MKE(Ministry of Knowledge Economy), Korea, under the ITRC(Information Technology Research Center) support program (NIPA-2013-H0301-13-2006) supervised by the NIPA(National IT Industry Promotion Agency); The National Research Foundation of Korea(NRF) grant funded by the Korea government(MEST) (2013-029812); The MKE(Ministry of Knowledge Economy), Korea, under the Human Resources Development Program for Convergence Robot Specialists support program supervised by the NIPA (National IT Industry Promotion Agency) (NIPA-2013-H1502-13-1001)

    Woojin Chung (smartrobot@korea.ac.kr)

    CLD number: TP242.6 Document code: A

    1674-8042(2013)03-0263-04

    10.3969/j.issn.1674-8042.2013.03.013

    黑人巨大精品欧美一区二区蜜桃| 人成视频在线观看免费观看| 交换朋友夫妻互换小说| 久久久久网色| av超薄肉色丝袜交足视频| 成年版毛片免费区| 久久久久久久精品吃奶| 女性被躁到高潮视频| 最近最新免费中文字幕在线| 麻豆乱淫一区二区| 操出白浆在线播放| 免费看a级黄色片| 一本—道久久a久久精品蜜桃钙片| 啦啦啦免费观看视频1| 国产一区二区 视频在线| 女人久久www免费人成看片| 在线十欧美十亚洲十日本专区| 中国美女看黄片| 亚洲国产成人一精品久久久| 人人妻人人澡人人看| 男女无遮挡免费网站观看| 国产精品一区二区免费欧美| 国产成人精品在线电影| 亚洲国产欧美网| 丝袜美腿诱惑在线| 美女福利国产在线| 久久人妻福利社区极品人妻图片| 久久精品亚洲精品国产色婷小说| 久久人妻福利社区极品人妻图片| 日韩成人在线观看一区二区三区| 777米奇影视久久| 18禁国产床啪视频网站| 亚洲 欧美一区二区三区| 一区二区三区精品91| 国产亚洲精品第一综合不卡| www.熟女人妻精品国产| 男女床上黄色一级片免费看| 建设人人有责人人尽责人人享有的| 免费在线观看黄色视频的| 国产淫语在线视频| 一进一出抽搐动态| 久久久水蜜桃国产精品网| 高清欧美精品videossex| 高清黄色对白视频在线免费看| 蜜桃国产av成人99| 50天的宝宝边吃奶边哭怎么回事| 精品免费久久久久久久清纯 | 亚洲熟女精品中文字幕| av在线播放免费不卡| 欧美激情久久久久久爽电影 | 欧美日韩亚洲高清精品| 国产成人免费无遮挡视频| 18禁美女被吸乳视频| 日日爽夜夜爽网站| 69精品国产乱码久久久| 国产精品二区激情视频| 精品福利永久在线观看| 一边摸一边做爽爽视频免费| 午夜老司机福利片| kizo精华| 亚洲自偷自拍图片 自拍| 午夜福利在线观看吧| 纯流量卡能插随身wifi吗| www.熟女人妻精品国产| 免费高清在线观看日韩| 日韩一区二区三区影片| 精品国产乱码久久久久久男人| 国产精品亚洲一级av第二区| 国产极品粉嫩免费观看在线| 精品人妻1区二区| 免费在线观看视频国产中文字幕亚洲| 美女主播在线视频| 黄片小视频在线播放| 亚洲精品久久午夜乱码| 国产精品.久久久| 日本精品一区二区三区蜜桃| 欧美日韩黄片免| 亚洲精品成人av观看孕妇| 美女福利国产在线| 最黄视频免费看| 一区福利在线观看| 99久久99久久久精品蜜桃| 中文字幕色久视频| 成人亚洲精品一区在线观看| 欧美 日韩 精品 国产| 伦理电影免费视频| 在线观看人妻少妇| 亚洲人成电影免费在线| 欧美变态另类bdsm刘玥| 亚洲va日本ⅴa欧美va伊人久久| 免费不卡黄色视频| 捣出白浆h1v1| 黄色 视频免费看| 夜夜骑夜夜射夜夜干| 三级毛片av免费| 十八禁网站网址无遮挡| 757午夜福利合集在线观看| 国产成人一区二区三区免费视频网站| 美女高潮喷水抽搐中文字幕| 国产日韩欧美视频二区| 精品欧美一区二区三区在线| 80岁老熟妇乱子伦牲交| 老司机福利观看| 亚洲精品粉嫩美女一区| 黄色怎么调成土黄色| 桃红色精品国产亚洲av| 国产免费av片在线观看野外av| 欧美激情久久久久久爽电影 | 极品人妻少妇av视频| 99国产综合亚洲精品| 国产在线观看jvid| 一级毛片电影观看| 国产精品.久久久| 1024香蕉在线观看| 在线观看www视频免费| 91老司机精品| 别揉我奶头~嗯~啊~动态视频| 亚洲精品一二三| 麻豆乱淫一区二区| 青青草视频在线视频观看| 免费观看a级毛片全部| 91精品三级在线观看| 国产欧美日韩一区二区三区在线| 99久久99久久久精品蜜桃| 极品人妻少妇av视频| 欧美日韩亚洲综合一区二区三区_| 免费在线观看视频国产中文字幕亚洲| 别揉我奶头~嗯~啊~动态视频| 天堂动漫精品| 免费av中文字幕在线| 国产黄频视频在线观看| 国产真人三级小视频在线观看| 免费一级毛片在线播放高清视频 | 咕卡用的链子| 欧美精品人与动牲交sv欧美| 国产欧美日韩一区二区三| 久久热在线av| 日韩三级视频一区二区三区| 亚洲情色 制服丝袜| 久久av网站| 91老司机精品| 老司机在亚洲福利影院| 亚洲av日韩精品久久久久久密| 91精品国产国语对白视频| videosex国产| 91精品国产国语对白视频| 99国产综合亚洲精品| 热99国产精品久久久久久7| av有码第一页| 一本大道久久a久久精品| 亚洲国产欧美一区二区综合| 亚洲全国av大片| 在线av久久热| 久久天躁狠狠躁夜夜2o2o| av在线播放免费不卡| 国产日韩欧美视频二区| 亚洲色图综合在线观看| 18在线观看网站| 捣出白浆h1v1| www.自偷自拍.com| 免费日韩欧美在线观看| 欧美精品av麻豆av| 亚洲人成电影免费在线| 日本a在线网址| 在线观看免费视频网站a站| 国产一区二区 视频在线| 视频在线观看一区二区三区| 欧美老熟妇乱子伦牲交| 精品国产亚洲在线| 色视频在线一区二区三区| 一本—道久久a久久精品蜜桃钙片| 久久免费观看电影| 国产淫语在线视频| 日韩中文字幕欧美一区二区| 日本av手机在线免费观看| 如日韩欧美国产精品一区二区三区| 五月开心婷婷网| 一区二区日韩欧美中文字幕| 动漫黄色视频在线观看| 91九色精品人成在线观看| 欧美另类亚洲清纯唯美| 日本av免费视频播放| 男女之事视频高清在线观看| 欧美黑人欧美精品刺激| 亚洲少妇的诱惑av| 国产精品99久久99久久久不卡| 女人久久www免费人成看片| 波多野结衣av一区二区av| 国产成人免费观看mmmm| 日韩欧美一区二区三区在线观看 | 久久人人97超碰香蕉20202| 久久久久久人人人人人| 成人永久免费在线观看视频 | 手机成人av网站| 色尼玛亚洲综合影院| 国产成人av激情在线播放| 国内毛片毛片毛片毛片毛片| 亚洲第一av免费看| 国产精品久久久久久精品古装| 亚洲精品国产色婷婷电影| 国产成人一区二区三区免费视频网站| 天天操日日干夜夜撸| 美女高潮到喷水免费观看| 免费少妇av软件| 国产99久久九九免费精品| 99香蕉大伊视频| 欧美精品一区二区大全| 亚洲男人天堂网一区| 国产日韩欧美亚洲二区| 亚洲精品成人av观看孕妇| 成人精品一区二区免费| 国产人伦9x9x在线观看| aaaaa片日本免费| 国产一区二区三区在线臀色熟女 | 欧美激情 高清一区二区三区| 91成人精品电影| 亚洲中文字幕日韩| 国产片内射在线| 超色免费av| 俄罗斯特黄特色一大片| 国产伦理片在线播放av一区| av天堂在线播放| 免费在线观看影片大全网站| 下体分泌物呈黄色| 搡老熟女国产l中国老女人| 高清在线国产一区| 亚洲成a人片在线一区二区| av又黄又爽大尺度在线免费看| 精品国产一区二区久久| 嫁个100分男人电影在线观看| 欧美日韩亚洲综合一区二区三区_| 久久久精品免费免费高清| 99久久人妻综合| 久久久精品区二区三区| 岛国在线观看网站| 欧美乱码精品一区二区三区| 黑人猛操日本美女一级片| 极品人妻少妇av视频| 青草久久国产| 交换朋友夫妻互换小说| 国产av精品麻豆| 十八禁网站网址无遮挡| 亚洲视频免费观看视频| 国产xxxxx性猛交| 国产视频一区二区在线看| 在线十欧美十亚洲十日本专区| 亚洲av片天天在线观看| 精品国产一区二区久久| 51午夜福利影视在线观看| 夜夜爽天天搞| 狠狠狠狠99中文字幕| 国产男女超爽视频在线观看| 91精品三级在线观看| 国产不卡av网站在线观看| 国产又爽黄色视频| 丁香六月天网| 午夜福利影视在线免费观看| 男女高潮啪啪啪动态图| 人妻久久中文字幕网| 操美女的视频在线观看| 久久这里只有精品19| 日本av免费视频播放| 亚洲五月婷婷丁香| 久久亚洲真实| 十八禁网站免费在线| 肉色欧美久久久久久久蜜桃| videosex国产| 精品视频人人做人人爽| 国产成人欧美| 999精品在线视频| 又黄又粗又硬又大视频| 99久久99久久久精品蜜桃| 真人做人爱边吃奶动态| 午夜免费鲁丝| 亚洲精品av麻豆狂野| 脱女人内裤的视频| 看免费av毛片| 国产av国产精品国产| 国产成人av激情在线播放| 制服人妻中文乱码| 在线播放国产精品三级| 色综合欧美亚洲国产小说| av片东京热男人的天堂| 精品国产一区二区久久| 国产精品秋霞免费鲁丝片| 国产又爽黄色视频| 深夜精品福利| 性高湖久久久久久久久免费观看| 一二三四社区在线视频社区8| 亚洲精品美女久久久久99蜜臀| 日韩欧美一区视频在线观看| 中文亚洲av片在线观看爽 | 曰老女人黄片| 中文字幕精品免费在线观看视频| 亚洲自偷自拍图片 自拍| 国产精品99久久99久久久不卡| 中文亚洲av片在线观看爽 | 久久精品亚洲精品国产色婷小说| 国产一区二区 视频在线| 桃花免费在线播放| 69精品国产乱码久久久| 中文字幕人妻熟女乱码| av福利片在线| 精品国产一区二区久久| 久久99一区二区三区| 波多野结衣av一区二区av| 日韩视频在线欧美| 成人av一区二区三区在线看| 午夜福利视频精品| 久久精品91无色码中文字幕| 亚洲,欧美精品.| 国产精品免费一区二区三区在线 | 两个人免费观看高清视频| 精品视频人人做人人爽| 日韩一区二区三区影片| 一级毛片精品| 久久ye,这里只有精品| 91老司机精品| 国产99久久九九免费精品| 久久久久久久久免费视频了| 精品国内亚洲2022精品成人 | 欧美日韩国产mv在线观看视频| 欧美大码av| 成人18禁高潮啪啪吃奶动态图| 国产成人免费无遮挡视频| 国产精品国产高清国产av | 亚洲欧美色中文字幕在线| 九色亚洲精品在线播放| 亚洲精品在线美女| 午夜福利视频在线观看免费| 1024香蕉在线观看| 国产精品av久久久久免费| 国产亚洲精品久久久久5区| 亚洲av电影在线进入| 欧美精品一区二区大全| 麻豆国产av国片精品| 自拍欧美九色日韩亚洲蝌蚪91| 成人18禁高潮啪啪吃奶动态图| 丰满少妇做爰视频| 麻豆乱淫一区二区| 99国产极品粉嫩在线观看| 久久精品aⅴ一区二区三区四区| 热99久久久久精品小说推荐| 在线天堂中文资源库| 亚洲av日韩精品久久久久久密| 亚洲欧美一区二区三区黑人| 高清毛片免费观看视频网站 | 少妇精品久久久久久久| 国产又爽黄色视频| 国产日韩欧美亚洲二区| 999精品在线视频| 12—13女人毛片做爰片一| 国产精品国产高清国产av | 色综合婷婷激情| 97人妻天天添夜夜摸| 激情视频va一区二区三区| 日韩欧美国产一区二区入口| 亚洲伊人色综图| 欧美精品高潮呻吟av久久| 99在线人妻在线中文字幕 | 亚洲第一av免费看| 欧美黑人精品巨大| 欧美黑人欧美精品刺激| 国产精品.久久久| 在线看a的网站| 成人黄色视频免费在线看| 十八禁人妻一区二区| 成人18禁在线播放| 欧美日韩亚洲国产一区二区在线观看 | 少妇 在线观看| 亚洲国产毛片av蜜桃av| a级片在线免费高清观看视频| 在线天堂中文资源库| 亚洲精品中文字幕一二三四区 | 久久午夜亚洲精品久久| 一本色道久久久久久精品综合| 50天的宝宝边吃奶边哭怎么回事| 激情在线观看视频在线高清 | 免费在线观看完整版高清| 久久人人97超碰香蕉20202| 欧美性长视频在线观看| a级毛片黄视频| 一级黄色大片毛片| 国产野战对白在线观看| 日韩欧美一区视频在线观看| 国产在线视频一区二区| 亚洲精品乱久久久久久| 最近最新免费中文字幕在线| 伊人久久大香线蕉亚洲五| 国产精品欧美亚洲77777| 久久久国产一区二区| 9色porny在线观看| 狠狠婷婷综合久久久久久88av| 交换朋友夫妻互换小说| 国产又色又爽无遮挡免费看| av不卡在线播放| 我的亚洲天堂| 啪啪无遮挡十八禁网站| 亚洲成av片中文字幕在线观看| 亚洲国产毛片av蜜桃av| 亚洲久久久国产精品| 亚洲av电影在线进入| 极品教师在线免费播放| 久久久久精品人妻al黑| av天堂在线播放| 久久人人爽av亚洲精品天堂| 国精品久久久久久国模美| 欧美乱码精品一区二区三区| 天天躁日日躁夜夜躁夜夜| 亚洲欧美精品综合一区二区三区| 亚洲精品成人av观看孕妇| 亚洲国产成人一精品久久久| www.精华液| 一级毛片女人18水好多| 日本vs欧美在线观看视频| 久久香蕉激情| 日韩中文字幕视频在线看片| 欧美另类亚洲清纯唯美| 欧美人与性动交α欧美精品济南到| 日韩大片免费观看网站| 看免费av毛片| 欧美日韩国产mv在线观看视频| 不卡av一区二区三区| 亚洲午夜精品一区,二区,三区| 一本久久精品| 咕卡用的链子| 久久精品亚洲精品国产色婷小说| 黄色成人免费大全| 91成人精品电影| 成年人免费黄色播放视频| 天天操日日干夜夜撸| 欧美日韩视频精品一区| 欧美国产精品一级二级三级| 大片免费播放器 马上看| 一二三四在线观看免费中文在| 久久精品国产a三级三级三级| 亚洲国产欧美日韩在线播放| 国产免费av片在线观看野外av| h视频一区二区三区| 黄频高清免费视频| 日本vs欧美在线观看视频| 亚洲中文日韩欧美视频| 亚洲国产欧美网| 99久久国产精品久久久| 黄色视频不卡| 亚洲伊人色综图| 国产在线精品亚洲第一网站| 亚洲人成电影免费在线| 亚洲av国产av综合av卡| 免费看十八禁软件| 日韩中文字幕视频在线看片| 曰老女人黄片| 欧美老熟妇乱子伦牲交| 99香蕉大伊视频| 久久精品国产综合久久久| 久久亚洲精品不卡| 男女边摸边吃奶| 久久久精品国产亚洲av高清涩受| 纯流量卡能插随身wifi吗| 在线亚洲精品国产二区图片欧美| 精品乱码久久久久久99久播| 久久久国产成人免费| 人成视频在线观看免费观看| 黑人猛操日本美女一级片| 悠悠久久av| 蜜桃在线观看..| 亚洲成a人片在线一区二区| 国产精品一区二区免费欧美| 成人国产一区最新在线观看| 丁香欧美五月| 久久精品人人爽人人爽视色| 男女下面插进去视频免费观看| 亚洲伊人久久精品综合| 熟女少妇亚洲综合色aaa.| 在线av久久热| 日日爽夜夜爽网站| 午夜精品久久久久久毛片777| 欧美黄色淫秽网站| 桃红色精品国产亚洲av| 99精品欧美一区二区三区四区| 精品亚洲成国产av| 国产一区二区激情短视频| 纵有疾风起免费观看全集完整版| 99久久精品国产亚洲精品| 久久99热这里只频精品6学生| 成人av一区二区三区在线看| 19禁男女啪啪无遮挡网站| 后天国语完整版免费观看| 亚洲情色 制服丝袜| 激情视频va一区二区三区| 久久久精品免费免费高清| 纵有疾风起免费观看全集完整版| 国产亚洲午夜精品一区二区久久| 热99re8久久精品国产| 高清毛片免费观看视频网站 | av不卡在线播放| 精品卡一卡二卡四卡免费| 久久久久久免费高清国产稀缺| 人人妻人人爽人人添夜夜欢视频| 久久人妻熟女aⅴ| 中文字幕另类日韩欧美亚洲嫩草| 日本黄色日本黄色录像| 18禁国产床啪视频网站| 亚洲人成77777在线视频| 欧美激情高清一区二区三区| 电影成人av| 亚洲第一欧美日韩一区二区三区 | 国产精品一区二区在线不卡| 侵犯人妻中文字幕一二三四区| 久久狼人影院| 男女下面插进去视频免费观看| 首页视频小说图片口味搜索| 搡老熟女国产l中国老女人| 精品亚洲乱码少妇综合久久| 欧美激情 高清一区二区三区| 欧美精品人与动牲交sv欧美| 成人国语在线视频| 99国产精品99久久久久| 在线观看66精品国产| 亚洲精品久久成人aⅴ小说| 人妻一区二区av| 亚洲一码二码三码区别大吗| 国产亚洲欧美精品永久| 老司机福利观看| 在线播放国产精品三级| 久久影院123| 色视频在线一区二区三区| 成人av一区二区三区在线看| 每晚都被弄得嗷嗷叫到高潮| 亚洲国产成人一精品久久久| 在线永久观看黄色视频| 久久热在线av| 国产欧美日韩一区二区三区在线| 亚洲人成电影观看| 脱女人内裤的视频| 精品亚洲成a人片在线观看| 国产有黄有色有爽视频| 国产精品.久久久| 黄频高清免费视频| 最近最新中文字幕大全免费视频| 中文字幕人妻熟女乱码| 中文字幕色久视频| 又紧又爽又黄一区二区| 人人妻人人爽人人添夜夜欢视频| 久久99一区二区三区| 多毛熟女@视频| 757午夜福利合集在线观看| 变态另类成人亚洲欧美熟女 | 黄色片一级片一级黄色片| 岛国在线观看网站| 日韩欧美三级三区| 免费在线观看黄色视频的| 中文字幕av电影在线播放| 999久久久精品免费观看国产| 午夜福利免费观看在线| 少妇裸体淫交视频免费看高清 | 女警被强在线播放| 午夜福利影视在线免费观看| 久久精品aⅴ一区二区三区四区| 老司机在亚洲福利影院| 久久国产精品男人的天堂亚洲| bbb黄色大片| 黄色 视频免费看| 91成年电影在线观看| 一级片'在线观看视频| 99久久人妻综合| 日韩有码中文字幕| 欧美性长视频在线观看| 日本精品一区二区三区蜜桃| 99久久国产精品久久久| 大片免费播放器 马上看| 巨乳人妻的诱惑在线观看| 黄片大片在线免费观看| 正在播放国产对白刺激| 999久久久国产精品视频| 国产伦人伦偷精品视频| 免费av中文字幕在线| 亚洲全国av大片| 久久人妻福利社区极品人妻图片| 日本一区二区免费在线视频| xxxhd国产人妻xxx| 在线亚洲精品国产二区图片欧美| 日本黄色日本黄色录像| 久久亚洲真实| 黑丝袜美女国产一区| 熟女少妇亚洲综合色aaa.| av又黄又爽大尺度在线免费看| 国产一区二区三区视频了| 久久人妻熟女aⅴ| 看免费av毛片| 巨乳人妻的诱惑在线观看| 香蕉国产在线看| 久久 成人 亚洲| 亚洲成人免费av在线播放| 久9热在线精品视频| 国产精品国产高清国产av | xxxhd国产人妻xxx| 97在线人人人人妻| 肉色欧美久久久久久久蜜桃| 中文字幕最新亚洲高清| 亚洲第一av免费看| 国产色视频综合| 高清欧美精品videossex| 亚洲精品美女久久久久99蜜臀| 色精品久久人妻99蜜桃| 午夜成年电影在线免费观看| 欧美成人午夜精品| a级片在线免费高清观看视频| 国产国语露脸激情在线看| 9热在线视频观看99| 日韩熟女老妇一区二区性免费视频| 亚洲综合色网址| 亚洲欧美激情在线| 香蕉丝袜av| 啦啦啦中文免费视频观看日本|