• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Studyof velocityfluctuations in the plenum of a 3/4open jet automotive wind tunnel

    2013-10-21 11:54:18JIAQingYANGZhigang
    空氣動力學(xué)學(xué)報 2013年2期
    關(guān)鍵詞:布置圖方根值風(fēng)洞

    JIA Qing,YANG Zhi-gang

    (Shanghai Automotive Wind Tunnel Center,Tongji University,Shanghai 201804,China)

    0 Introduction

    It is well known that flow inside the plenum of an open jet wind tunnel has apparent unsteady characteristics,commonly referred to as buffeting,which could arise from the open jet shear layer or the feedback effect of the collectors.The resultant unsteady test environment is undesirable for aero-acoustic and aerodynamic measurements as it yields unsteady measurements of aerodynamic forces and high aero-acoustic noise levels.In the extreme case,it can be difficult for the facility control system to maintain steady wind speed conditions or even the safety of the facility could be at stake.Though in recent years,the elimination/reduction of buffeting phenomenon in low speed wind tunnels has attracted considerable attention,but due to the problem's complication,the mechanism for buffeting phenomena is still not fully understood.

    To eliminate buffeting phenomenon and to establish a good axial static pressure distribution in open jet wind tunnels,it is necessary to understand the flow characteristics inside plenum.For the Shanghai Automotive Wind Tunnel Center Project[1]which has a full scale aerodynamic and aero-acoustic wind tunnel,apilot wind tunnel with the 1∶15scale was constructed for such studies.The model wind tunnel was found to have a good axial static pressure[2-3].The current investigation focuses on the unsteady aspect of the flow characteristics inside the plenum.

    Both test and the computational fluid dynamics(CFD)were used in the present study.As indicated in reference[2],the axial static pressure distribution in the plenum of the model wind tunnel is well simulated with the CFD method.For the unsteady flow in the plenum of the model wind tunnel,the simulation can be carried out using the DNS or LES approaches.These approaches,however,demand high computational resources in time and storage.In the present study,a simplified method,the URAN approach,is used.The velocity at the inlet assumed to be fluctuating to establish an unsteady environment,and the unsteady flow field in the plenum viewed as a response to the velocity fluctuation at the inlet.

    Earlier test results showed that in the plenum of the model wind tunnel under the present study there were strong pressure fluctuations at the low speed conditions at some frequencies especially at 20Hz[4].Since the frequency is relatively low,the URAN approach is deemed reasonable.In the present study,both CFD method and tests have been carried out.In the simulation,the unsteady inlet boundary condition was used to set an unsteady flow field environment inside the simulating domain.The velocity was assumed to be a combination of a constant mean velocity and an oscillating component.For the same constant mean velocity,the frequencies of the oscillating velocities were varied to study the response of the velocity fluctuations in the plenum to the varying inlet conditions.For a selected given oscillation,the mean velocity was varied in the simulations.The corresponding tests for unsteady flow field inside the plenum were carried out in the 1∶15scale wind tunnel test.The velocities of the nozzle outlet plane were set equal to the velocities at the same position used in the simulation.Finally the simulating and test result were compared and analyzed.

    1 Simulation

    1.1 Modeling

    Part of model open jet wind tunnel is shown in Figure 1,which includes the contraction part,the breathers,the nozzle,the plenum,the collectors and the diffuser.The dimensions for plenum chamber is 1.517min length,1.183min width,and 0.818min height.According to the 1:15scaled wind tunnel,the max velocity for the nozzle out plane is 45m/s.

    1.2 Discretization

    In the computational study,the Hex-Core meshes were used.The character of this kind of mesh was that in the main computational domain the hexahedral meshes were created and in the area near to the wall the triangle meshes were created.Thus the more accurate and economy hexahedral meshes were used for most of the computational domain.While due to the complicated shape of the collectors,the volume surrounding the collections were discretized with tetra meshes.The prism layers were created on the floor inside the domain.The resulting meshes are shown in Figure 2.

    Fig.1 Components of the virtual wind tunnel圖1 模型風(fēng)洞結(jié)構(gòu)組成

    Fig.2 Mesh圖2 網(wǎng)格

    1.3 Numerical method

    The commercial CFD code of Fluent[5]was used for the current analysis.In current study,CFD was performed in the framework of URAN to analyze the velocity fluctuations,which were found to be at relatively low frequencies.The incompressible continuity equation and unsteady Navier-Stokes equations were applied as the basic equations.The boundary conditions for the computations were set as follows:at the inlet for the contraction part of the virtual wind tunnel,the inlet velocity was assumed to be a combination of a constant mean and an oscillating component defined as following equations:

    Wherevdenotes the constant mean velocity which was set to 5m/s,andfrepresents the frequency of the oscillating velocity.From the acoustic test result shown in figure 3,the sound pressure which relates to the pressure fluctuation of the flow is found to have peaks at the frequencies less than 100Hz.So the oscillating frequency in formula(2)was set to 20Hz,30Hz,40Hz,45Hz,50Hz,80Hz,and 90Hz,respectively,in the simulation.For each case a turbulence level was set to 1%and a turbulent eddy viscosity ratio of 100was set for the turbulence field.At the exit of the virtual wind tunnel,the outflow condition was specified.Inviscid wall conditions were applied at the virtual wind tunnel side and top walls.On the wind tunnel floor,velocity was set to zero and the wall functions approach[6]was used to model the turbulence field at the viscous walls.

    Fig.3 Sound pressure level plots at low speeds圖3 低速情況下聲壓級測試圖

    In each of the computational cases,the simulation was conducted in three steps.At the first step,a steady state flow field was obtained using a uniform velocity inlet condition.At the second step,with the results from the steady state simulation as the initial condition,an unsteady simulation was conducted with time stepΔt=0.005using an oscillating velocity inlet conditions.The calculation would be stopped after the monitored points showing the definite periodical changes.At the third step,the sampling computation would be continued.The sampling time was defined as 1second in all cases.

    1.4 Test validation

    To validate the simulating method,the corresponding test for one situation was carried out.According to the simulation,the velocity for the nozzle outlet plane was set to 25m/s.During the test,the data at the same points as the simulation were obtained.

    In the simulation,for each case the velocity fluctuation data were acquired at the positions indicated in Figure 4.

    Fig.4 Location of testing points圖4 測點布置圖

    The points were set at varied axial positions:the nozzle exit plane(1,2,3),the shear layer region(4),the axial center(5),the collector inlet plane(6,7,8,9),the diffuser inlet plane(10).

    The RMS value of the velocity at the three directions from test and the simulation separately at the position of point 4,point 5,point 6and point 9 were compared and shown in figure 5.

    Fig.5 RMS value of the velocity圖5 速度均方根值圖

    The test result and the simulating result were found to agree well.Such agreement validated the simulating method used in the paper.

    1.5 Simulating results

    The data obtained in the time domain were changed into the frequency domain.Thus the power spectral density(PSD)figures for each point(see figure 6)were obtained as follows.

    Figure 6shows the velocity fluctuations with varied inlet oscillating frequencies at different positions.The labels on the right of the figure denote the different fluctuating frequencies which were set in the inlet velocities.

    From figures it was seen that at the position of the inlet plane the velocity fluctuations with different frequencies were successfully established.

    In the plenum,out of the nozzle plane the flow spout into the plenum.A typical jet flow was formed which intensified the unsteadiness of the flow.Further downstream,the velocity fluctuations at frequencies of 20Hz and 30Hz were gradually enlarged,while the fluctuations at other frequencies disappeared at the downstream positions.At the position of the collectors the peak value of the velocity fluctuation for the frequency of 20Hz became the dominant one.The frequency of 20Hz is just one of the buffeting frequencies inside the open-jet wind tunnel plenum.So we can imagine the flow power under the 20Hz have some relationship with the buffeting phenomenon.

    Since the frequency of 20Hz was the dominant one,then the cases for frequency of 20Hz were further simulated with different constant mean velocities.They were 2.5m/s,2.7m/s,2.83m/s,4.17m/s and 5m/s.The results for PSD value at different points were shown in figure 7.

    From figure 7it is noted that the peak of the velocity fluctuation appeared at the same frequency under the condition of varied constant mean velocities,which was still 20Hz.When the constant mean velocity of the inlet plane was less than 5m/s,the values of the velocity fluctuation were even higher.And at the position of collector the velocity fluctuation for 4.17m/s was enlarged mostly.

    To clearly observe the distribution of the flow pulsation at the frequency of 20Hz,the root mean square(RMS)value of the unsteady statistics velocity magnitude for the case with the oscillating frequency of 20Hz and the mean velocity of 4.17m/s was shown in figure 8.

    Figure 8(a)and(c)show the position of the observing section and the points,respectively.And the corresponding results are shown in the figure 8(b)and d).The distribution of the RMS value of the unsteady statistics velocity magnitude,which embodied the flow energy,is shown directly in figure 8(b).Out of the nozzle,the flow sprout into the plenum,at the position of the nozzle a shear layer was formed.Above the shear layer,the fluid outside the flow field with lower speed was entrained into the shear layer continually,which induced to the higher fluctuation.Below the shear layer,the fluid inside shear layer met the higher speed fluid inside the flow field;the speed difference caused the higher fluctuation here.At the position of the collectors,some of the flow was feedback,which will enlarge the upstream fluctuations.

    From figure 8(d)it could be more clearly that at the position of the nozzle outlet plane and the collectors the fluctuations were higher compared with the fluid inside the flow field.Thus the frequency of 20Hz must have relation with the construction of the nozzle and the collectors.

    Fig.8 RMS figure of the velocity magnitude圖8 速度均方根值圖

    2 Test

    The corresponding tests for unsteady flow inside the plenum were carried out.The contractive ratio of the contraction part was 1∶6,thus accord-ing to the simulating boundary conditions,the velocity for the nozzle outlet plane was set to 15m/s,16m/s,17m/s,25m/s and 30m/s separately.The PSD figures for the points are shown in figure 9and figure 10.

    From figure 9we saw that for different points,the peak of the velocity fluctuations all appeared at the frequency of 20Hz.And the value of the velocity fluctuation at the position of the collector was larger than that at the position of the nozzle outlet plane.

    Fig.9 PSD figure at different points for case of V=30m/s圖9 速度為30m/s時不同測點處速度自功率譜密度圖

    Fig.10 PSD figure for varied velocities圖10 不同速度下速度自功率譜密度圖

    From figure 10it is seenthat the velocity fluctuations all had peak value at the frequency of 20Hz.As the velocity of the nozzle outlet plane was 25m/s,the velocity fluctuation was amplified the most.The test result again showed the distribution of the velocity fluctuation of the flow inside the plenum of the wind tunnel.

    3 Discussions and conclusions

    To study the flow field inside the plenum of a low speed 3/4open-jet type wind tunnel,both the CFD method and the test were used.The unsteady character of the flow inside the plenum of the wind tunnel under the low speed condition was investigated.

    In the paper a simplified method was carried out in modeling the unsteady flow field.The inlet velocity was set as a combination of a mean velocity and an oscillating component.The frequencies of the fluctuation were set at 20Hz,30Hz,40Hz,45Hz,50Hz,80Hz,and 90Hz,respectively.For the case with oscillation frequency of 20Hz,the mean velocities at the inlet of the contraction were set at 2.5m/s,2.7m/s,2.83m/s,4.17m/s,and 5m/s,respectively.For these inlet velocity conditions,tests were carried out to study the unsteady flow field and to validate the simulating method.

    In the plenum of the wind tunnel,the flow sprout out from the nozzle and a typical jet flow was formed,which induced to the high velocity fluctuation.At the position of the collectors the flow was feedback which brought some of the fluctuation back into the shear layer enhancing the velocity fluctuation.At positions both above the shear layer and below it,the fluctuation seemed high because of the huge velocity differences.

    The velocity fluctuation,setting in the inlet velocity,was reserved and enhanced at the frequency of 20Hz and 30Hz.At the position of the collectors the value of the velocity fluctuation inside the flow at frequency of 20Hz was enhanced the most.With different invariable velocities the dominant frequency of the velocity fluctuation remains at 20Hz.

    [1]YANG Zhi-gang.Shanghai automotive wind tunnel center project[C].Proc.7thStüuttgart Symposium on Automotive and Engine Technology,2007.

    [2]JIA Qing,YANG Zhi-gang.Simulation and test research for model wind tunnel plenum at different collector angles[J].JournalofExperimentsinFluidMechanics,2007,12:93-96.

    [3]JIA Qing,YANG Zhi-gang.Numerical simulation on effects of breather on flow field of open-jet automotive model wind tunnel[J].JournalofComputerAided Engineering,2007.16:92-96.

    [4]ZHENG Zhi-qiang,YANG Zhi-gang.Experimental investigations of effects of collector on performances of automotive wind tunnel[C].SAE 2008 World Congress,SAE paper 2008-01-1206.

    [5]Fluent 6.0,F(xiàn)luent Inc,2002.

    [6]LAUNDER B E,SPALDING D B.The numerical computation of turbulent flows[J].ComputationalMethods inAppl.Mech.&Engineering,1974.3.

    猜你喜歡
    布置圖方根值風(fēng)洞
    磁流變彈性體減振單元動力學(xué)分析
    斑頭雁進風(fēng)洞
    客車平順性仿真及優(yōu)化
    改進的車輛振動響應(yīng)均方根值計算公式及其工程應(yīng)用*
    汽車工程(2019年9期)2019-10-10 01:16:04
    多耦合約束條件下鐵路站場總體布置圖自動生成方法研究
    黃風(fēng)洞貂鼠精
    基于NI cRIO平臺的脈沖燃燒風(fēng)洞控制系統(tǒng)設(shè)計
    FPSO天線布置圖設(shè)計解析
    干式變壓器三維布置圖結(jié)構(gòu)設(shè)計
    電氣化鐵道(2014年6期)2014-05-28 11:05:36
    建筑電氣工程施工識讀到施工的突破口
    91国产中文字幕| 欧美精品国产亚洲| 91久久精品电影网| 日本黄大片高清| 熟女电影av网| www.av在线官网国产| 久久亚洲国产成人精品v| 女的被弄到高潮叫床怎么办| 国产乱来视频区| 少妇人妻精品综合一区二区| 成人18禁高潮啪啪吃奶动态图 | 亚洲精品自拍成人| 国产有黄有色有爽视频| 日韩熟女老妇一区二区性免费视频| 久久av网站| 中国美白少妇内射xxxbb| 一级爰片在线观看| 亚洲欧美色中文字幕在线| 内地一区二区视频在线| 91精品国产九色| 熟女人妻精品中文字幕| 国产片特级美女逼逼视频| 久久久久国产精品人妻一区二区| 欧美3d第一页| 啦啦啦啦在线视频资源| 亚洲人与动物交配视频| 狂野欧美激情性bbbbbb| 国产精品熟女久久久久浪| 午夜老司机福利剧场| 最近中文字幕高清免费大全6| 亚洲国产精品一区三区| 国产亚洲午夜精品一区二区久久| 国产成人免费观看mmmm| 亚洲欧洲国产日韩| 婷婷色综合大香蕉| 免费人妻精品一区二区三区视频| av网站免费在线观看视频| 亚洲av欧美aⅴ国产| 狠狠婷婷综合久久久久久88av| 久久精品国产亚洲av涩爱| 亚洲无线观看免费| 男女无遮挡免费网站观看| 又黄又爽又刺激的免费视频.| av在线老鸭窝| 三上悠亚av全集在线观看| 精品亚洲成a人片在线观看| 成年av动漫网址| 国产无遮挡羞羞视频在线观看| 性色av一级| 另类精品久久| 免费看av在线观看网站| 国产精品一二三区在线看| 丝袜脚勾引网站| 亚洲欧美日韩另类电影网站| 亚洲精品成人av观看孕妇| 在现免费观看毛片| 91精品伊人久久大香线蕉| 国产av国产精品国产| 久久精品久久精品一区二区三区| 啦啦啦视频在线资源免费观看| 久久午夜综合久久蜜桃| 国国产精品蜜臀av免费| 有码 亚洲区| 精品一区在线观看国产| 亚洲内射少妇av| 久久人人爽人人爽人人片va| 777米奇影视久久| 777米奇影视久久| 日韩中文字幕视频在线看片| 亚洲国产精品专区欧美| www.色视频.com| 精品久久蜜臀av无| 午夜久久久在线观看| 精品一区在线观看国产| 久久ye,这里只有精品| 国国产精品蜜臀av免费| 久久精品久久精品一区二区三区| 国产免费一区二区三区四区乱码| 精品久久久精品久久久| 简卡轻食公司| 青春草国产在线视频| 久热久热在线精品观看| 高清在线视频一区二区三区| 男女无遮挡免费网站观看| 99久久精品一区二区三区| 欧美激情 高清一区二区三区| 久热这里只有精品99| 久久av网站| 黄色一级大片看看| 老司机影院毛片| 麻豆成人av视频| 欧美老熟妇乱子伦牲交| av视频免费观看在线观看| a级片在线免费高清观看视频| 国产一区二区三区综合在线观看 | h视频一区二区三区| 午夜免费男女啪啪视频观看| 国产探花极品一区二区| 欧美最新免费一区二区三区| 国产男女超爽视频在线观看| 我的老师免费观看完整版| 欧美日韩视频精品一区| 最新中文字幕久久久久| 精品久久蜜臀av无| 99九九线精品视频在线观看视频| 一级毛片黄色毛片免费观看视频| 大话2 男鬼变身卡| 国产精品 国内视频| 免费人妻精品一区二区三区视频| 久久久久精品久久久久真实原创| av免费在线看不卡| 精品久久久久久久久av| 一级二级三级毛片免费看| 高清不卡的av网站| 欧美日韩视频高清一区二区三区二| 日日摸夜夜添夜夜爱| 日韩免费高清中文字幕av| 久久久久精品性色| 免费看av在线观看网站| 97在线人人人人妻| 人妻 亚洲 视频| 国产又色又爽无遮挡免| 黄色配什么色好看| 熟女电影av网| 久久热精品热| 成人手机av| 菩萨蛮人人尽说江南好唐韦庄| 国产一区亚洲一区在线观看| 亚洲精品色激情综合| av又黄又爽大尺度在线免费看| 中国国产av一级| av卡一久久| 日本欧美国产在线视频| 最近2019中文字幕mv第一页| 少妇 在线观看| 丝瓜视频免费看黄片| 国产精品国产av在线观看| 国产爽快片一区二区三区| 新久久久久国产一级毛片| 久久久精品免费免费高清| 熟女av电影| 亚洲精华国产精华液的使用体验| 大香蕉久久网| 国产欧美亚洲国产| 国产女主播在线喷水免费视频网站| 只有这里有精品99| 久久精品国产自在天天线| 国产亚洲欧美精品永久| 五月玫瑰六月丁香| 久久综合国产亚洲精品| 国产成人a∨麻豆精品| 久久久久网色| 麻豆乱淫一区二区| 亚洲av成人精品一区久久| 久久久欧美国产精品| 亚洲在久久综合| 色网站视频免费| 亚洲精品亚洲一区二区| 婷婷色综合大香蕉| 亚洲怡红院男人天堂| 伊人亚洲综合成人网| 乱人伦中国视频| 99九九在线精品视频| www.av在线官网国产| 色吧在线观看| 免费观看av网站的网址| 色94色欧美一区二区| 成人亚洲欧美一区二区av| 亚洲国产精品一区二区三区在线| 亚洲精品久久久久久婷婷小说| 国产 一区精品| 亚洲怡红院男人天堂| 国产精品免费大片| 免费观看性生交大片5| 亚洲av免费高清在线观看| 国产精品国产三级国产专区5o| 免费黄网站久久成人精品| 国产一区有黄有色的免费视频| 美女中出高潮动态图| 欧美人与善性xxx| 亚洲欧美精品自产自拍| 久久久久久久久久久久大奶| 欧美人与性动交α欧美精品济南到 | 久久久久国产精品人妻一区二区| 成年人午夜在线观看视频| 免费黄色在线免费观看| 亚洲精品乱码久久久v下载方式| 亚洲欧美色中文字幕在线| 久久毛片免费看一区二区三区| 久久精品人人爽人人爽视色| 视频在线观看一区二区三区| 观看av在线不卡| 午夜激情久久久久久久| 亚洲av电影在线观看一区二区三区| 欧美日韩国产mv在线观看视频| 国产精品久久久久久精品电影小说| 亚洲精品中文字幕在线视频| 免费少妇av软件| 亚洲,欧美,日韩| 亚洲欧美精品自产自拍| 最新中文字幕久久久久| 午夜激情久久久久久久| 黄片播放在线免费| 欧美 亚洲 国产 日韩一| 久久久久久久大尺度免费视频| 国内精品宾馆在线| 日韩 亚洲 欧美在线| 成年av动漫网址| 少妇被粗大的猛进出69影院 | 免费看av在线观看网站| 精品久久久噜噜| 国产伦理片在线播放av一区| 欧美xxⅹ黑人| 欧美日韩视频精品一区| 精品久久蜜臀av无| 中文字幕av电影在线播放| 精品一区二区三区视频在线| 久久久久久久国产电影| 少妇的逼水好多| 欧美三级亚洲精品| 26uuu在线亚洲综合色| 91久久精品国产一区二区三区| 美女内射精品一级片tv| 亚洲成人一二三区av| 两个人免费观看高清视频| 久久鲁丝午夜福利片| 婷婷色麻豆天堂久久| 97超视频在线观看视频| 欧美日韩视频高清一区二区三区二| 日韩 亚洲 欧美在线| 三上悠亚av全集在线观看| 午夜免费男女啪啪视频观看| 久久精品人人爽人人爽视色| 欧美精品一区二区大全| 亚洲国产精品一区二区三区在线| 制服诱惑二区| 黄片无遮挡物在线观看| 激情五月婷婷亚洲| 亚洲精品日本国产第一区| 99久久人妻综合| 欧美+日韩+精品| 男女啪啪激烈高潮av片| 日韩三级伦理在线观看| 国产成人a∨麻豆精品| 久久精品夜色国产| 亚洲av成人精品一区久久| 纵有疾风起免费观看全集完整版| 日韩不卡一区二区三区视频在线| 国产日韩一区二区三区精品不卡 | 午夜激情福利司机影院| 美女中出高潮动态图| 全区人妻精品视频| 精品一区二区免费观看| 免费观看无遮挡的男女| 丝袜脚勾引网站| av在线老鸭窝| 久久久国产精品麻豆| 最新的欧美精品一区二区| 精品久久国产蜜桃| 女性被躁到高潮视频| 97在线人人人人妻| 五月开心婷婷网| 91午夜精品亚洲一区二区三区| www.色视频.com| 亚洲综合精品二区| 免费少妇av软件| 日韩av不卡免费在线播放| 久久人人爽人人爽人人片va| 久久韩国三级中文字幕| 99热这里只有是精品在线观看| 久久婷婷青草| 日本免费在线观看一区| 国产成人91sexporn| 一区二区三区免费毛片| 亚洲精品国产av蜜桃| 岛国毛片在线播放| 亚洲精品乱码久久久久久按摩| 国产国拍精品亚洲av在线观看| 免费观看的影片在线观看| 少妇精品久久久久久久| 肉色欧美久久久久久久蜜桃| 一区二区av电影网| 久久97久久精品| 国产欧美日韩一区二区三区在线 | 爱豆传媒免费全集在线观看| 国语对白做爰xxxⅹ性视频网站| 丝瓜视频免费看黄片| 亚洲精品一二三| 超色免费av| 伦理电影免费视频| 免费黄色在线免费观看| 亚洲精华国产精华液的使用体验| 久久久亚洲精品成人影院| 国产成人精品婷婷| 美女内射精品一级片tv| 免费黄网站久久成人精品| 国产在线视频一区二区| 亚洲色图 男人天堂 中文字幕 | 视频在线观看一区二区三区| 成人影院久久| 天堂俺去俺来也www色官网| 久久av网站| 欧美日韩视频精品一区| 黄片播放在线免费| 天堂俺去俺来也www色官网| 免费看不卡的av| av在线观看视频网站免费| 黄片播放在线免费| 999精品在线视频| 国产成人一区二区在线| 看非洲黑人一级黄片| av国产精品久久久久影院| 99热全是精品| 国产毛片在线视频| 国产精品一国产av| 日本av手机在线免费观看| 婷婷色av中文字幕| av有码第一页| 精品国产一区二区久久| 一二三四中文在线观看免费高清| 91精品国产九色| 亚洲国产日韩一区二区| 日韩精品有码人妻一区| 一区二区三区乱码不卡18| 国产日韩欧美亚洲二区| 看十八女毛片水多多多| 色婷婷av一区二区三区视频| 免费观看的影片在线观看| h视频一区二区三区| 汤姆久久久久久久影院中文字幕| 亚洲精品国产色婷婷电影| 麻豆精品久久久久久蜜桃| 亚洲精品一二三| 精品久久久久久久久亚洲| 久久韩国三级中文字幕| 免费黄频网站在线观看国产| 三级国产精品欧美在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 在现免费观看毛片| 欧美一级a爱片免费观看看| 天堂中文最新版在线下载| 一级片'在线观看视频| 亚洲精品日本国产第一区| 尾随美女入室| 成人国产麻豆网| 国产精品嫩草影院av在线观看| 一级爰片在线观看| 欧美三级亚洲精品| 大码成人一级视频| 一本一本综合久久| av专区在线播放| 亚洲色图 男人天堂 中文字幕 | 天天躁夜夜躁狠狠久久av| 97在线视频观看| 少妇 在线观看| 亚洲欧美成人精品一区二区| av在线观看视频网站免费| av国产精品久久久久影院| 亚洲av不卡在线观看| 女性生殖器流出的白浆| 亚州av有码| 久久久久国产精品人妻一区二区| 久久久久久久久久成人| 成人手机av| 成人无遮挡网站| 一级爰片在线观看| 我的老师免费观看完整版| 9色porny在线观看| 亚洲av不卡在线观看| 肉色欧美久久久久久久蜜桃| 夫妻午夜视频| 成人二区视频| 看免费成人av毛片| 爱豆传媒免费全集在线观看| 韩国av在线不卡| 国产av码专区亚洲av| 久久人人爽人人爽人人片va| 秋霞在线观看毛片| 亚洲中文av在线| 各种免费的搞黄视频| 一边摸一边做爽爽视频免费| 国产精品一区二区三区四区免费观看| 日韩三级伦理在线观看| 人妻系列 视频| 人人妻人人澡人人爽人人夜夜| 中文精品一卡2卡3卡4更新| 丰满饥渴人妻一区二区三| 99国产综合亚洲精品| 男女边吃奶边做爰视频| 香蕉精品网在线| 免费高清在线观看日韩| a级毛片免费高清观看在线播放| 亚洲精品中文字幕在线视频| 欧美日韩综合久久久久久| 男女高潮啪啪啪动态图| 亚洲av不卡在线观看| 日本黄大片高清| 校园人妻丝袜中文字幕| 久久久a久久爽久久v久久| 欧美日韩成人在线一区二区| 91精品伊人久久大香线蕉| 精品一品国产午夜福利视频| 制服诱惑二区| 久久久久网色| 少妇高潮的动态图| 在线观看免费日韩欧美大片 | 丝瓜视频免费看黄片| av网站免费在线观看视频| 国精品久久久久久国模美| 黄色欧美视频在线观看| 欧美精品一区二区免费开放| 精品久久久精品久久久| kizo精华| 人人妻人人澡人人看| 午夜激情av网站| 女人久久www免费人成看片| 十分钟在线观看高清视频www| 99热6这里只有精品| .国产精品久久| av一本久久久久| av在线app专区| 欧美亚洲 丝袜 人妻 在线| 午夜91福利影院| 日韩在线高清观看一区二区三区| www.色视频.com| 一级黄片播放器| 日本免费在线观看一区| 校园人妻丝袜中文字幕| 日本欧美视频一区| 欧美日韩精品成人综合77777| 男人爽女人下面视频在线观看| 国产精品.久久久| 日韩av免费高清视频| 18禁动态无遮挡网站| 男的添女的下面高潮视频| 久久午夜福利片| 精品少妇黑人巨大在线播放| 久久久久视频综合| 妹子高潮喷水视频| 中文天堂在线官网| 美女内射精品一级片tv| 国产精品国产av在线观看| 少妇人妻久久综合中文| 国产精品国产三级国产专区5o| 在线天堂最新版资源| 日本爱情动作片www.在线观看| 男女无遮挡免费网站观看| 日韩中字成人| a级毛片黄视频| 色网站视频免费| av国产精品久久久久影院| 两个人免费观看高清视频| 99热网站在线观看| 国产精品久久久久久久久免| 国产精品 国内视频| 一本久久精品| 成年人免费黄色播放视频| 男女高潮啪啪啪动态图| 国产在线一区二区三区精| 黄片无遮挡物在线观看| av电影中文网址| 欧美激情国产日韩精品一区| av又黄又爽大尺度在线免费看| 久久久久久久国产电影| 日韩av不卡免费在线播放| 一区二区三区乱码不卡18| 日本黄色日本黄色录像| 日韩制服骚丝袜av| 少妇人妻精品综合一区二区| 精品熟女少妇av免费看| 亚洲精品国产av成人精品| 亚洲人成77777在线视频| 日日摸夜夜添夜夜爱| 国产在线视频一区二区| 国产成人av激情在线播放 | 高清黄色对白视频在线免费看| 色婷婷久久久亚洲欧美| 亚洲精品aⅴ在线观看| 婷婷色综合www| 99国产综合亚洲精品| 91精品伊人久久大香线蕉| 国产欧美亚洲国产| 91久久精品国产一区二区三区| 久久这里有精品视频免费| 免费久久久久久久精品成人欧美视频 | av免费在线看不卡| 极品少妇高潮喷水抽搐| 日韩制服骚丝袜av| 十八禁高潮呻吟视频| 亚洲av男天堂| 国产在线一区二区三区精| 3wmmmm亚洲av在线观看| 妹子高潮喷水视频| 欧美精品一区二区免费开放| 丰满饥渴人妻一区二区三| 免费高清在线观看视频在线观看| 99热6这里只有精品| 久久久午夜欧美精品| 在线免费观看不下载黄p国产| 亚洲精品视频女| 久热久热在线精品观看| 亚洲国产欧美在线一区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产成人精品无人区| 丰满饥渴人妻一区二区三| 亚洲国产精品专区欧美| 秋霞伦理黄片| 久久精品久久精品一区二区三区| 亚洲欧美一区二区三区黑人 | 春色校园在线视频观看| 男女边摸边吃奶| 在线亚洲精品国产二区图片欧美 | 精品一区二区三卡| 校园人妻丝袜中文字幕| 寂寞人妻少妇视频99o| 三级国产精品片| 国产一区二区在线观看av| 亚洲精品久久成人aⅴ小说 | 日韩欧美一区视频在线观看| 久久97久久精品| 国产成人精品无人区| 婷婷色av中文字幕| 日韩三级伦理在线观看| 久久久久久久久久成人| 能在线免费看毛片的网站| 亚洲欧美一区二区三区黑人 | 丝袜脚勾引网站| 精品久久久久久久久亚洲| 夜夜爽夜夜爽视频| 亚洲,一卡二卡三卡| 亚洲av日韩在线播放| 美女视频免费永久观看网站| 777米奇影视久久| 伦精品一区二区三区| 亚洲综合精品二区| 日本av免费视频播放| 国产精品麻豆人妻色哟哟久久| 久久久久人妻精品一区果冻| 精品国产露脸久久av麻豆| 三级国产精品片| 国产成人91sexporn| 赤兔流量卡办理| 王馨瑶露胸无遮挡在线观看| 最新的欧美精品一区二区| 亚洲少妇的诱惑av| 9色porny在线观看| 欧美xxⅹ黑人| 欧美日韩亚洲高清精品| 一级a做视频免费观看| 久久久久久久久久久免费av| 狂野欧美激情性bbbbbb| 国产成人91sexporn| 尾随美女入室| 大香蕉97超碰在线| 观看av在线不卡| 亚洲丝袜综合中文字幕| 美女福利国产在线| 日韩一本色道免费dvd| 亚洲精品一区蜜桃| 制服人妻中文乱码| 夜夜看夜夜爽夜夜摸| 另类精品久久| 大码成人一级视频| 国产在线免费精品| 午夜激情福利司机影院| 99久久中文字幕三级久久日本| 国产精品国产av在线观看| 欧美日韩国产mv在线观看视频| 一区二区三区精品91| 亚洲av成人精品一区久久| 亚洲色图综合在线观看| 久久热精品热| 伊人久久国产一区二区| 天堂8中文在线网| 国产成人精品无人区| 亚洲美女搞黄在线观看| 久久影院123| 欧美xxⅹ黑人| 99热这里只有精品一区| 国产视频首页在线观看| 久久人妻熟女aⅴ| 中文字幕亚洲精品专区| 男女边吃奶边做爰视频| 99国产综合亚洲精品| 亚洲成人一二三区av| 久久久国产一区二区| 人人妻人人澡人人爽人人夜夜| 青春草国产在线视频| 777米奇影视久久| 国产白丝娇喘喷水9色精品| 一边摸一边做爽爽视频免费| 黑人高潮一二区| 伦理电影大哥的女人| 人妻系列 视频| 亚洲av福利一区| 亚洲中文av在线| 麻豆乱淫一区二区| 777米奇影视久久| 亚洲av二区三区四区| 日本黄色片子视频| 少妇的逼好多水| 免费高清在线观看日韩| 亚洲av综合色区一区| 国产亚洲午夜精品一区二区久久| 精品国产一区二区三区久久久樱花| 欧美亚洲日本最大视频资源| 国产精品欧美亚洲77777| 久久久久久久久久人人人人人人| 亚洲精品中文字幕在线视频| 亚洲欧洲日产国产| 你懂的网址亚洲精品在线观看| 中文字幕制服av| 久久影院123| 边亲边吃奶的免费视频| av在线app专区|