• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    EDTA輔助水熱法制備性能優(yōu)異的棒狀LiFePO4/C材料

    2013-10-17 03:03:12鐘本和鐘艷君郭孝東
    關(guān)鍵詞:水熱法四川大學(xué)工程學(xué)院

    董 靜 鐘本和 鐘艷君 唐 艷 劉 恒 郭孝東*,

    (1四川大學(xué)化學(xué)工程學(xué)院,成都 610065)

    (2四川大學(xué)材料科學(xué)與工程學(xué)院,成都 610065)

    Since the pioneering work of Padhi et al.[1],the olivine-type phosphates LiFePO4has received extensive attention with respect to its application as a cathode material in rechargeable Li-ion batteries,owing to its high theoretical capacity (170 mAh·g-1),low cost,environmental benign and high safety.In addition,LiFePO4has good cycle stability and a flat discharge potential of 3.45 V versus Li+/Li.Despite the above mentioned advantages,the main obstacles for LiFePO4are its intrinsic low electronic conductivity(~10-9cm2·s-1)[2]and low lithium ion diffusivity(~10-18cm2·s-1)[3].Great progress has been made to improve the performances and synthesis techniques of LiFePO4up to now.To eliminate the impediments of LiFePO4materials,numerous approaches have been reported,such as coating different conductive materials(conductive carbon or polymers)[4-5],minimizing the particle size[6-8]and doping with supervalence cation[9].Furthermore,numerous synthetic strategies have been developed to synthesize LiFePO4,such as co-precipitation,solid-state reactions,sol-gel,solvothermal and hydrothermal method.Among them,the hydrothermal synthesis of LiFePO4is a promising method due to its narrow particle size distribution,fast reaction rate and facile size control.

    Owing to the importance of particle shape on the performance of LiFePO4,lots of studies have been devoted to the preparation of olivine LiFePO4with various morphologies and reduced particle size in hydrothermal method.For instance,Fei Teng et al.synthesized LiFePO4nanodendrites in the ethylene glycol/water (EG/W)system using dodecyl benzene sulphonic acid sodium(SDBS)as the surfactant[10]and developed to fabricate LiFePO4nanorod arrays using anodic aluminum oxide(AAO)as the template[11].Lu et al.[12].reported that LiFePO4with a variety of unusual morphologies was prepared in the presence of ammonium ions and citric acid.Dinesh Rangappa et al.[13]synthesized hierarchical flower-like LiFePO4using ethylene glycol as the solvent with oleic acid and hexane as the surfactant and co-solvent.In general,the primary approaches to prepare welldefined morphology and smallerparticlesizein hydrothermal method are using organic solvent or template,which make the preparation process more complex and more expensive.We report here a simple,quick and low cost hydrothermal synthesis onlyusingEDTA asthecomplexingagentand dispersing agent to prepare the defined morphology with reduced particle size.The obtained rod-like LiFePO4exhibits narrow particle size distribution and better electrochemical properties.

    1 Experimental

    1.1 Synthesis of LiFePO4/C

    All the reactants were of analytical grade and used without further purification.In a typical synthesis,0.3 mol H3PO4,0.3 mol FeSO4·7H2O and 0.9 mol LiOH·H2O were dissolved in deionized water,respectively.First,the lithium source and phosphorus source were blended under magnetic stirring,and then FeSO4solution slowly added to the above solution to keep the molar ratio nLi∶nFe∶nP=3∶1∶1.Finally,0.03 mol EDTA was added to the obtained solution.After that,the resulting mixture was transferred into a 2L-capacity Teflon-lined stainless steel autoclave,and then heated at 180 ℃ for 10 h.After being cooled to room temperature,the productwas centrifuged,washed severaltimeswith absolute alcoholand distilled water and then dried in a vacuum oven at 90℃ for 12 h.For further carbon coating on LiFePO4nanostructures,the powders after drying mentioned above were mixed with glucose (20wt%)as a carbon source by planetary ball milling,and then the blend was calcined at 700℃ for 5 h in an inert atmosphere.In order to confirm the influence of EDTA on the products,a control experiment was also carried out.The LiFePO4/C materials prepared with EDTA and without EDTA were denoted as sample A and B.

    1.2 Materials characterization

    The phase structures ofthe samples were investigated by X-ray diffraction (XRD,D/max-rB,Rigaku,Cu Kα radiation)(λ=0.154 18 nm,40 kV,40 mA,scintillation counter,scanning range (2θ):10°~70°,step scanning:0.5°·min-1).The morphology and particle size ofthe prepared nanocrystals were observed by scanning electron microscopy(HITACHI S-4800).The microstructure and the surface texture of crystal were observed by transmission electron microscopy (JEM-2100) operated at 200 kV acceleration voltage.The particle size distribution was estimated by laser particle size distribution tester(JL-1155).The electronic conductivities of the samples were measured by a four-point probe method(KDY-1).The cyclic voltammetry tests and electrochemical impedance spectroscopy were performed on electrochemical workstation (CHI660B).The carbon content was measured by analytical instrument(CS-902).

    1.3 Electrochemical characterization

    The positive slurry was prepared with 80wt%active material,13wt%acetylene black(conducting additive), 7wt% polyvinylidene fluoride (PVDF,binder)and N-methylpyrro lidone(NMP,solvent).The slurry was spread uniformly onto a thin aluminum foil,dried in vacuum at 100℃for 16 h and then cut into pieces.The formed cathode was assembled into a CR2032 button battery in an argon-filled glove box,with Li anode,1 mol·L-1LiPF6in a mixed solvent of ethylene carbonate (EC)and dimethyl carbon(DMC)(VEC∶VDMC=1∶1)electrolyte and a Celgard-2400 separator.The electrochemical performance of the cells was tested by a high precision battery performance testing system.The cells were galvanostatically charged and discharged at room temperature between 2.5 and 4.3 V versus Li+/Li.

    2 Results and discussion

    2.1 Structure and morphology analysis

    Fig.1 XRD patterns of precursors prepared with EDTA and without EDTA

    Fig.1 shows the XRD patterns of precursors prepared with and without EDTA.The precursors were the precipitation prepared from the mixing of the raw materials.Itisfound thatthere isnoobvious difference between the two precursors.Allmain characteristic peaks ofthe two precursors are coincided with the diffraction peaks of Fe3(PO4)2·8H2O(PDF#30-0662)and Li3PO4(PDF#25-1030)without any obvious impurity phase.The results are consistent with previous reports[14-15]that Fe3(PO4)2·8H2O and Li3PO4must be the intermediate in the formation of LiFePO4.These observed results clearly indicate Fe-EDTA is not in the precursors,maybe it is dissolved and then not in the precursor or it could not be characterized by XRD.

    The XRD patterns of LiFePO4/C composites are displayed in Fig.2.All the diffraction peaks in the XRD patterns could be indexed to an orthorhombic space group,Puma(PDF#83-2092).The XRD pattern clearly shows the single-phase formation of LiFePO4without any observable impurity phases (such as Fe3(PO4)2,Li3PO4,FeP).It demonstrates that the introduction of complexing agent does not change the sample′s crystal structure.Additionally,the intensity of all the diffraction peaks of sample A is stronger than sample B.This suggests that using EDTA as complexing agent isfavorableforincreasingthe crystallinity of the LiFePO4.The obtained lattice parameters are(a)a=1.029 656 nm,b=0.598 161 nm,c=0.467 506 nm with a cell volume of 0.287 94 nm3;(b)a=1.029 92 nm,b=0.598 68 nm,c=0.467 26 nm with a cell volume of 0.288 11 nm3for the two LiFePO4/C samples with EDTA (a)and without EDTA (b),respectively.It is clear that sample A owns smaller cellvolume,which mayberelated toabetter crystallinity with EDTA as complexing agent.These values are comparable with those reported earlier in the literatures[16-17].

    Fig.2 XRD patterns of sample A and sample B

    There is no carbon observed in the XRD patterns,because the residual carbon decomposed from glucose and EDTA is amorphous in the LiFePO4/C composite[18].The carbon content of LiFePO4/C obtained with EDTA is 5.5%and another sample is 5.2%.Clearly,EDTA is not washed off completely during the filtering process.This can be ascribed to the remnant carbon after the pyrolysis of EDTA.Therefore,the carbon content of the sample A is a little more than that of sample B.

    Fig.3 shows the SEM images of LiFePO4/C.By adding EDTA,rod-like LiFePO4is obtained,otherwise only irregular particles are prepared and the size of sample B is much larger than that of sample A.It demonstrates that EDTA chelation-assisted hydrothermal method can effectively decrease the particle size and control the morphology.As reported in the literatures[18-20],EDTA has been widely used as chelating agent and structure-directing template.The chelating role of EDTA group in the synthesis process is to greatly control the concentration of Fe2+,thus to modulate the growth rate ofLiFePO4crystallite.Therefore,the use of EDTA can effectively decrease the crystal size and modulate the crystal growth to obtain the defined shape.

    The particle size distribution of sample A and sample B is shown in Fig.4.Sample A presents unimodal distribution,but bimodal distribution for sample B.The peak located between 10~100 μm is absence for sample A.As reported in the literature[21],EDTA has the function of dispersive action.Furthermore,the peak value of 0.1~1 μm for sample A is bigger than sample B,which coincides with the results of SEM.It indicates that adding EDTA in hydrothermalmethod can effectively reduce the particle agglomeration.

    Fig.3 SEM images of LiFePO4/C

    Fig.4 Particle size distribution of sample A and sample B

    Fig.5 TEM,HRTEM image and SAED of LiFePO4/C obtained with EDTA

    The morphology and microstructure of the rodlike LiFePO4obtained with EDTA were further characterized by TEM,high resolution TEM(HRTEM)and the selected area electron diffraction(SAED)images.Fig.5a presents the typical TEM image of LiFePO4/C.The morphology of the particles is nanosized rods,which is in good agreement with the above SEM observations.Fig.5b shows that an armorphous carbon coating layer with a thickness of ~3.5 nm is homogenously distributed on the LiFePO4particles,the uniform carbon layer is beneficial to improve the conductivity of the material.The HRTEM image displays clear crystal lattices with d-spacing of 0.30 nm,corresponds to the (020)plane of LiFePO4(Fig.5c).The SAED pattern in Fig.5d with clear lattice fringes suggests that the good crystalline LiFePO4nanostructures are formed under hydrothermal conditions by adding EDTA.

    2.2 Electrochemical measurements

    Fig.6a presents the galvanostatic charge/discharge curves of sample A and sample B measured at 0.1C in the potential range of 2.5 to 4.3 V.Both the samples possess a flat plateau around 3.4 V,which corresponds to the redox couple of Fe3+/Fe2+.Sample A delivers a higher discharge capacity of 167 mAh·g-1,but sample B presents a discharge capacity of 150 mAh·g-1.Meanwhile,sample B display a wider space of the charge-discharge voltage profiles than sample A,which indicates that sample A may possess lower electrode polarization and higher reversible capacity at a higher rate.Fig.6b shows the rate capability ofsample A and B.The discharge capacities of sample A are 167,157,147,134,120,101,79 mAh·g-1at 0.1C,0.2C,0.5C,1C,3C,5C and 10C,respectively,and sample B is 150,139,121,90,65,45,23 mAh·g-1at 0.1C,0.2C,0.5C,1C,3C,5C and 10C,respectively.It is obvious that sample A shows a higher capacity at every testing rate than sample B.The electronic conductivity of LiFePO4/C materials obtained with EDTA is 1.18 ×10-2S·cm-1and the LiFePO4/C materials obtained without EDTA is 8.13×10-3S·cm-1as measured by a four-point probe method.The better electrochemical properties of the sample A could be attributed to its smaller particle size and the less particle agglomeration.This is because the smaller particle size shortens the distance of the transport passage, and increases the conductivity of the sample.Therefore,electrochemical performance of LiFePO4/C material can be effectively improved by adding EDTA.

    Fig.6 (a)Charge/discharge curves of A and sample B;(b)Rate performance of sample A and sample B

    Fig.7 CV curves of sample A and sample B at a scan rate of 0.1 mV·s-1

    The first five cyclic voltammogram curves of LiFePO4/C composite in the voltage range of 2.5~4.3 V at a constant scanning rate of 0.1 mV·s-1are shown in Fig.7.The voltage charge/discharge profiles of all five cycles are almost reduplicative,suggesting the good reversibility of lithium extraction/insertion reactions in the LiFePO4/C composites prepared through hydrothermal method.In the CV plots of LiFePO4cathode material,the higher and sharper current peaks and the smaller charge and discharge voltage plateaus difference imply better electrode reaction kinetics and better rate performance[23].The CV curves of sample A show more symmetrical and sharper shape of the anodic/cathodic peaks,which indicates an improvement in the kinetics of the lithium insertion/extraction at the electrode/electrolyte interface[22-23].In contrast,sample B electrode has lower peaks in CV curves.Furthermore,the higher peak voltage separation of sample B indicates that electrochemical kinetics could be strongly inhibited and that high polarization overpotential is present.Thus,sample A shows better electrochemical property.The result is in coincidence with the electrochemical measurements.

    Fig.8 presents the Nyquist curves of the two samples and an equivalent circuit fitted by Zview2.0 program.An interceptatthe Zrealaxis in high frequency corresponds to the Ohmic resistance(RΩ),which represents the resistance of the electrolyte.The diameter ofthe semicircle on the Zrealaxis is approximately equal to the charge transfer resistance(Rct).The inclined line in the lowerfrequency represents the Warburg impedance, which is associated with lithium-ion diffusion in the LiFePO4particles[24].The lithium-ion diffusion coefficient(DLi)could be calculated using the formula 1[25].Formula 1:

    where R is the gas constant,T is the absolute temperature,A is the surface area of the cathode,n is the number of electrons per molecule during oxidization,F is the Faraday constant,C is the concentration of lithium ion (7.69 mol·L-1),and σ is the Warburg coefficient.The Warburg coefficient σ is calculated by the linear fitting result of Z′and ω-1/2from the EIS data.All the parameters obtained and calculated from EIS are shown in Table 1.It is obvious that the Rctdrastically decreases and lithium-ion diffusion coefficient increases for sample A.The reasons can be explained in terms of particle size,as reported previously[26],because smallparticle can shorten the distance of the transport distance.

    Fig.8 (a)Electrochemical impedance spectra of sample A and sample B;(b)Relationship plot between Z′and ω-1/2at low-frequency region

    Table 1 Impedance parameters of LiFePO4/C cells(A with EDTA B without EDTA)

    3 Conclusions

    In summary,we propose a simple,quick and low costhydrothermalsynthesisroute to controlthe morphology of LiFePO4/C only by adding EDTA,rather than by changing the temperature,pH value,concentration or solvent.The prepared LiFePO4/C with EDTA presents a well-crystallized nanorod structure and coated with carbon layer of ~3.5 nm.The chelating role of EDTA group in the synthesis process is to greatly control the concentration of Fe2+,and to modulate the growth rate ofLiFePO4crystallite.Therefore,rod-like LiFePO4with reduced size is obtained, otherwise only irregular particles are prepared.Moreover,EDTA hasthe function of dispersive action and then restraints the sample′s aggregation.TheLiFePO4/C obtained with EDTA exhibits excellent reversible capacities at galvanostatic charge-discharge test.The specific discharge capacities have been reached 167,157,147,134,120,101,79 mAh·g-1at 0.1C,0.2C,0.5C,1C,3C,5C and 10C,respectively.The significantly improved electrochemical performances of the material could be attributed to the largerproportion ofnano-sized particles which is originated from EDTA as chelating agent and dispersing agent.

    Acknowledgements:This work was supported by the Sichuan University Funds for Young Scientists(2011SCU11081),and the Research Fund for the Doctoral Program ofHigherEducation,the MinistryofEducation(20120181120103).

    [1]Padhi A K,Nanjundaswamy K S,Goodenough J B.J.Electrochem.Soc.,1997,144(4):1188-1194

    [2]Chung S Y,Chiang Y M.Electrochem.Solid-State Lett.,2003,6:A278-A281

    [3]Srinivasan V,Newman J.J.Electrochem.Soc.,2004,151:A1517-A1529

    [4]Chen Z H,Dahn J R.J.Electrochem.Soc.,2002,149:A1184-A1189

    [5]Wilcox J D,Doeff M M,Marcinek M,et al.J.Electrochem.Soc.,2007,154:A389-A395

    [6]WANG Xiao-Juan(王小娟),LI Xin-Hai(李新海),WANG Zhi-Xing(王志興),et al.J.Funct.Mater.(Gongneng Cailiao),2009,40(12):1996-2003

    [7]YU Hong-Ming(于紅明),ZHENG Wei(鄭威),CAO Gao-Shao(曹高劭),et al.Acta Phys.-Chim.Sin.(Wuli Huaxue Xuebao),2009,25(11):2186-2190

    [8]XU Rui(徐瑞),ZHONG Ben-He(鐘本和),GUO Xiao-Dong(郭孝東)et al.Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao),2012,28(7):1506-1512

    [9]TANG Hong(唐紅),GUO Xiao-Dong(郭孝東),TANG Yan(唐艷),et al.Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao),2012,28(4):809-814

    [10]Teng F,Santhanagopalan S,Lemmens R,et al.Solid State Sci.,2010,12:952-955

    [11]Lu Z G,Chen H L,Robert R,et al.Chem.Mater.,2011,23:2848-2859

    [12]Rangappa D,Sone K,Kudo T,et al.J.Power Sources,2010,195:6167-6171

    [13]Lee M H,Kim J Y,Song H K.Chem.Commun.,2010,46:6795-6797

    [14]He L H,Zhao Z W,Liu X H,et al.Trans.Nonferrous Met.Soc.China,2012,22:1766-1770

    [15]Saravanan K,Balaya P,Reddy M V,et al.Energy Environ.Sci.,2010,3:457-464

    [16]Wang Z L,Su S R,Yu C Y,et al.J.Power Sources,2008,184:633-636

    [17]Li C F,Hua N,Wang C Y,et al.J.Solid State Electrochem.,2011,15:1971-1976

    [18]Zhu Z F,Du J,Li J Q,et al.Ceram.Int.,2012,38:4827-4834

    [19]Ha J H,Muralidharan P,Kim D K.J.Alloys Compd.,2009,475:446-451

    [20]Adldinger H K,Calnek B W.Archiv Für Die Gesamte Virusforschung,1971,34:391-395

    [21]Lan Y C,Wang X D,Zhang J W,et al.Powder Technol.,2011,212:327-331

    [22]Dimesso L,Spanheimer C,Jacke S,et al.J.Power Sources,2011,196:6729-6734

    [23]Shin H C,Cho W I,Jang H.Electrochim.Acta,2006,52:1472-1476

    [24]Yang K R,Deng Z H,Suo J S,J.Power Sources,2012,201:274-279

    [25]Kwon S J,Kim C W,Jeong W T,et al.J.Power Sources,2004,137:93-99

    猜你喜歡
    水熱法四川大學(xué)工程學(xué)院
    福建工程學(xué)院
    福建工程學(xué)院
    水熱法原位合成β-AgVO3/BiVO4復(fù)合光催化劑及其催化性能
    四川大學(xué)西航港實(shí)驗(yàn)小學(xué)
    福建工程學(xué)院
    福建工程學(xué)院
    百年精誠(chéng) 譽(yù)從信來(lái)——走進(jìn)四川大學(xué)華西眼視光之一
    四川大學(xué)華西醫(yī)院
    水熱法制備N(xiāo)aSm(MoO4)2-x(WO4)x固溶體微晶及其發(fā)光性能
    水熱法制備BiVO4及其光催化性能研究
    国产av精品麻豆| av天堂久久9| 国产亚洲精品综合一区在线观看 | 叶爱在线成人免费视频播放| 亚洲精品av麻豆狂野| 午夜激情av网站| 亚洲成人免费av在线播放| 国产精品二区激情视频| 欧美人与性动交α欧美精品济南到| 正在播放国产对白刺激| 夜夜看夜夜爽夜夜摸 | 女人精品久久久久毛片| av电影中文网址| 在线观看www视频免费| 久久亚洲精品不卡| 久久精品成人免费网站| 9色porny在线观看| 亚洲精品中文字幕在线视频| 国产黄a三级三级三级人| 超色免费av| 欧洲精品卡2卡3卡4卡5卡区| 国产精品99久久99久久久不卡| av中文乱码字幕在线| 久久精品人人爽人人爽视色| 99久久精品国产亚洲精品| 一级毛片高清免费大全| 免费看a级黄色片| 成人亚洲精品一区在线观看| e午夜精品久久久久久久| 久久国产亚洲av麻豆专区| 身体一侧抽搐| 久久久久久大精品| 国产精品亚洲av一区麻豆| 午夜91福利影院| 波多野结衣高清无吗| 欧美黑人欧美精品刺激| 99香蕉大伊视频| 人人妻人人添人人爽欧美一区卜| 999久久久国产精品视频| 免费高清视频大片| 国产色视频综合| 级片在线观看| 久久婷婷成人综合色麻豆| 99热只有精品国产| 欧美日韩福利视频一区二区| 韩国av一区二区三区四区| 国产精品影院久久| 国产精品自产拍在线观看55亚洲| 国产单亲对白刺激| 国产精品一区二区精品视频观看| 80岁老熟妇乱子伦牲交| 欧美乱妇无乱码| 人人澡人人妻人| 久久精品91蜜桃| 男女床上黄色一级片免费看| 制服诱惑二区| 一级毛片高清免费大全| 国产深夜福利视频在线观看| 午夜亚洲福利在线播放| 亚洲男人的天堂狠狠| 曰老女人黄片| 精品乱码久久久久久99久播| 免费在线观看黄色视频的| 丁香六月欧美| 天天躁狠狠躁夜夜躁狠狠躁| 人成视频在线观看免费观看| 欧美中文综合在线视频| 亚洲精品成人av观看孕妇| 亚洲视频免费观看视频| 99在线视频只有这里精品首页| 久久久久精品国产欧美久久久| 变态另类成人亚洲欧美熟女 | 亚洲人成电影观看| 久久久久久久久免费视频了| 嫩草影视91久久| 久久久久久久午夜电影 | 在线观看免费视频网站a站| 啪啪无遮挡十八禁网站| 黄色a级毛片大全视频| 黄色成人免费大全| 天天影视国产精品| 国产精品一区二区三区四区久久 | 日本一区二区免费在线视频| 日韩欧美在线二视频| 99精品在免费线老司机午夜| 精品福利观看| 大型黄色视频在线免费观看| 国产一卡二卡三卡精品| 欧美成狂野欧美在线观看| 一级毛片女人18水好多| 色在线成人网| 亚洲五月天丁香| 国产片内射在线| 中文亚洲av片在线观看爽| 欧美黑人欧美精品刺激| 两人在一起打扑克的视频| 好看av亚洲va欧美ⅴa在| 搡老岳熟女国产| 在线看a的网站| 法律面前人人平等表现在哪些方面| 曰老女人黄片| 19禁男女啪啪无遮挡网站| 午夜老司机福利片| 欧美不卡视频在线免费观看 | 真人做人爱边吃奶动态| 在线观看一区二区三区激情| 国产成人影院久久av| 国产成人av激情在线播放| 丝袜在线中文字幕| 精品免费久久久久久久清纯| 精品第一国产精品| 亚洲少妇的诱惑av| 久久久久国内视频| 在线av久久热| 黄色怎么调成土黄色| 中文字幕精品免费在线观看视频| 丰满饥渴人妻一区二区三| 天天影视国产精品| 久久精品人人爽人人爽视色| 成年女人毛片免费观看观看9| 亚洲一区中文字幕在线| 十八禁网站免费在线| 久久香蕉激情| 欧美日韩瑟瑟在线播放| 十八禁网站免费在线| x7x7x7水蜜桃| 一级黄色大片毛片| 国产精品九九99| 日韩一卡2卡3卡4卡2021年| 亚洲国产欧美网| 在线视频色国产色| 一区二区三区精品91| 国产日韩一区二区三区精品不卡| 亚洲专区中文字幕在线| 啪啪无遮挡十八禁网站| 日日摸夜夜添夜夜添小说| 免费看a级黄色片| 69av精品久久久久久| 久久国产精品人妻蜜桃| 男女午夜视频在线观看| 久久精品91无色码中文字幕| 国产1区2区3区精品| 波多野结衣高清无吗| 久久精品国产亚洲av高清一级| 国产精品永久免费网站| www.自偷自拍.com| 亚洲一区二区三区欧美精品| 一区二区三区国产精品乱码| 亚洲自拍偷在线| 电影成人av| 黄片播放在线免费| 国产成人系列免费观看| 真人一进一出gif抽搐免费| 一区二区三区国产精品乱码| 亚洲美女黄片视频| 又大又爽又粗| 亚洲欧美一区二区三区久久| 岛国视频午夜一区免费看| 人人妻人人澡人人看| 高清欧美精品videossex| 一区福利在线观看| 无人区码免费观看不卡| 中文字幕精品免费在线观看视频| 激情视频va一区二区三区| 欧美成狂野欧美在线观看| e午夜精品久久久久久久| 成人精品一区二区免费| 日韩免费av在线播放| av有码第一页| 欧美日韩视频精品一区| 国产av一区在线观看免费| 国产精品99久久99久久久不卡| 午夜免费成人在线视频| 女生性感内裤真人,穿戴方法视频| 欧美人与性动交α欧美精品济南到| 日本vs欧美在线观看视频| 50天的宝宝边吃奶边哭怎么回事| 好看av亚洲va欧美ⅴa在| 精品国产亚洲在线| 黄片小视频在线播放| 久久久久国内视频| 正在播放国产对白刺激| 999久久久精品免费观看国产| 人人妻人人爽人人添夜夜欢视频| 中文欧美无线码| 最近最新中文字幕大全电影3 | 国产精品久久久av美女十八| 亚洲精品美女久久av网站| 精品免费久久久久久久清纯| 午夜老司机福利片| 黄色怎么调成土黄色| 麻豆成人av在线观看| 免费少妇av软件| 在线天堂中文资源库| 在线观看午夜福利视频| 精品日产1卡2卡| www.熟女人妻精品国产| 不卡av一区二区三区| 新久久久久国产一级毛片| 国内毛片毛片毛片毛片毛片| 人人澡人人妻人| 午夜影院日韩av| 国产黄色免费在线视频| 无限看片的www在线观看| 91麻豆精品激情在线观看国产 | 成人av一区二区三区在线看| 日韩人妻精品一区2区三区| 窝窝影院91人妻| 日韩精品免费视频一区二区三区| 99热国产这里只有精品6| 欧美日韩国产mv在线观看视频| 美女大奶头视频| 国产av又大| 一本大道久久a久久精品| 99热只有精品国产| 久久伊人香网站| 嫩草影视91久久| 亚洲一区二区三区欧美精品| 高清欧美精品videossex| 人人妻人人爽人人添夜夜欢视频| 美女扒开内裤让男人捅视频| 纯流量卡能插随身wifi吗| 免费观看人在逋| 久久国产精品人妻蜜桃| 国产主播在线观看一区二区| 久久久精品国产亚洲av高清涩受| 亚洲人成网站在线播放欧美日韩| 亚洲性夜色夜夜综合| 丰满人妻熟妇乱又伦精品不卡| 嫩草影视91久久| 又大又爽又粗| 国产乱人伦免费视频| 国产一区二区激情短视频| 国产成人啪精品午夜网站| 国产无遮挡羞羞视频在线观看| 欧美日韩乱码在线| 一级毛片高清免费大全| 欧美黄色片欧美黄色片| 日本三级黄在线观看| 亚洲av成人不卡在线观看播放网| 青草久久国产| 热99国产精品久久久久久7| 老汉色av国产亚洲站长工具| 久久久久精品国产欧美久久久| 欧美日本亚洲视频在线播放| 如日韩欧美国产精品一区二区三区| 欧美精品啪啪一区二区三区| 日韩视频一区二区在线观看| 国产精品电影一区二区三区| 另类亚洲欧美激情| 欧美成人免费av一区二区三区| 少妇粗大呻吟视频| 超色免费av| 欧美日韩瑟瑟在线播放| 91av网站免费观看| 91在线观看av| 国产免费现黄频在线看| 国产激情欧美一区二区| 国产成年人精品一区二区 | 亚洲av美国av| 男女高潮啪啪啪动态图| 一a级毛片在线观看| 无人区码免费观看不卡| 日本免费一区二区三区高清不卡 | 国产日韩一区二区三区精品不卡| 搡老岳熟女国产| 99久久国产精品久久久| 午夜视频精品福利| 大香蕉久久成人网| 国产亚洲精品久久久久久毛片| 欧美激情高清一区二区三区| 精品卡一卡二卡四卡免费| 亚洲第一青青草原| 成人18禁在线播放| 精品人妻在线不人妻| 性欧美人与动物交配| 国产精品综合久久久久久久免费 | 视频区图区小说| 亚洲 欧美 日韩 在线 免费| 十八禁人妻一区二区| 好看av亚洲va欧美ⅴa在| 国产黄a三级三级三级人| 成人影院久久| 日韩欧美一区二区三区在线观看| 午夜成年电影在线免费观看| 男女下面进入的视频免费午夜 | 亚洲精品中文字幕一二三四区| 国产1区2区3区精品| 亚洲av美国av| 久久人人爽av亚洲精品天堂| 国产精品免费一区二区三区在线| 国产av一区在线观看免费| 免费少妇av软件| 日韩一卡2卡3卡4卡2021年| 12—13女人毛片做爰片一| 免费看十八禁软件| 在线观看66精品国产| 高清黄色对白视频在线免费看| 午夜91福利影院| 久久香蕉国产精品| 中文字幕av电影在线播放| 日韩欧美三级三区| 欧洲精品卡2卡3卡4卡5卡区| 在线视频色国产色| 国产单亲对白刺激| 国产精品久久久av美女十八| 少妇的丰满在线观看| 乱人伦中国视频| 亚洲人成电影免费在线| 一进一出抽搐gif免费好疼 | 国产真人三级小视频在线观看| 97超级碰碰碰精品色视频在线观看| 成人av一区二区三区在线看| 69精品国产乱码久久久| 久久久久久人人人人人| 中文欧美无线码| 精品少妇一区二区三区视频日本电影| 久久精品91无色码中文字幕| 久久国产精品影院| 免费看十八禁软件| 久久香蕉精品热| 中亚洲国语对白在线视频| 免费日韩欧美在线观看| 高清黄色对白视频在线免费看| 日韩免费高清中文字幕av| 一个人免费在线观看的高清视频| 99久久99久久久精品蜜桃| 国产三级黄色录像| 一区二区三区国产精品乱码| 露出奶头的视频| 久久 成人 亚洲| www.999成人在线观看| 日本三级黄在线观看| 纯流量卡能插随身wifi吗| 欧美在线一区亚洲| 中文字幕高清在线视频| 亚洲片人在线观看| 亚洲欧美激情综合另类| 一二三四在线观看免费中文在| av有码第一页| 久久久国产一区二区| 亚洲一区二区三区色噜噜 | 女人精品久久久久毛片| 又紧又爽又黄一区二区| 90打野战视频偷拍视频| 久久久久精品国产欧美久久久| 91字幕亚洲| 久久久久久久久久久久大奶| xxxhd国产人妻xxx| 免费少妇av软件| 久9热在线精品视频| 亚洲va日本ⅴa欧美va伊人久久| 免费在线观看完整版高清| 女人被狂操c到高潮| 热re99久久精品国产66热6| 国产有黄有色有爽视频| 亚洲欧美日韩高清在线视频| 国产精品香港三级国产av潘金莲| 国产精品美女特级片免费视频播放器 | 亚洲第一欧美日韩一区二区三区| 国产xxxxx性猛交| www国产在线视频色| 成人国产一区最新在线观看| 国产黄色免费在线视频| 亚洲五月婷婷丁香| 欧美中文综合在线视频| 精品国产亚洲在线| av超薄肉色丝袜交足视频| 久久精品国产综合久久久| 无遮挡黄片免费观看| 1024视频免费在线观看| 久久久久久久久中文| 亚洲精品一区av在线观看| 在线观看午夜福利视频| 国产成人精品久久二区二区免费| 亚洲片人在线观看| 热99re8久久精品国产| 精品少妇一区二区三区视频日本电影| 嫩草影院精品99| 精品久久久久久久久久免费视频 | 亚洲精品粉嫩美女一区| 人妻久久中文字幕网| 黑人巨大精品欧美一区二区蜜桃| 满18在线观看网站| 久久久久久久久免费视频了| 国产精品久久久av美女十八| 99在线视频只有这里精品首页| 97人妻天天添夜夜摸| 精品久久久久久久毛片微露脸| 久久久国产一区二区| 每晚都被弄得嗷嗷叫到高潮| 满18在线观看网站| 黄色毛片三级朝国网站| 亚洲精品一区av在线观看| 国产成人影院久久av| 国产成+人综合+亚洲专区| 国产成年人精品一区二区 | 亚洲精品在线观看二区| 亚洲精华国产精华精| 亚洲一区二区三区不卡视频| 少妇被粗大的猛进出69影院| 在线观看免费午夜福利视频| 欧美激情久久久久久爽电影 | 99国产综合亚洲精品| 精品久久久久久久久久免费视频 | 国产成人精品无人区| 麻豆一二三区av精品| 欧美老熟妇乱子伦牲交| 久久久久久亚洲精品国产蜜桃av| 亚洲精品在线美女| 最近最新中文字幕大全免费视频| 黄色毛片三级朝国网站| 一进一出好大好爽视频| 久久久国产成人精品二区 | 99精品久久久久人妻精品| 欧美日韩av久久| 亚洲性夜色夜夜综合| 日日夜夜操网爽| 欧美日韩中文字幕国产精品一区二区三区 | 高清在线国产一区| 亚洲av成人av| 欧美乱码精品一区二区三区| 日韩av在线大香蕉| 亚洲人成网站在线播放欧美日韩| 在线观看日韩欧美| 亚洲美女黄片视频| 国产精品 欧美亚洲| 免费在线观看完整版高清| 99精品在免费线老司机午夜| 久久中文字幕一级| 亚洲精品一卡2卡三卡4卡5卡| 99riav亚洲国产免费| 老司机靠b影院| 老司机午夜十八禁免费视频| av在线播放免费不卡| 搡老乐熟女国产| 在线观看免费视频网站a站| 少妇的丰满在线观看| www.自偷自拍.com| 午夜精品久久久久久毛片777| 黄色a级毛片大全视频| 日本撒尿小便嘘嘘汇集6| 成年版毛片免费区| 午夜福利免费观看在线| xxxhd国产人妻xxx| 1024香蕉在线观看| 久久久久久亚洲精品国产蜜桃av| 欧美+亚洲+日韩+国产| 69精品国产乱码久久久| 国产精品乱码一区二三区的特点 | 大陆偷拍与自拍| 国产成人免费无遮挡视频| 国产精品免费一区二区三区在线| 校园春色视频在线观看| 波多野结衣av一区二区av| 黄色片一级片一级黄色片| 超碰97精品在线观看| 十八禁人妻一区二区| 午夜激情av网站| 亚洲aⅴ乱码一区二区在线播放 | 色在线成人网| 亚洲人成伊人成综合网2020| 老熟妇仑乱视频hdxx| 麻豆国产av国片精品| 妹子高潮喷水视频| 十八禁人妻一区二区| 亚洲精品成人av观看孕妇| 久久久久国内视频| 亚洲欧美日韩另类电影网站| 久久精品成人免费网站| 一边摸一边抽搐一进一出视频| 18禁裸乳无遮挡免费网站照片 | 久久国产精品人妻蜜桃| videosex国产| 免费日韩欧美在线观看| 久久久久国内视频| 成人国产一区最新在线观看| 欧美另类亚洲清纯唯美| 欧美黑人欧美精品刺激| 一本综合久久免费| 久久久久国内视频| 亚洲av成人不卡在线观看播放网| 亚洲男人的天堂狠狠| 中文字幕人妻丝袜一区二区| 国产亚洲精品一区二区www| 一级片免费观看大全| 亚洲成人免费电影在线观看| 极品人妻少妇av视频| 国产又色又爽无遮挡免费看| 亚洲精品久久午夜乱码| 51午夜福利影视在线观看| 久久香蕉精品热| 国产精品秋霞免费鲁丝片| 午夜a级毛片| 人人澡人人妻人| 久久久精品欧美日韩精品| 香蕉久久夜色| 麻豆av在线久日| 亚洲全国av大片| 一级片'在线观看视频| 18禁国产床啪视频网站| 午夜91福利影院| 1024视频免费在线观看| 日韩欧美国产一区二区入口| 黑人猛操日本美女一级片| 国产精品九九99| 日韩精品中文字幕看吧| 真人一进一出gif抽搐免费| 久久国产乱子伦精品免费另类| av天堂久久9| 久久久精品欧美日韩精品| 亚洲专区国产一区二区| 女警被强在线播放| 精品一品国产午夜福利视频| 黄色毛片三级朝国网站| 精品福利永久在线观看| 天天躁夜夜躁狠狠躁躁| 夫妻午夜视频| 色综合站精品国产| 91在线观看av| 性色av乱码一区二区三区2| 老司机亚洲免费影院| 啪啪无遮挡十八禁网站| 黄色成人免费大全| 久久久精品国产亚洲av高清涩受| 80岁老熟妇乱子伦牲交| 色综合婷婷激情| 麻豆av在线久日| 国产精品影院久久| 搡老乐熟女国产| 黄色视频,在线免费观看| 黑人巨大精品欧美一区二区mp4| 三级毛片av免费| 国产精品久久久人人做人人爽| 日日摸夜夜添夜夜添小说| 大型av网站在线播放| 女人被躁到高潮嗷嗷叫费观| 亚洲精品国产一区二区精华液| 国产午夜精品久久久久久| 欧美乱码精品一区二区三区| 国产精华一区二区三区| 丁香欧美五月| 免费在线观看日本一区| 交换朋友夫妻互换小说| 欧美+亚洲+日韩+国产| 国内久久婷婷六月综合欲色啪| 欧美日韩中文字幕国产精品一区二区三区 | 精品国内亚洲2022精品成人| 最近最新中文字幕大全免费视频| 一进一出抽搐gif免费好疼 | 国产三级黄色录像| 国产精品免费视频内射| 操美女的视频在线观看| 欧美黄色片欧美黄色片| 在线十欧美十亚洲十日本专区| 国产熟女午夜一区二区三区| 在线观看免费视频网站a站| 免费观看精品视频网站| 成在线人永久免费视频| 又黄又爽又免费观看的视频| 中国美女看黄片| 亚洲一区二区三区色噜噜 | 亚洲国产欧美网| 亚洲精品美女久久久久99蜜臀| 久久青草综合色| 日韩视频一区二区在线观看| 岛国在线观看网站| 在线观看午夜福利视频| 欧美日韩黄片免| 免费在线观看黄色视频的| 最好的美女福利视频网| 欧美一级毛片孕妇| 久久精品国产亚洲av香蕉五月| 制服人妻中文乱码| 精品乱码久久久久久99久播| 精品国内亚洲2022精品成人| av有码第一页| 久久精品亚洲精品国产色婷小说| 俄罗斯特黄特色一大片| 老司机亚洲免费影院| 亚洲一区二区三区欧美精品| 国产成人欧美| 日本撒尿小便嘘嘘汇集6| 亚洲成人精品中文字幕电影 | 激情在线观看视频在线高清| 精品国产一区二区久久| 丰满的人妻完整版| 亚洲欧美一区二区三区久久| 午夜精品在线福利| av欧美777| 91在线观看av| 亚洲色图 男人天堂 中文字幕| 色在线成人网| 国产激情欧美一区二区| 一边摸一边抽搐一进一小说| 欧美av亚洲av综合av国产av| 一级毛片精品| 久久久久国内视频| 亚洲国产毛片av蜜桃av| 国产精品一区二区免费欧美| 欧美在线一区亚洲| 女人高潮潮喷娇喘18禁视频| 亚洲精品国产色婷婷电影| 男女之事视频高清在线观看| 天天躁夜夜躁狠狠躁躁| 久久国产精品人妻蜜桃| 亚洲aⅴ乱码一区二区在线播放 | 亚洲avbb在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 高清欧美精品videossex| 中文字幕人妻熟女乱码| 男女做爰动态图高潮gif福利片 | 中文亚洲av片在线观看爽| 久久久久国产一级毛片高清牌| 午夜福利免费观看在线|