裴福萍,葉軼凡,王 楓,曹花花,路思明,楊德彬
1.吉林大學(xué)地球科學(xué)學(xué)院,長(zhǎng)春 130061
2.河北省地礦局第四地質(zhì)大隊(duì),河北 承德 067000
對(duì)全球前寒武紀(jì)造山帶及裂谷帶的研究表明,在羅迪尼亞超大陸存在之前,古-中元古代時(shí)期曾存在另一個(gè)超大陸,Rogers和Santosh[1]將其命名為哥倫比亞超大陸(Columbia supercontinent)。該超大陸是在1.9~1.5Ga由Nena、Ur和Atlantic等多個(gè)塊體通過逐步匯聚而形成的,從1.5Ga開始哥倫比亞超大陸逐步裂解。盡管目前對(duì)華北板塊在哥倫比亞超大陸中的構(gòu)造位置還存在分歧,但大部分學(xué)者認(rèn)為華北板塊是哥倫比亞超大陸的一部分[1-7],華北板塊1.9Ga 左右的呂梁-中條造山運(yùn)動(dòng)以及其后的裂解和增生事件是該認(rèn)識(shí)的主要證據(jù)[1,8-13]。然而華北板塊上代表引張環(huán)境的大量元古代地質(zhì)事件的形成時(shí)限為1.8~1.6Ga,這明顯早于哥倫比亞超大陸主體裂解時(shí)限(1.5~1.2 Ga)[1,14-19]。目前僅在燕山-太行山地區(qū)霧迷山組中發(fā)現(xiàn)了與北美等地基性巖墻群形成時(shí)代相近的1.35Ga的鎂鐵質(zhì)巖墻群[20],由此可見,華北板塊中元古代巖漿作用期次及空間分布是確定元古宙華北板塊與哥倫比亞超大陸構(gòu)造演化歷史及其關(guān)系的首要科學(xué)問題。吉林通化地區(qū)分布著眾多不同走向的基性-超基性巖墻(脈),這為研究華北板塊伸展作用的期次提供了前提條件。作者在對(duì)吉林通化地區(qū)輝綠巖進(jìn)行LA-ICP-MS鋯石U-Pb年代學(xué)研究過程中,發(fā)現(xiàn)該區(qū)存在中元古代基性巖墻;并在此基礎(chǔ)上對(duì)該基性巖進(jìn)行了地球化學(xué)的研究,該項(xiàng)研究對(duì)于華北板塊前寒武紀(jì)構(gòu)造演化歷史的研究以及哥倫比亞超大陸的重建具有重要意義。
吉林通化地區(qū)位于華北板塊北東緣,南部為北東東向展布的遼吉古元古代造山帶(圖1)。研究區(qū)內(nèi)以新太古代-古元古代變質(zhì)基底巖石的產(chǎn)出為特征,新元古代-古生代以穩(wěn)定的地臺(tái)型沉積為主,中生代產(chǎn)出大面積火山巖和花崗巖類[21,23]。通化地區(qū)分布著許多走向北東、南北及北西向的基性、中性和酸性巖墻群(巖株或巖脈),局部見有中酸性巖脈(墻)切穿基性巖脈(墻)的現(xiàn)象(圖1)。前人曾將通化地區(qū)分布較廣的基性巖墻(巖株或巖脈)的形成時(shí)代定為古元古代和早白堊世[24-25]。
筆者所研究的輝綠巖墻寬約10m,走向北東,侵入于新太古代變質(zhì)基底巖石中。輝綠巖新鮮面呈墨綠色,細(xì)粒輝長(zhǎng)輝綠結(jié)構(gòu),塊狀構(gòu)造,主要礦物成分由透輝石(30%)和斜長(zhǎng)石(60%)組成,次要礦物由堿性長(zhǎng)石(3%)、黑云母(5%)和石英(1%)組成,并有少量的磁鐵礦和磷灰石等副礦物(圖2)。
樣品用浮選和電磁選方法進(jìn)行分選,再在雙目鏡下挑選出晶形和透明度較好的鋯石顆粒,將它們粘貼在環(huán)氧樹脂表面,再對(duì)其進(jìn)行拋光露出鋯石表面,然后在中國科學(xué)院地質(zhì)與地球物理研究所進(jìn)行反射光、透射光和陰極發(fā)光顯微照相。通過對(duì)反射光、透射光和陰極發(fā)光圖像分析,選擇吸收程度均勻和特征明顯的不同區(qū)域進(jìn)行分析。鋯石U-Pb同位素分析在西北大學(xué)大陸動(dòng)力學(xué)國家重點(diǎn)實(shí)驗(yàn)室的LA-ICP-MS儀器上用標(biāo)準(zhǔn)測(cè)定程序進(jìn)行,采用國際標(biāo)準(zhǔn)鋯石91500作為外標(biāo)校正,以保證標(biāo)準(zhǔn)和樣品的儀器條件完全一致。激光束的束斑為32μm。將實(shí)驗(yàn)獲得的數(shù)據(jù)進(jìn)行同位素比值的校正,以扣除普通Pb的影響。所給定的同位素比值和年齡誤差(標(biāo)準(zhǔn)偏差)在1σ水平。詳細(xì)的實(shí)驗(yàn)原理和流程見文獻(xiàn)[26]。樣品的主微量元素分析分別在中國科學(xué)院貴陽地球化學(xué)研究所和中國地質(zhì)大學(xué)地質(zhì)過程與礦產(chǎn)資源國家重點(diǎn)實(shí)驗(yàn)室采用XRF熒光光譜分析和ICP-MS分析法完成。
圖1 研究區(qū)大地構(gòu)造位置(a)及基性巖分布略圖(b)Fig.1 Geological map of Tonghua region(a)showing the distribution of basic rocks(b)
圖2 通化地區(qū)中元古代輝綠巖鏡下顯微照片F(xiàn)ig.2 Photomicrographs(crossed polarized light)of the Mesoproterozoic diabase from Tonghua region
通化地區(qū)輝綠巖中的鋯石以自形為主,具有巖漿成因的生長(zhǎng)環(huán)帶(圖3),并具有較高的w(Th)((50.6~347)×10-6)、w(U)((81.2~765.0)×10-6)和Th/U值(0.21~1.45)(表1)。從表2和圖4中可以看出,鋯石具有輕稀土虧損、重稀土相對(duì)富集以及正Ce異常和負(fù)Eu異常的特征,稀土總量為(373~1 303)×10-6。上述特點(diǎn)暗示所分析的鋯石為巖漿鋯石[27]。鋯石7個(gè)分析點(diǎn)的207Pb/206Pb同位素年齡為1 254~1 463Ma,構(gòu)成一條不一致線,其上交點(diǎn)年齡為(1 244±28)Ma(圖5),該年齡代表了輝綠巖的形成時(shí)代。
吉林通化地區(qū)輝綠巖的w(SiO2)為49.3%~49.5%,Mg#值[Mg2+/(Mg2++Fe2+)]為42.2~42.6,全堿 w(K2O+Na2O)為4.22%~4.43%,Na2O/K2O 值 為 2.10~1.89,w(TFe2O3)為13.6%~14.1%,屬于拉斑玄武巖系列(表3)。微量元素具有輕稀土及大離子親石元素(Rb、Ba、Th和U)相對(duì)富集、重稀土相對(duì)虧損[(La/Yb)N=12.3~12.9],以及弱的Eu和Sr的正異常,后者暗示少量斜長(zhǎng)石堆晶作用的存在(圖6,7)。與原始地幔相比,其微量元素含量明顯偏高。通化地區(qū)輝綠巖的微量元素特征明顯不同于與俯沖作用有關(guān)的基性巖以及研究區(qū)早白堊世基性巖[21-22,30-32]。
前人曾根據(jù)全巖Rb-Sr法、全巖K-Ar法和鋯石U-Pb法對(duì)吉林通化地區(qū)部分巖墻進(jìn)行過定年工作,并將其時(shí)代確定為古元古代和早白堊世[24-25]。本文輝綠巖中鋯石具有巖漿成因的生長(zhǎng)環(huán)帶(圖3),并具有較高的Th/U值以及巖漿成因的稀土元素分配特征,暗示它們?yōu)閹r漿鋯石,因而所測(cè)得的年齡((1 244±28)Ma)應(yīng)該代表了該輝綠巖的形成時(shí)代,同時(shí)說明通化地區(qū)存在中元古代的基性巖漿事件。該年齡與北美等地1.3~1.2Ga的基性巖墻群的形成時(shí)代相一致[1],同時(shí),也與華北板塊北緣中元古代霧迷山組輝綠巖墻的形成時(shí)代相似[20]。結(jié)合已有的定年結(jié)果可以看出,通化地區(qū)的巖墻至少形成于兩期:中元古代和早白堊世[22,25],這與該區(qū)基性巖墻具有不同產(chǎn)狀相吻合,即該區(qū)基性巖墻存在走向?yàn)楸睎|、北北東、南北和北北西4種產(chǎn)狀(圖1)。
表1 通化地區(qū)中元古代輝綠巖中LA-ICP-MS鋯石U-Pb定年結(jié)果Table1 LA-ICP-MS zircon U-Pb dating data for the Mesoproterozoic diabase from Tonghua region
表2 通化地區(qū)中元古代輝綠巖(CB16-1)中鋯石稀土元素分析結(jié)果Table2 Rare earth element data for the zircons of the Mesoproterozoic diabase(CB16-1)from Tonghua region wB/10-6
表3 通化地區(qū)中元古代輝綠巖的主量和微量元素地球化學(xué)分析結(jié)果Table3 Major and trace elements analyzed results of the Mesoproterozoic diabase from Tonghua region
輝綠巖應(yīng)主要來源于地幔物質(zhì)的部分熔融,因而其地球化學(xué)特征反映了地幔的性質(zhì)。通化地區(qū)中元古代輝綠巖具有較低的w(SiO2)(49.3%~49.5%)以及較高的w(TFe2O3)(13.6% ~14.1%),屬于拉斑玄武巖系列,說明該輝綠巖來源于巖石圈地幔較高程度的部分熔融。另外輝綠巖的Ba/Nb(15.8~17.3)和La/Nb(1.15~1.20)介于洋島玄武巖和弧火山巖之間(圖8)[33],并具有弱的Ti正異常,暗示該輝綠巖的原始巖漿中存在軟流圈地幔的組分。其中LREEs和LILEs的富集以及弱的Nb和Ta負(fù)異常暗示源區(qū)可能遭受了陸殼物質(zhì)的改造。因此,該輝綠巖應(yīng)形成于拉張環(huán)境,由于軟流圈地幔上涌提供熱源,引起巖石圈地幔高程度的部分熔融。
圖3 通化地區(qū)中元古代輝綠巖中部分鋯石CL圖像特征Fig.3 Cathodoluminescence(CL)images of zircons from the Mesoproterozoic diabase from Tonghua region
圖4 通化地區(qū)中元古代輝綠巖中鋯石稀土配分圖解Fig.4 Chondrite-normalized REE patterns for the analyzed zircons of the Mesoproterozoic diabase from Tonghua region
圖5 通化地區(qū)中元古代輝綠巖U-Pb諧和圖Fig.5 LA-ICP-MS zircon U-Pb concordia diagram for the Mesoproterozoic diabase from Tonghua region
圖6 通化地區(qū)中元古代輝綠巖稀土配分圖解Fig.6 Chondrite-normalized REE patterns for the Mesoproterozoic diabase from Tonghua region
圖7 通化地區(qū)中元古代輝綠巖微量元素蛛網(wǎng)圖Fig.7 Primitive mantle-normalized trace element spider diagram for the Mesoproterozoic diabase from Tonghua region
前人在對(duì)華北板塊北緣古-中元古代構(gòu)造演化歷史研究過程中,曾發(fā)現(xiàn)中元古代巖漿事件的存在,但由于當(dāng)時(shí)所采用的定年方法多是K-Ar和40Ar/39Ar法,從而使定年結(jié)果的可靠性受到限制[10,15,34]。通化地區(qū)中元古代輝綠巖的鋯石U-Pb定年結(jié)果及地球化學(xué)特征顯示其形成于強(qiáng)烈的伸展環(huán)境,結(jié)合華北北緣霧迷山組中1.35Ga輝綠巖墻群的存在,可以判定華北板塊北緣中元古代鎂鐵質(zhì)巖墻群的分布較為廣泛,中元古代時(shí)期華北北緣處于強(qiáng)烈的伸展環(huán)境,而這一時(shí)期恰恰與哥倫比亞超大陸的裂解時(shí)間相對(duì)應(yīng)[5,20]。因此,筆者認(rèn)為華北板塊應(yīng)是古元古代-中元古代哥倫比亞超大陸的組成部分[1-2],經(jīng)歷了古元古代(2.1~1.8Ga)中央造山帶和古遼吉造山帶的碰撞造山作用,以及隨后的1.8~1.7 Ga的造山后伸展作用[18,35]。華北板塊以及全球1.3~1.2Ga的巖漿事件標(biāo)志著哥倫比亞超大陸的最終裂解[1,5]。
圖8 通化地區(qū)中元古代輝綠巖Ba/Nb-La/Nb圖解(引自John Bor-ming等[33],略有修改)Fig.8 Ba/Nb vs.La/Nb plot of the Mesoproterozoic diabase from Tonghua region(modified after John et al.[33])
基于通化地區(qū)中元古代輝綠巖的LA-ICP-MS鋯石U-Pb定年結(jié)果以及全巖地球化學(xué)特征,得出以下結(jié)論:
1)鋯石的形態(tài)、CL圖像及微量元素特征顯示,所測(cè)鋯石為巖漿鋯石。鋯石U-Pb定年結(jié)果顯示,通化地區(qū)中元古代輝綠巖的形成時(shí)代為(1 244±28)Ma。
2)通化地區(qū)中元古代輝綠巖屬于拉斑玄武巖系列,其原始巖漿起源于巖石圈地幔的部分熔融,并有軟流圈組分的涉入。
3)通化地區(qū)中元古代輝綠巖形成于強(qiáng)烈拉張環(huán)境,結(jié)合前人研究成果,認(rèn)為華北板塊為哥倫比亞超大陸的一部分,其北緣廣泛發(fā)育的1.3~1.2Ga的巖漿事件與哥倫比亞超大陸的最終裂解有關(guān)。
(References):
[1]Rogers J J W,Santosh M.Configuration of Columbia,a Mesoproterozoic Supercontinent[J].Gondwana Research,2002,5(1):5-22.
[2]Zhao Guochun,Cawood P A,Wilde S A,et al.Review of Global 2.1-1.8Ga Orogens:Implications for a Pre-Rodinia Supercontinent[J].Earth-Science Reviews,2002,59(1/2/3/4):125-162.
[3]陳躍軍,彭玉鯨,路孝平,等.華北板塊北緣活動(dòng)帶元古宙構(gòu)造巖片[J].吉林大學(xué)學(xué)報(bào):地球科學(xué)版,2002,32(2):134-139.Chen Yuejun,Peng Yujing,Lu Xiaoping,et al.Proterozoic Tectonic Slices Along the Northern Margin of North China Plate[J].Journal of Jilin University:Earth Science Edition,2002,32(2):134-139.
[4]Zhao Guochun,Sun Min,Wilde S A.Correlations Between the Eastern Block of the North China Craton and the South Indian Block of the Indian Shield:An Archaean to Palaeoproterozoic Link[J].Precambrian Research,2003,122(1/2/3/4):201-233.
[5]Zhao Guochun,Sun Min,Wilde S A,et al.A Paleo-Mesoproterozoic Supercontinent:Assembly,Growth and Breakup[J].Earth-Science Reviews,2004,67(1/2):91-123.
[6]Rogers J J W,Santosh M.The Sino-Korean Craton and Supercontinent History:Problems and Perspectives[J].Gondwana Research,2006,9(1/2):21-23.
[7]Zhang Shihong,Li Zhengxiang,Wu Huaichun.New Precambrian Palaeomagnetic Constraints on the Position of the North China Block in Rodinia[J].Precambrian Research,2006,144(3/4):213-238.
[8]Chen Yanjing,F(xiàn)u Shigu.Gold Mineralization in West Henan[M].Beijing:Seismological Publishing House,1992.
[9]Chen Yanjing,Zhao Yongchao.Geochemical Characteristics and Evolution of REE in the Early Precambrian Sediments:Evidence from the Southern Margin of the North China Craton[J].Episodes,1997,20:109-116.
[10]陸松年,楊春亮,李懷坤,等.華北古大陸與哥倫比亞超大陸[J].地學(xué)前緣,2002,9(4):225-233.Lu Songnian,Yang Chunliang,Li Huaikun et al.North China Continent and Columbia Supercontinent[J].Earth Science Frontiers,2002,9(4):225-233.
[11]Peng Peng,Zhai Mingguo,Zhang Huafeng,et al.Geochronological Constraints on the Paleoproterozoic Evolution of the North China Craton:SHRIMP Zircon Ages of Different Types of Mafic Dikes[J].International Geology Review,2005,47(5):492-508.
[12]楊進(jìn)輝,吳福元,柳小明,等.北京密云環(huán)斑花崗巖鋯石U-Pb年齡和Hf同位素及其地質(zhì)意義[J].巖石學(xué)報(bào),2005,21(6):1633-1644.Yang Jinhui,Wu Fuyuan,Liu Xiaoming,et al.Zircon U-Pb Ages and Hf Isotopes and Their Geological Significance of the Miyun Rapakivi Granites from Beijing,China[J].Acta Petrologica Sinica,2005,21(6):1633-1644.
[13]Zhang Shuanhong,Liu Shuwen,Zhao Yue,et al.The 1.75-1.68Ga Anorthosite-Mangerite-Alkali Granitoid-Rapakivi Granite Suite from the Northern North China Craton:Magmatism Related to a Paleoproterozoic Orogen [J]. Precambrian Research,2007,155(3/4):287-312.
[14]Zhai Mingguo,Bian Aiguo.The Amalgamation of the Supercontinent of North China Craton at the End of the Neoarchean and Its Break up During Late Proterozoic and Mesoproterozoic[J].Science in China:Series D,2000,43:219-232.
[15]劉正宏,劉雅琴,馮本智.華北板塊北緣中元古代造山帶的確立及其構(gòu)造演化[J].長(zhǎng)春科技大學(xué)學(xué)報(bào),2000,30(2):110-114.Liu Zhenghong,Liu Yaqin,F(xiàn)eng Benzhi.The Establishment and Tectonic Evolution of Proterozoic Orogenic Belt in the North Margin of North China Plate[J].Journal of Changchun University of Science and Technology,2000,30(2):110-114.
[16]Lu Songnian,Yang Chunliang,Li Huaikun,et al.A Group of Rifting Events in the Terminal Paleoproterozoic in the North China Craton[J].Gondwana Research,2002,5(1):123-131.
[17]Zhao Guochun,Sun Min,Wilde S A.Reconstruction of a Pre-Rodinia Supercontinent:New Advances and Perspectives[J].Chinese Science Bulletin,2002,47(19):1585-1588.
[18]Wang Yuejun,Zhao Guochun,Cawood P A,et al.Geochemistry of Paleoproterozoic(Similar to 1770 Ma)Mafic Dikes from the Trans-North China Orogen and Tectonic Implications[J].Journal of Asian Earth Sciences,2008,33(1/2):61-77.
[19]楊德彬,許文良,裴福萍,等.蚌埠隆起區(qū)古元古代鉀長(zhǎng)花崗巖的成因:巖石地球化學(xué)、鋯石U-Pb年代學(xué)與Hf同位素的制約[J].地球科學(xué):中國地質(zhì)大學(xué)學(xué)報(bào),2009,34(1):148-164.Yang Debin,Xu Wenliang,Pei Fuping,et al.Petrogenesis of the Paleoproterozoic K-Feldspar Granites in Bengbu Uplift:Constraints from Petro-Geochemis-try,Zircon U-Pb Dating and Hf Isotope[J].Earth Science:Journal of China University of Geosciences,2009,34(1):148-164.
[20]Zhang Shuanhong,Zhao Yue,Yang Zhenyu,et al.The 1.35Ga Diabase Sills from the Northern North China Craton:Implications for Breakup of the Columbia(Nuna)Supercontinent[J].Earth and Planetary Science Letters,2009,288(3/4):588-600.
[21]裴福萍,許文良,楊德彬,等.華北克拉通東北緣巖石圈深部物質(zhì)組成的不均一性:來自吉林南部中生代火山巖元素及Sr-Nd同位素地球化學(xué)的證據(jù)[J].巖石學(xué)報(bào),2009,25(8):1962-1974.Pei Fuping,Xu Wenliang,Yang Debin,et al.Heterogeneity of Late Mesozoic Deep Lithosphere Beneath the Northeastern North China Craton:Evidence from Elemental and Sr-Nd Isotopic Geochemistry of Mesozoic Volcanic Rocks in the Southern Jilin Province,China[J].Acta Petrologica Sinica,2009,25(8):1962-1974.
[22]Pei Fuping,Xu Wenliang,Yang Debin,et al.Geochronology and Geochemistry of Mesozoic Mafic-Ultramafic Complexes in the Southern Liaoning and Southern Jilin Provinces,NE China:Constraints on the Spatial Extent of Destruction of the North China Craton[J].Journal of Asian Earth Sciences,2011,40(2):636-650.
[23]Pei Fuping,Xu Wenliang,Yang Debin,et al.Heterogeneity of the Lower Continental Crust Beneath Southern Jilin Province,NE China:Evidence from Geochemical and Sr-Nd-Pb Isotopic Compositions of Early Cretaceous Granitoids[J].Geochimica et Cosmochimica Acta,2010,74(12):801-801.
[24]吉林省地質(zhì)礦產(chǎn)局.吉林省區(qū)域地質(zhì)志[M].北京:地質(zhì)出版社,1988.Jilin Bureau of Geology and Mineral Resources.Regional Geology of Jilin Province[M].Beijing:Geological Publishing House,1988.
[25]Pei Fuping,Xu Wenliang,Yang Debin,et al.SHRIMP Zircon U-Pb Dating and Its Geological Significance of Chibaisong Gabbro in Tonghua Area,Jilin Province,China[J].Science in China:Series D,2006,49(4):368-374.
[26]Yuan Honglin,Gao Shan,Liu Xiaoming,et al.Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry[J].Geostandards and Geoanalytical Research,2004,28(3):353-370.
[27]Hoskin P W O,Schaltegger U.The Composition of Zircon and Igneous and Metamorphic Petrogenesis[J].Reviews in Mineralogy and Geochemistry,2003,53:27-62.
[28]Henderson P.Rare Earth Element Geochemistry[M].Amsterdam:Elsevier,1984.
[29]Sun S S,McDonough W F.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes[C]//Saunders A D.Magmatism in Ocean Basins.London:Geological Society Special Publication,1989:313-345.
[30]Wang Yuejun,F(xiàn)an Weiming,Zhang Yanhua,et al.Geochemical,40Ar/39Ar Geochronological and Sr-Nd Isotopic Constraints on the Origin of Paleoproterozoic Mafic Dikes from the Southern Taihang Mountains and Implications for the ca.1 800Ma Event of the North China Craton[J].Precambrian Research,2004,135(1/2):55-77.
[31]Liu Shen,Hu Ruizhong,Gao Shan,et al.Petrogenesis of Late Mesozoic Mafic Dykes in the Jiaodong Peninsula,Eastern North China Craton and Implications for the Foundering of Lower Crust[J].Lithos,2009,113(3/4):621-639.
[32]劉燊,胡瑞忠,馮光英,等.華北克拉通中生代以來基性巖墻群的分布及研究意義 [J].地質(zhì)通報(bào),2010,29(2/3):259-267.Liu Shen,Hu Ruizhong,F(xiàn)eng Guangying,et al.Distribution and Significance of the Mafic Dyke Swarms Since Mesozoic in North China Craton[J].Geological Bulletin of China,2010,29(2/3):259-267.
[33]Jahn Borming,Wu Fuyuan,Lo Chinghua,et al.Crust-Mantle Interaction Induced by Deep Subduction of the Continental Crust:Geochemical and Sr-Nd Isotopic Evidence from Post-Collisional Mafic-Ultramafic Intrusions of the Northern Dabie Complex,Central China[J].Chemical Geology,1999,157:119-146.
[34]邵濟(jì)安,張履橋,李大明.華北克拉通元古代的三次伸展事件[J].巖石學(xué)報(bào),2002,18(2):152-160.Shao Ji’an,Zhang Lüqiao,Li Daming.Three Proterozoic Extensional Events in North China Craton[J].Acta Petrologica Sinica,2002,18(2):152-160.
[35]路孝平,吳福元,郭敬輝,等.通化地區(qū)古元古代晚期花崗質(zhì)巖漿作用與地殼演化 [J].巖石學(xué)報(bào),2005,21(3):721-736.Lu Xiaoping,Wu Fuyuan,Guo Jinghui,et al.Late Paleoproterozoic Granite Magmatism and Crustal E-volution in the Tonghua Region,Northeast China[J].Acta Petrologica Sinica,2005,21(3):721-736.