譚碧娥 印遇龍
(中國(guó)科學(xué)院亞熱帶農(nóng)業(yè)生態(tài)研究所,中國(guó)科學(xué)院亞熱帶農(nóng)業(yè)生態(tài)過(guò)程重點(diǎn)實(shí)驗(yàn)室,湖南省畜禽健康養(yǎng)殖工程技術(shù)中心,農(nóng)業(yè)部中南動(dòng)物營(yíng)養(yǎng)與飼料科學(xué)觀測(cè)實(shí)驗(yàn)站,長(zhǎng)沙 410125)
胃腸道不僅僅是消化和吸收的器官,同時(shí)也是味覺(jué)感應(yīng)器官,被看作是化學(xué)傳感接口,負(fù)責(zé)生成和傳遞胃腸道管腔環(huán)境信息到大腦和身體的其余部分[1]。早在 1964 年,Mclntyre 等[2]發(fā)現(xiàn)口服葡萄糖比靜脈注射更能有效地提高血漿胰島素水平,胃腸道在感應(yīng)和傳導(dǎo)營(yíng)養(yǎng)信號(hào)中的積極作用就被證實(shí)。對(duì)胃腸道信號(hào)在調(diào)控激素分泌、攝食和胃腸蠕動(dòng)等生理活動(dòng)中的作用的不斷認(rèn)知,激起了對(duì)胃腸道如何感應(yīng)營(yíng)養(yǎng)信息的研究熱潮。近幾年的研究表明,胃腸道黏膜上存在味覺(jué)受體細(xì)胞,通過(guò)味覺(jué)信號(hào)轉(zhuǎn)導(dǎo)和信息傳遞來(lái)感受胃腸道內(nèi)含物[3]。胃腸道識(shí)別到營(yíng)養(yǎng)物質(zhì)或非營(yíng)養(yǎng)物質(zhì)后,啟動(dòng)調(diào)控消化、吸收、采食和代謝的級(jí)聯(lián)過(guò)程或者啟動(dòng)拒食、中和和排出有害物質(zhì)等防御過(guò)程。
胃腸道內(nèi)分泌細(xì)胞(enteroendocrine cells,EECs)是腸腔黏膜上特化的上皮細(xì)胞,所占比例不到整個(gè)腸腔上皮細(xì)胞的1%,但構(gòu)成了體內(nèi)最大的內(nèi)分泌器官。EECs被認(rèn)為是胃腸腔內(nèi)的初級(jí)化學(xué)感應(yīng)器,能整合胃腸腔信息,釋放信號(hào)分子,激活神經(jīng)纖維或其他靶目標(biāo),進(jìn)而響應(yīng)腸腔內(nèi)容物[4]。神經(jīng)元是管腔化學(xué)傳感系統(tǒng)的組成部分,包括外在傳入神經(jīng)元和內(nèi)在神經(jīng)元,能檢測(cè)到管腔內(nèi)容物,產(chǎn)生反射作用,影響胃腸蠕動(dòng)、血流量以及水和電解質(zhì)的分泌[5]。管腔感應(yīng)器是黏膜化學(xué)傳感系統(tǒng)的重要組成部分,通過(guò)與特定營(yíng)養(yǎng)物質(zhì)結(jié)合,激發(fā)信號(hào)級(jí)聯(lián)反應(yīng)。目前鑒定的腸道營(yíng)養(yǎng)物質(zhì)感應(yīng)器大部分集中于EECs,位于EECs膜的管腔側(cè),感應(yīng)系統(tǒng)涉及膜表面溶質(zhì)載體(solute carrier transporters,SLC)和 G蛋白偶聯(lián)受體(G-protein-coupled receptors,GPCRs)的利用以及細(xì)胞內(nèi)受體結(jié)合和代謝的需要。
腸道刷狀緣膜表達(dá)有豐富的SLC,充當(dāng)營(yíng)養(yǎng)物質(zhì)、離子和藥物吸收的門(mén)戶。已報(bào)道的SLC轉(zhuǎn)運(yùn)載體基因有362個(gè),分為47個(gè)家族[6]。SLC的輸送方式主要包括依賴于細(xì)胞膜內(nèi)外電位差的促進(jìn)擴(kuò)散和借助于細(xì)胞內(nèi)外離子濃度差的二次性能動(dòng)輸送。例如,單糖轉(zhuǎn)運(yùn)蛋白包括鈉/葡萄糖共轉(zhuǎn)運(yùn)載體(sodium-coupled glucose transporter,SGLT)(如SGLT1)和葡萄糖協(xié)助擴(kuò)散轉(zhuǎn)運(yùn)載體(facilitativeglucose transporter,GLUT)(如 GLUT1、GLUT2和 GLUT5)。作為 Na+依賴性轉(zhuǎn)運(yùn)體,SGLT1轉(zhuǎn)運(yùn)葡萄糖時(shí)與Na+協(xié)同,位于上皮細(xì)胞基底膜的Na+-K+-ATP酶維持細(xì)胞內(nèi)外Na+濃度梯度,SGLT1順濃度差將Na+轉(zhuǎn)運(yùn)入細(xì)胞的同時(shí)將葡萄糖逆濃度差協(xié)同轉(zhuǎn)運(yùn)入上皮細(xì)胞[7]。越來(lái)越多的研究證明,轉(zhuǎn)運(yùn)載體自身充當(dāng)營(yíng)養(yǎng)物質(zhì)的感應(yīng)器,監(jiān)測(cè)營(yíng)養(yǎng)物質(zhì)代謝變化,而且充當(dāng)生電性或代謝性的轉(zhuǎn)運(yùn)感受體,在營(yíng)養(yǎng)物質(zhì)感應(yīng)中發(fā)揮了重要的作用[8-9]。
近年來(lái),許多GPCRs被證實(shí)可作為營(yíng)養(yǎng)物質(zhì)傳感器,且其基因在腸道中有表達(dá)[10]。GPCRs所介導(dǎo)的細(xì)胞信號(hào)通路主要包括腺苷-3',5'-環(huán)化一磷酸(cAMP)信號(hào)通路和磷脂酰肌醇信號(hào)通路。GPCRs存在多種配基,使這些受體更具有多樣性和敏感性,不僅影響配基的親和力和效能,還能引起下游的信號(hào)傳導(dǎo)[11]。細(xì)胞內(nèi)蛋白相互作用以及細(xì)胞外構(gòu)象和膜極性的改變能進(jìn)一步調(diào)節(jié)受體活性[12]。味覺(jué)受體家族Tas1和Tas2是營(yíng)養(yǎng)物質(zhì)感應(yīng)的重要的 GPCRs。Tas1家族由T1R1、T1R2和T1R3組成,以異源二聚體的形式發(fā)揮作用,T1R2和T1R3結(jié)合形成甜味受體,T1R1和T1R3一起作為鮮味受體可以感應(yīng)谷氨酸;Tas2家族包括約30個(gè)成員,是苦味受體。最近鑒定出氨基酸受體G蛋白偶聯(lián)受體C組6A(GPRC6A),其基因在整個(gè)腸腔都有表達(dá)[13],但研究還很少。此外,腸腔內(nèi)分泌細(xì)胞含有豐富的感應(yīng)脂類(lèi)物質(zhì)的GPCRs,包括 GPR40(FFAR1)、GPR41(FFAR3)、GPR43(FFAR2)、GPR84 和 GPR120 等[14-15]。GPR40 和GPR120結(jié)合中長(zhǎng)鏈游離脂肪酸,而 GPR43和GPR41結(jié)合短鏈脂肪酸(short-chain fatty acids,SCFA)。
胃腸道營(yíng)養(yǎng)感應(yīng)存在3種不同模型:1)EECs味覺(jué)受體信號(hào)影響腸促胰島素釋放,這反過(guò)來(lái)又影響腸上皮細(xì)胞(enterocytes,EC)中轉(zhuǎn)運(yùn)載體的基因表達(dá)或膜的有效性。2)EECs或EC中營(yíng)養(yǎng)物質(zhì)偶聯(lián)的生電性轉(zhuǎn)運(yùn)模式。3)營(yíng)養(yǎng)物質(zhì)與代謝性轉(zhuǎn)運(yùn)受體結(jié)合,導(dǎo)致EECs促胰島素釋放或EC中基因表達(dá)的變化[16]。這類(lèi)似于舌頭上皮味覺(jué)受體作用模式,營(yíng)養(yǎng)物質(zhì)感應(yīng)器(腸道味覺(jué)受體)、營(yíng)養(yǎng)物質(zhì)效應(yīng)器(肽類(lèi)激素)和作用靶點(diǎn)(如營(yíng)養(yǎng)物質(zhì)轉(zhuǎn)運(yùn)載體基因表達(dá)或EC刷狀膜緣營(yíng)養(yǎng)物質(zhì)的利用)有清晰的區(qū)別。
營(yíng)養(yǎng)物質(zhì)與味覺(jué)受體結(jié)合,活化α-味導(dǎo)素(α-gustducin,Gg),從而激活胞內(nèi)的腺苷酸環(huán)化酶(adenylate cyclase,AC),產(chǎn)生 cAMP,進(jìn)而激活蛋白激酶A(protein kinase A,PKA),關(guān)閉 K+通道,抑制K+外流,引起細(xì)胞膜的去極化,開(kāi)啟L型電壓依賴性Ca2+通道(L-type voltage-sensitive Ca2+channel,L-VSCCs),導(dǎo)致胞外 Ca2+內(nèi)流,胞質(zhì)內(nèi)游離的Ca2+濃度([Ca2+]i)上升,引起神經(jīng)遞質(zhì)釋放[17]。在磷脂酰肌醇信號(hào)通路中胞外信號(hào)分子與細(xì)胞表面GPCRs結(jié)合,激活質(zhì)膜上的磷脂酶C(phospholipase C,PLC),使質(zhì)膜上4,5-二磷酸磷脂酰肌醇(PIP2)水解成1,4,5-三磷酸肌醇(IP3)和二酰基甘油(DAG)2個(gè)第二信使。IP3的增多導(dǎo)致胞內(nèi)鈣庫(kù)膜上的IP3-門(mén)控Ca2+通道開(kāi)放,儲(chǔ)備的 Ca2+釋放,[Ca2+]i上升,激活瞬時(shí)受體電位離子通道蛋白5(transient receptor potential cation channel subfamily M member 5,TRPM5),從而促進(jìn)膜的去極化。DAG則激活蛋白激酶C(protein kinase C,PKC)和蛋白激酶D(protein kinase D,PKD),它們通過(guò)磷酸化修飾 K+通道,關(guān)閉K+通道,從而引起味細(xì)胞膜的去極化和神經(jīng)遞質(zhì)的釋放[18]。
腸道碳水化合物與很多生理反應(yīng)相關(guān),包括細(xì)胞內(nèi)葡萄糖轉(zhuǎn)運(yùn)蛋白的轉(zhuǎn)運(yùn)、刺激腸內(nèi)分泌細(xì)胞分泌和激活腸神經(jīng)元。這些生理反應(yīng)的信號(hào)通路見(jiàn)圖1[19]。飼糧中復(fù)雜的碳水化合物首先被唾液淀粉酶和胰淀粉酶降解,隨后被刷狀緣酶分解成葡萄糖、半乳糖和果糖。葡萄糖通過(guò)主動(dòng)運(yùn)輸在基頂膜被EC吸收:Na+-葡萄糖共轉(zhuǎn)運(yùn)載體SGLT1驅(qū)動(dòng)葡萄糖的吸收,而基底外側(cè)的Na+-K+-ATP酶維持著Na+梯度[20]?;淄鈧?cè)葡萄糖流出由胃腸腔上端GLUT2介導(dǎo),餐后GLUT2短暫富集于基頂膜表面,使葡萄糖在腸腔高糖條件下能主動(dòng)吸收。葡萄糖濃度在30~50 mmol時(shí),刷狀膜緣SGLT1活性達(dá)到飽和,GLUT2能短暫地插入到頂端,GLUT2的導(dǎo)入可以節(jié)約能量,防止由SGLT1產(chǎn)生的Na+梯度不必要的降低。人工合成甜味劑通過(guò)提高刷狀膜緣GLUT2基因的表達(dá),使幾分鐘之內(nèi)葡萄糖吸收率倍增[21]。
圖1 腸內(nèi)分泌細(xì)胞碳水化合物的感應(yīng)Fig.1 Carbohydrate sensing in enteroendocrine cells[19]
糖轉(zhuǎn)運(yùn)載體不僅是腸道味覺(jué)受體信號(hào)的靶點(diǎn),而且充當(dāng)生電性或代謝性的轉(zhuǎn)運(yùn)受體在營(yíng)養(yǎng)物質(zhì)感應(yīng)中發(fā)揮積極的作用。SGLT家族感受糖的途徑涉及產(chǎn)生微小的去極化離子電流,葡萄糖經(jīng)SGLT1(Na+與葡萄糖偶聯(lián)比為2∶1)或SGLT2(Na+與葡萄糖偶聯(lián)比為1∶1)轉(zhuǎn)運(yùn)時(shí),產(chǎn)生微小的向內(nèi)的 Na+電流[22]。SGLT1生電性轉(zhuǎn)運(yùn)葡萄糖或葡萄糖結(jié)合SGLT3,使膜去極化,引起 Ca2+通過(guò)電壓門(mén)控鈣離子通道(Ca2+V)流入。對(duì)于人類(lèi),SGLT3不轉(zhuǎn)運(yùn)葡萄糖,但能產(chǎn)生強(qiáng)大的 Na+電流[8],說(shuō)明SGLT3作為葡萄糖感應(yīng)器直接引起膜的去極化。鼠SGLT3b(mSGLT3b)特征介于SGLT1和人SGLT3(hSGLT3)之間,也能轉(zhuǎn)運(yùn)糖,呈現(xiàn)電荷運(yùn)動(dòng),但與糖的親和力較低,Na+與葡萄糖偶聯(lián)比為 2.6∶1.0[23]。SGLT1 可以作用于 EECs,調(diào)控激素分泌,Na+生電性共向轉(zhuǎn)運(yùn)偶聯(lián)葡萄糖進(jìn)入,通過(guò)膜去極化、生電活動(dòng)和Ca2+進(jìn)入引起血糖樣肽 1(glucagon-like peptide-1,GLP-1)釋放[20]。去極化和 Ca2+流入可導(dǎo)致代謝依賴的ATP敏感性 K+通道(KATP)關(guān)閉[20],與胰腺 β 細(xì)胞中葡萄糖代謝調(diào)節(jié)胰島素分泌類(lèi)似[24]。SGLT1作為營(yíng)養(yǎng)物質(zhì)感應(yīng)器的另一個(gè)可能的作用位點(diǎn)是EC自身,SGLT1介導(dǎo)的頂膜去極化和Ca2+迅速流入[25],可能導(dǎo)致細(xì)胞骨架成分磷酸化,確保頂端GLUT2插入,從而達(dá)到更大的轉(zhuǎn)運(yùn)容量。
在高糖濃度(>30 mmol)情況下,甜味受體T1R2/T1R3作為葡萄糖感應(yīng)器,控制頂端GLUT2的表達(dá),從而提高葡萄糖的吸收能力。腸腔葡萄糖可以激活 EECs的 T1R2和 T1R3,通過(guò) Gg和PLCβ2的激活以及TRPM5介導(dǎo)的膜去極化而提高細(xì)胞內(nèi)[Ca2+]i,引起去極化,導(dǎo)致 GLP-1和腸抑胃 肽 (gastric inhibitory polypeptide,GIP)釋放[26]。EECs激素通過(guò)上調(diào) SGLT1表達(dá)和促進(jìn)EC頂端GLUT2分泌而影響葡萄糖吸收。因此,高糖飼糧和甜味劑能上調(diào)Gg和T1R3依賴的SGLT1表達(dá)[27]。腸道表達(dá)甜味受體和激素也與糖誘導(dǎo)GLUT2從基底外側(cè)運(yùn)輸?shù)剿罹壞び嘘P(guān)[21],甜味受體對(duì)EC轉(zhuǎn)運(yùn)載體的作用認(rèn)為是細(xì)胞自主行為,沒(méi)有EECs激素的參與。
除了通過(guò)表面受體或直接偶聯(lián)糖吸收引起膜去極化感應(yīng)細(xì)胞外碳水化合物外,一些細(xì)胞響應(yīng)能量供應(yīng)改變而呈現(xiàn)代謝率的變化。葡萄糖和果糖分別由GLUT1、GLUT2和GLUT5跨膜轉(zhuǎn)運(yùn),代謝產(chǎn)生ATP,同時(shí)消耗腺苷二磷酸(MgADP),導(dǎo)致KATP通道關(guān)閉,從而促進(jìn)膜去極化和對(duì)進(jìn)一步刺激的感知。果糖產(chǎn)生很多代謝性影響,包括刺激GLP-1分泌和升高血壓。在GLUT5敲除的小鼠中,果糖誘導(dǎo)高血壓的作用消失[28],小腸中果糖誘導(dǎo)鈉吸收的下游介質(zhì)包括離子轉(zhuǎn)運(yùn)載體NHE3(sodium/proton exchanger isoform 3)和PAT1(H+/amino acid transporter 1),不過(guò)通路相關(guān)果糖感應(yīng)器還未鑒定[29]。
蛋白質(zhì)可分解成多種化合物,包括二肽、三肽和氨基酸混合物。這些消化產(chǎn)物需要大量的黏膜細(xì)胞刷狀緣和基底膜轉(zhuǎn)運(yùn)系統(tǒng),具有不同底物特性和離子依賴性。刷狀緣上的氨基酸轉(zhuǎn)運(yùn)載體(B0、B0,+、X-AG、IMINO、ASC、y+和 b0,+)主要負(fù)責(zé)從腸腔中吸收各種氨基酸,而基底膜上氨基酸轉(zhuǎn)運(yùn)載體(A、N、y+L、asc和L)則用來(lái)加速氨基酸在腸細(xì)胞和體內(nèi)循環(huán)間的轉(zhuǎn)移[9]。當(dāng)腸腔中氨基酸的濃度低于上皮細(xì)胞或毛細(xì)管中氨基酸的濃度,其吸收轉(zhuǎn)運(yùn)需要依靠Na+的勢(shì)能與Na+偶聯(lián),細(xì)胞內(nèi)高Na+濃度依靠Na+/K+泵轉(zhuǎn)出,維持細(xì)胞內(nèi)外Na+平衡[30]。蛋白質(zhì)感應(yīng)機(jī)制與糖類(lèi)似,通過(guò)表達(dá)和激活GPCRs促進(jìn)胃腸激素的釋放;氨基酸和二肽轉(zhuǎn)運(yùn)載體作為生電性轉(zhuǎn)運(yùn)感受體,誘導(dǎo)膜去極化和激素分泌;通過(guò)味覺(jué)受體T1R1/T1R3介導(dǎo)脂肪族氨基酸感應(yīng)的信號(hào)傳導(dǎo)(圖2)[19]。
圖2 腸內(nèi)分泌細(xì)胞蛋白質(zhì)的感應(yīng)Fig.2 Protein sensing in enteroendocrine cells[19]
氨基酸轉(zhuǎn)運(yùn)載體可以自身充當(dāng)氨基酸的感應(yīng)器,大部分氨基酸轉(zhuǎn)運(yùn)載體位于質(zhì)膜,同時(shí)監(jiān)測(cè)細(xì)胞內(nèi)外的氨基酸濃度。氨基酸刺激可以轉(zhuǎn)換成化學(xué)信號(hào),導(dǎo)致轉(zhuǎn)運(yùn)載體蛋白構(gòu)象的改變,有些氨基酸與轉(zhuǎn)運(yùn)載體的簡(jiǎn)單結(jié)合也可以引起信號(hào)傳導(dǎo);氨基酸依賴Na+、K+、H+或其他氨基酸的轉(zhuǎn)運(yùn)而逆濃度梯度轉(zhuǎn)運(yùn),這種偶聯(lián)轉(zhuǎn)運(yùn)引起細(xì)胞內(nèi)主動(dòng)變化,傳導(dǎo)這種刺激,最終啟動(dòng)信號(hào)傳導(dǎo)[9]。H+驅(qū)動(dòng)的小肽轉(zhuǎn)運(yùn)載體PepT1和PepT2(SLC15A1和SLC15A2)以及大量的Na+偶聯(lián)的氨基酸轉(zhuǎn)運(yùn)載體是產(chǎn)生電的。ATA2、PepT1和/或 PepT2,轉(zhuǎn)運(yùn)某些氨基酸離子(如谷氨酸)或二/三肽,電化學(xué)梯度下降使膜去極化,通過(guò)Ca2+V和腸內(nèi)分泌激素的分泌,引起 Ca2+的進(jìn)入(圖2)[19]。如在鼠 EECs細(xì)胞系中谷氨酰胺結(jié)合Na+依賴型氨基酸轉(zhuǎn)運(yùn)載體SLC38A2誘導(dǎo)GLP-1釋放。谷氨酰胺刺激GLUTag細(xì)胞和結(jié)腸原代細(xì)胞GLP-1的釋放也有生電的組分,與轉(zhuǎn)運(yùn)載體 ATA2(SNAT2、SLC38A2)和 B0AT1(SLC6A19)活性有關(guān)[31-32]。肉水解產(chǎn)物刺激GLUTag、NCI-H716和STC-1細(xì)胞系激素釋放,部分的被電壓門(mén)控Ca2+通道阻塞劑異博定抑制[33],說(shuō)明肽和氨基酸轉(zhuǎn)運(yùn)載體與膜去極化有關(guān)。
已發(fā)現(xiàn)很多GPCRs能感應(yīng)小肽或氨基酸。GPR93的激活可動(dòng)員 Gq、Gs、Gi和 G12/13介導(dǎo)的信號(hào)通路[34]。GPR93作用類(lèi)似于味覺(jué)受體,與蛋白胨連接,促進(jìn)I細(xì)胞或STC-1細(xì)胞膽囊收縮素(cholecystokinin,CCK)的基因表達(dá)和釋放[33],盡管STC-1細(xì)胞內(nèi)源的受體水平不足以介導(dǎo)很強(qiáng)的反應(yīng)。其他的GPCRs偶聯(lián)途徑通過(guò)Gq途徑響應(yīng)氨基酸,提升細(xì)胞內(nèi)Ca2+和蛋白激酶C的水平,或調(diào)節(jié)cAMP水平,可能作用于下游蛋白cAMP活化的鳥(niǎo)嘌呤交換因子(Epac2)和蛋白激酶A(PKA)。鈣敏感受體(calcium-sensing receptor,CaSR)在整個(gè)腸道上皮細(xì)胞和CCK表達(dá)的細(xì)胞中有表達(dá)[35-36],能感應(yīng)很多氨基酸,尤其是芳香性化合物,如苯丙氨酸。鼠十二指腸原代細(xì)胞培養(yǎng)中,發(fā)現(xiàn)CaSR與芳香族氨基酸刺激CCK釋放和細(xì)胞內(nèi)Ca2+代謝有關(guān)。CaSR結(jié)合磷脂酰肌醇途徑,提高細(xì)胞內(nèi) Ca2+水平[37]。
味覺(jué)受體T1R1/T1R3能感應(yīng)系列脂肪族氨基酸,包括鮮味氨基酸谷氨酸[38],但不能感應(yīng)芳香族氨基酸[39]。T1R1/T1R3 通過(guò) Gg,激活 PLCβ2,產(chǎn)生DAG和IP3,IP3與IP3R3結(jié)合,使胞內(nèi)儲(chǔ)存的Ca2+被釋放出來(lái),進(jìn)而激活TRPM5通道,Na+流入細(xì)胞內(nèi),最終導(dǎo)致膜去極化和神經(jīng)遞質(zhì)釋放(圖2)[19]。盡管 T1R1和 T1R3在整個(gè)管腔一些離散的細(xì)胞類(lèi)型中均有表達(dá),包括內(nèi)分泌細(xì)胞,但腸道這個(gè)受體唯一的功能性反應(yīng)是調(diào)控GLUT2和 PepT1 的轉(zhuǎn)運(yùn)[21]。
腸道脂肪被脂肪酶分解成甘油三酯(TAG)、脂肪酸(FAs)后吸收。在 EC內(nèi),F(xiàn)As并入到TAG、磷脂和膽固醇酯,與載脂蛋白一起形成乳糜微粒從EC分泌進(jìn)入血液循環(huán)。乳糜微粒的形成可能引起腸內(nèi)分泌細(xì)胞脂質(zhì)刺激。脂類(lèi)對(duì)EECs激素分泌和阻抑胃排空作用證實(shí)了腸道脂肪感應(yīng)器的存在[40],但對(duì)脂肪感應(yīng)器的準(zhǔn)確細(xì)胞定位還不清楚。這些生理反應(yīng)的信號(hào)通路見(jiàn)圖3。
脂肪酸轉(zhuǎn)運(yùn)蛋白CD36已證實(shí)是味覺(jué)乳頭中的傳感器,能通過(guò)PLCβ2和TRPM5途徑引起儲(chǔ)存的 Ca2+釋放和膜的去極化[41]。研究發(fā)現(xiàn),CD36在十二指腸和空腸刷狀膜緣也有表達(dá),可能發(fā)揮相似的作用。LCFA與CD36結(jié)合后引起Src-PTKs的磷酸化作用,活化PLC途徑,產(chǎn)生IP3,使Ca2+從內(nèi)質(zhì)網(wǎng)中釋放出來(lái);同時(shí),使得鈣池調(diào)控鈣離子通道(SOC)打開(kāi),細(xì)胞外的Ca2+流入。Ca2+濃度的增加會(huì)激活TRPM5通道,引起脂質(zhì)味覺(jué)細(xì)胞去極化,分泌神經(jīng)遞質(zhì)5-羥色胺(5-HT)和去甲腎上腺素(NA),然后將味覺(jué)刺激信號(hào)傳遞到大腦。CD36不僅作為長(zhǎng)鏈脂肪酸(long chain fatty acid,LCFA)的轉(zhuǎn)運(yùn)載體,而且可能作為GPR120的共受體,借此可以誘使和轉(zhuǎn)運(yùn)LCFA至低親和力受體GPR120[42],缺乏CD36的小鼠油酰乙醇胺(oleylethanolamide,OEA)生成及其誘導(dǎo)的飽感降低[43]。
圖3 腸內(nèi)分泌細(xì)胞脂肪的感應(yīng)Fig.3 Lipid sensing in enteroendocrine cells[19]
已經(jīng)鑒定出許多 GPCRs,包括 FFAR1-3和GPR120,能夠響應(yīng)脂類(lèi)物質(zhì),參與介導(dǎo)脂質(zhì)誘導(dǎo)的腸內(nèi)分泌細(xì)胞激素釋放[44]。這些受體與Gq偶聯(lián)引起細(xì)胞內(nèi)Ca2+的釋放和PKC的激發(fā),激活胞吐作用的其他關(guān)鍵信號(hào)分子[45];或調(diào)節(jié)cAMP途徑(Gs和Gi),cAMP和其下游效應(yīng)蛋白Epac2和PKA,都可能參與胞吐機(jī)制。LCFA與GPR120受體結(jié)合,引發(fā)GPR120與Gq/11偶聯(lián),激活PLC-β,分解PIP2生成IP3及DAG,IP3引發(fā)胞內(nèi)鈣信號(hào),從而調(diào)控GLP-1的釋放。SCFA是FFAR2和FFAR3的激活劑,在腸道末端含量高。GPR43與5-HT共定位于肥大細(xì)胞,而不是內(nèi)分泌細(xì)胞[46]。GPR43優(yōu)先結(jié)合2~3碳的SCFA,通過(guò)Gq-磷酯酰肌醇途徑提高細(xì)胞內(nèi)Ca2+濃度或通過(guò)G蛋白亞基Gi/o途徑降低細(xì)胞內(nèi)cAMP,而GPR41僅偶聯(lián)Gi/o,優(yōu)先利用3~5碳長(zhǎng)度脂肪酸[47]。SCFA 可能通過(guò)這些途徑調(diào)控GLP-1的釋放。GPR119本身對(duì)游離脂肪酸(FFA)不敏感,但可感應(yīng)脂類(lèi)衍生物,尤其是 OEA 和溶血磷脂膽堿(LPC)[48],這些是不是GPR119的配基還存在爭(zhēng)議。GPR119與FFA受體一樣,在腸道L細(xì)胞和K細(xì)胞中含量豐富[15],研究發(fā)現(xiàn)合成的GPR119配體能提高小鼠血漿 GLP-1和GIP濃度[49],補(bǔ)充 OEA能降低大鼠采食量[50]。營(yíng)養(yǎng)物質(zhì)消化刺激小腸OEA的產(chǎn)生,其餐后水平局部可以提高0.1 nmol/g以上[51]。同時(shí),局部OEA水平的提高能否有效地刺激 GPR119 還不清楚[48]。
胃腸道除了作為消化器官外,也是重要的內(nèi)分泌器官。腸道味覺(jué)受體細(xì)胞受到營(yíng)養(yǎng)物質(zhì)刺激,能夠分泌多種代謝相關(guān)激素,包括L細(xì)胞分泌的胰高血糖素樣肽(GLPs)、K細(xì)胞分泌的GIP、I細(xì)胞分泌的CCK、G細(xì)胞分泌的胃泌素以及P細(xì)胞或X細(xì)胞分泌的饑餓激素等。
研究證實(shí)許多激素分泌可依賴于經(jīng)SGLT1吸收的葡萄糖。自從發(fā)現(xiàn)通過(guò)GLP-1和GIP這2種腸道酵素促進(jìn)胰島素分泌的腸泌素效應(yīng)(incretin effect),葡萄糖感應(yīng)對(duì)EECs激素釋放的作用研究備受關(guān)注。甜味劑如葡萄糖、蔗糖和三氯蔗糖以劑量依賴方式促進(jìn)腸道內(nèi)分泌細(xì)胞株NCI-H716釋放 GLP-1[52]。葡 萄 糖 誘 導(dǎo) GLUTag 細(xì) 胞 和NCI-H716細(xì)胞分泌GLP-1需要KATP通道關(guān)閉[7,53],在鼠小腸原代培養(yǎng)細(xì)胞中,葡萄糖誘導(dǎo)GIP分泌依賴于KATP通道活性[20]。腸道GLP-1的釋放需要SGLT-1的參與[21],SGLT活性和腸上皮內(nèi)分泌細(xì)胞葡萄糖感應(yīng)的關(guān)系在GLP-1分泌細(xì)胞系GLUTag中得到證實(shí)[7]。SGLT1在調(diào)控GLP-1釋放中的作用存在爭(zhēng)議,因?yàn)槔脗鹘y(tǒng)的抗體技術(shù)很難在腸上皮內(nèi)分泌細(xì)胞中檢測(cè)到SGLT1蛋白,同樣在結(jié)腸SGLT1表達(dá)很低,而明顯存在葡萄糖誘導(dǎo)的通路。味覺(jué)受體在葡萄糖引起的激素釋放中有非常重要的作用[52]。腸內(nèi)分泌細(xì)胞模型包括 STC-1、GLUTag、HuTu-80 和 NCI-H716 都表達(dá)有多種味覺(jué)信號(hào)蛋白,能分泌多種胃腸肽[4,54]。STC-1細(xì)胞中,苦味配基有效地刺激了CCK的釋放[17];給缺乏Gg或甜味受體T1R3的小鼠飼喂糖或甜味劑,沒(méi)有促進(jìn)GLP-1和 GIP的分泌和SGLT1 表達(dá)[27,52]。
蛋白質(zhì)分解產(chǎn)物是CCK分泌的最強(qiáng)刺激因子。STC-1細(xì)胞表達(dá)有甜味和苦味受體以及Gg,感應(yīng)來(lái)源于蛋白質(zhì)的苦味物質(zhì),引起“鈣火花”(Ca2+spikes)和 CCK 釋放。Choi等[34]證實(shí)了STC-1細(xì)胞中GPR93表達(dá)量提高能增加CCK的mRNA表達(dá)和分泌。蛋白質(zhì)也可以通過(guò)CaSR,識(shí)別芳香族氨基酸色氨酸和苯丙氨酸,引起腸道的飽感[55]。蛋白質(zhì)刺激L細(xì)胞分泌GLP-1的機(jī)制可能是電壓門(mén)控的Ca2+通道、Na+-K+-2Cl-同向轉(zhuǎn)運(yùn)體、促離子型1-氨基丁酸(GABA)受體、Na+偶聯(lián)轉(zhuǎn)運(yùn)體所致的細(xì)胞膜去極化。谷氨酰胺在原代培養(yǎng)的鼠結(jié)腸細(xì)胞和GLUTag細(xì)胞中高效地刺激了GLP-1的分泌,在某種程度上是通過(guò)提高細(xì)胞內(nèi)cAMP含量發(fā)揮作用的[32],與氨基酸敏感受體介導(dǎo)的作用不同。在NCI-H716細(xì)胞中,四肽通過(guò)2-氨基乙基二苯硼酸酯(2-APB)敏感的Ca2+動(dòng)員依賴的途徑刺激GLP-1釋放,可能伴隨有鈣池調(diào)控Ca2+通道的打開(kāi)[56]。
脂類(lèi)物質(zhì)能有效地刺激內(nèi)分泌細(xì)胞分泌CCK、GLP1、胃泌酸調(diào)節(jié)素、酪酪肽(peptide YY,PYY)、和腸抑素等。脂肪酸必須至少包含12個(gè)碳原子才能激活I(lǐng)細(xì)胞,刺激 CCK的釋放[57],同樣,只有長(zhǎng)鏈脂肪酸才能引起腸道的飽感[55]。脂類(lèi)物質(zhì)刺激激素分泌的機(jī)制可能與脂肪酸敏感的GPCRs有關(guān)。敲除FFAR1,降低了體內(nèi)GLP-1和GIP對(duì)高脂飼糧的反應(yīng)[58],體外亞油酸刺激CCK的分泌作用和I細(xì)胞Ca2+反應(yīng)削弱[14]。GPR120對(duì) GLP-1 和 CCK 分 泌 非 常 重 要[45],Hirasawa等[45]采用 siRNA技術(shù)下調(diào) GPR120在 STC-1細(xì)胞的表達(dá),發(fā)現(xiàn)α-亞麻酸誘導(dǎo)的STC-1細(xì)胞分泌GLP-1的作用被顯著抑制。此外,從基因敲除的模型中得到OEA和NOPE(N-oleoyl-phosphatidylethanolamine)可能通過(guò)激活過(guò)氧化物酶體增殖激活受體α(PPARα)影響飽感,細(xì)胞內(nèi)LCFA水平升高可直接激活非典型的PKC引起GLP-1的釋放[59]。
在控制攝食中EC充當(dāng)能量流量感應(yīng)器,腸道通過(guò)味覺(jué)受體細(xì)胞感受腸腔內(nèi)容物,調(diào)控激素分泌,激活小腸-大腦神經(jīng)通路,從而調(diào)控食物攝取。營(yíng)養(yǎng)物質(zhì)刺激胃腸道味覺(jué)細(xì)胞時(shí),引起[Ca2+]i的升高,釋放 CCK、PYY 和 GLP-1,從而激活迷走神經(jīng)和相應(yīng)的靶細(xì)胞(如激活胰腺的β細(xì)胞釋放胰島素)[60],胃腸激素也可以隨血液循環(huán)作用于大腦中樞。蛋白質(zhì)和脂肪是強(qiáng)大的內(nèi)源性CCK釋放的刺激物,比碳水化合物能更有效地引起短期的飽感。CCK通過(guò)迷走反射途徑減慢胃運(yùn)動(dòng),延緩胃排空,通過(guò)迷走神經(jīng)向腦內(nèi)傳遞飽感,引起攝食抑制,離斷膈下迷走神經(jīng)可消除CCK的攝食抑制作用[61]。CCK還可通過(guò)與迷走神經(jīng)上低親和狀態(tài)的 CCK-1受體結(jié)合發(fā)揮作用[62]。與CCK一樣,GLP-1也是通過(guò)激活迷走傳入神經(jīng)元減少食物攝入;而PYY是直接作用于下丘腦弓狀核誘導(dǎo)飽感[63]。
營(yíng)養(yǎng)物質(zhì)代謝信號(hào)也被認(rèn)為參與攝食調(diào)控。血液氨基酸濃度的升高能直接被下丘腦的特定部位監(jiān)測(cè)到,腦室內(nèi)補(bǔ)充亮氨酸或飼糧亮氨酸水平提高能促進(jìn)葡萄糖和膽固醇的代謝,降低采食量[64]。能量消耗和糖異生作用產(chǎn)生葡萄糖,都認(rèn)為能介導(dǎo)蛋白質(zhì)和氨基酸調(diào)控?cái)z食[54]。細(xì)胞營(yíng)養(yǎng)感應(yīng)因子mTOR(mammalian target of rapamycin)和AMP激活的蛋白激酶(AMP-activated protein kinase,AMPK)在機(jī)體能量平衡和采食調(diào)控中發(fā)揮重要作用[65]。mTOR是生長(zhǎng)因子和營(yíng)養(yǎng)信號(hào)的整合器,營(yíng)養(yǎng)刺激通過(guò)不同的細(xì)胞膜受體或靶蛋白將信號(hào)傳導(dǎo)至mTOR,作用于其下游效應(yīng)器,調(diào)節(jié)下丘腦中食欲肽的表達(dá)[66]。AMPK作為細(xì)胞內(nèi)的能量感受器,能將能量信號(hào)在下丘腦中整合,通過(guò)調(diào)控?cái)z食平衡機(jī)體能量[65]。
由于胃酸和分泌的HCO-3,十二指腸黏膜長(zhǎng)期暴露于酸性和高CO2分壓環(huán)境下,腸腔pH在2~7迅速變化,因此,黏膜通過(guò)感應(yīng)腸腔pH迅速調(diào)節(jié)其防御系統(tǒng)[67],其感應(yīng)歸因于水溶性和膜結(jié)合的碳酸酐酶(CA)催化的H+和CO2的多種轉(zhuǎn)換。上皮碳酸氫鹽和黏液的分泌、細(xì)胞內(nèi)pH調(diào)節(jié)以及黏膜血液流量對(duì)管腔酸化均有反應(yīng)[68-69]。酸誘導(dǎo)的細(xì)胞內(nèi)酸化,分泌的H+經(jīng)Na+/H+交換蛋白跨過(guò)上皮細(xì)胞基底膜,辣椒素敏感傳入神經(jīng)上瞬時(shí)受體電位香草酸亞型1(TRPV1)被上皮下H+短暫激活,血管活性介質(zhì)如降鈣素基因相關(guān)肽和NO釋放,黏膜血流量和黏液分泌增加,緊接著環(huán)氧合酶依賴的黏液和HCO3-分泌延遲[67,70]。
H+敏感的GPCRs也參與酸感應(yīng),包括主動(dòng)脈4型G蛋白偶聯(lián)受體(GPR4)、卵巢癌G蛋白偶聯(lián)受體1(OGR1)、T細(xì)胞死亡相關(guān)受體8(TDAG8)和G蛋白偶聯(lián)受體2A(G2A)[71]。這些 GPCRs也能被磷脂激活,而低pH誘導(dǎo)的GPCRs激活能被磷脂阻抑。H+敏感的GPCRs在傳入神經(jīng)元以及脈管系統(tǒng)和免疫細(xì)胞中有表達(dá)[72],說(shuō)明能參與胃腸道黏膜防御以及抗酸毒癥和抗炎。另一個(gè)pH敏感的胃腸化學(xué)感應(yīng)器是刷狀緣胞外酶相關(guān)的信號(hào)系統(tǒng),包括ATP-P2Y受體信號(hào)。在中性條件下,上皮細(xì)胞釋放的ATP在胞外迅速降解成腺苷,進(jìn)一步降解成次黃苷。一旦胃酸使得pH降低,隨著腸道堿性磷酸酶(IAP)活性降低,表面ATP濃度增加,刺激基頂膜P2Y1受體,促進(jìn)HCO3-分泌。HCO3-提高表面pH,接近IAP的最佳pH,IAP活性恢復(fù),降解 ATP,從而終止 ATP-P2Y 信號(hào)[73]。這說(shuō)明IAP充當(dāng)pH感應(yīng)器,調(diào)節(jié)表面ATP濃度,形成負(fù)反饋環(huán)。
谷氨酸是飼糧蛋白質(zhì)中主要的氨基酸,在胃腸道上層存在谷氨酸感應(yīng)途徑。在蛋白質(zhì)被胃和胰腺分泌的酶消化前谷氨酸可以發(fā)起蛋白質(zhì)攝取信號(hào)。20種氨基酸中僅谷氨酸激活大鼠胃?jìng)魅肷窠?jīng),釋放5-HT和NO[74]。人攝食蛋白質(zhì)后空腸腔谷氨酸濃度約為 2.6 mmol/L,回腸約為7.3 mmol/L[74],如此高的谷氨酸濃度足以發(fā)揮黏膜防御功能,因?yàn)楣嘧? mmol/L的谷氨酸顯著提高了十二指腸黏膜內(nèi)pH(pHi)和黏液凝膠層厚度[75]。L-谷氨酸可以保護(hù)黏膜免受酸誘導(dǎo)的損傷。利用體內(nèi)原位碘化丙啶(PI)染色方法,發(fā)現(xiàn)灌注pH 1.8的酸溶液逐漸地提高了十二指腸上皮細(xì)胞PI陽(yáng)性細(xì)胞核也就是損傷細(xì)胞,而灌注L-谷氨酸抑制了這種損傷作用。谷氨酸提高十二指腸黏膜防御能力和減輕酸誘導(dǎo)的上皮損傷提示管腔谷氨酸信號(hào)是黏膜酸暴露和蛋白質(zhì)消化的前提和首要條件。
管腔味覺(jué)受體參與黏膜對(duì)管腔氨基酸尤其是谷氨酸的生理性反應(yīng)[75]。胃和十二指腸黏膜L-谷氨酸可能的受體包括T1R1和T1R3、代謝性谷氨酸受體代謝性谷氨酸受體1(mGluR1)和代謝性谷氨酸受體4(mGluR4)以及CaSR,而沒(méi)有T1R2。因?yàn)檫@些受體是GPCRs,其途徑涉及磷脂酶C的激活。采用磷脂酶C抑制劑U73122預(yù)處理,抑制了L-谷氨酸誘導(dǎo)的細(xì)胞內(nèi)堿化和黏液分泌,進(jìn)一步說(shuō)明了十二指腸黏膜L-谷氨酸受體的參與[75]。谷氨酸提高腸道黏膜防御功能可能通過(guò)激活mGluR4、T1R1、T1R3、辣椒素敏感的傳入神經(jīng)以及環(huán)氧化酶(COX)途徑,保護(hù)黏膜免受管腔酸損傷。
胃腸道味覺(jué)受體細(xì)胞能感應(yīng)營(yíng)養(yǎng)物質(zhì)刺激,啟動(dòng)營(yíng)養(yǎng)信號(hào),釋放激素和神經(jīng)遞質(zhì)作用于靶細(xì)胞和迷走神經(jīng),激活傳入神經(jīng)纖維,將信號(hào)傳入神經(jīng)中樞進(jìn)行加工處理,產(chǎn)生反射作用調(diào)控腸道生理功能,進(jìn)而調(diào)控一系列相關(guān)的生理活動(dòng)[18]。胃腸營(yíng)養(yǎng)物質(zhì)感應(yīng)在消化功能的調(diào)控和對(duì)有害物質(zhì)的防控中發(fā)揮重要作用,但具體的信號(hào)傳遞途徑還有待進(jìn)一步研究。鑒定新的營(yíng)養(yǎng)感受體,深入研究營(yíng)養(yǎng)感應(yīng)信號(hào)途徑,有助于揭示腸道消化吸收功能的調(diào)節(jié)過(guò)程,開(kāi)發(fā)新的營(yíng)養(yǎng)添加劑,提高動(dòng)物對(duì)營(yíng)養(yǎng)物質(zhì)的利用效率和腸道健康水平;鑒定新的治療和預(yù)防黏膜損傷和內(nèi)臟感覺(jué)分子靶點(diǎn),為糖尿病、肥胖、腸道代謝紊亂等營(yíng)養(yǎng)代謝失衡疾病的調(diào)控提供依據(jù)。
[1] RAYBOULD H E.Gut chemosensing:interactions between gut endocrine cells and visceral afferents[J].Auton Neurosci:Basic and Clinical,2010,153:41-46.
[2] MCLNTYRE N,HOLDSWORTH C D,TURNER D S.New interpretation of oral glucose tolerance[J].Lancet,1964(2):1-20.
[3] EGAN J M,MARGOLSKEE R F.Taste cells of the gut and gastrointestinal chemosensation[J].Molecular Interventions,2008,8(2):78-81.
[4] STERNINI C,ANSELMI L,ROZENGURT E.Entero-endocrine cells:a site of‘taste’in gastrointestinal chemosensing[J].Current Opinion in Endocrinology,Diabetes and Obesity,2008,15(1):73-78.
[5] FURNESS J B,KUNZE W A,CLERC N.Nutrient tasting and signaling mechanisms in the gut.Ⅱ.The intestine as a sensory organ:neural,endocrine,and immune responses[J].American Journal of Physiology,1999,277:G922-G928.
[6] HEDIGER M A,ROMERO M F,PENG J B,et al.The ABCs of solute carriers:physiological,pathological and therapeutic implications of human membrane transport proteins introduction[J].Pflugers Archiv:European Journal of Physiology,2004,447:465-468.
[7] GRIBBLE F,WILLIAMS L,SIMPSON A,et al.A novel glucose-sensing mechanism contributing to glucagon-like peptide-1 secretion from the GLUTag cell line[J].Diabetes,2003,52(5):1147-1154.
[8] DíEZ-SAMPEDROA,HIRAYAMAAB,OSSWALD C,et al.A glucose sensor hiding in a family of transporters[J].Proceedings of the National Academy of Sciences,2003,100:11753-11758.
[9] RUSSELL H,PETER M T,HARINDER S H.Amino acid transporters:roles in amino acid sensing and signaling in animal cells[J].Biochemical Journal,2003,373:1-18.
[10] WELLENDORPH P,JOHANSEN L D,BR?UNEROSBORNE H.The emerging role of promiscuous 7TM receptors as chemosensors for food intake[J].Vitam Horm,2010,84:151-184.
[11] VILARDAGA J P,AGNATI L F,F(xiàn)UXE K,et al.G-protein-coupled receptor heteromerdynamics[J].Journal of Cell Science,2010,123:4215-4220.
[12] RITTER S L,HALL R A.Fine-tuning of GPCR activity by receptor-interacting proteins[J].Nature Reviews Molecular Cell Biology,2009,10:819-830.
[13] WELLENDORPH P,BURHENNE N,CHRISTIANSEN B,et al.The rat GPRC6A:cloning and characterization[J].Gene,2007,396:257-267.
[14] LIOU A P,LU X,SEI Y,et al.The gprotein-coupled receptor GPR40directly mediates long-chain fatty acid-induced secretion of cholecystokinin[J].Gastroenterology,2011,140:903-912.
[15] PARKER H E,HABIB A M,ROGERS G J,et al.Nutrient-dependent secretion of glucose-dependent insulinotropic polypeptide from primary murine K cells[J].Diabetologia,2009,52:289-298.
[16] MIGUEL-ALIAGA I.Nerveless and gutsy:intestinal nutrient sensing from invertebrates to humans[J].Seminars in Cell& Developmental Biology.doi:10.1016/j.semcdb.2012.01.002.
[17] CHEN M C,WU V,REEVE J R,et al.Bitter stimuli induce Ca2+signaling and CCK release in enteroendocrine STC-1 cells:role of L-type voltage-sensitive Ca2+channels[J].American Journal of Physiology-Cell Physiology,2006,291:C726-C739.
[18] CUMMINGS D E,OVERDUIN J.Gastrointestinal regulation of food intake[J].Journal of Clinical Investigation,2007,117(1):13-23.
[19] TOLHURST G,REIMANN F,GRIBBLE F M.Intestinal sensing of nutrients[M]//JOOST H G.Appetite control,handbook of experimental pharmacology.Verlag Berlin Heidelberg:Springer,2012,209:309-335.
[20] REIMANN F,HABIB A M,TOLHURST G,et al.Glucose sensing in L cells:a primary cell study[J].Cell Metabolism,2008,8:532-539.
[21] MACE O J,AFFLECK J,PATEL N,et al.Sweet taste receptors in rat small intestine stimulate glucose absorption through apical GLUT2[J].Journal of Physiology,2007,582:379-392.
[22] CHEN X Z,COADY M J,JACKSON F,et al.Thermodynamicdetermination of the Na+:glucose coupling ratio for the human SGLT1 cotransporter[J].Biophysical Journal,1995,69:2405-2414.
[23] DíEZ-SAMPEDRO A,BARCELONA S.Sugar binding residue affects apparent Na+affinity and transport stoichiometry in mouse sodium/glucose cotransporter type 3B[J].Journal of Biological Chemistry,2011,286:7975-7982.
[24] BENNETT K,JAMES C,HUSSAIN K.Pancreatic beta-cell KATPchannels:hypoglycaemia and hyperglycaemia[J].Reviews in Endocrine & Metabolic Disorders,2010,11:157-163.
[25] MORGAN E L,MACE O J,AFFLECK J,et al.Apical GLUT2 and Cav1.3:regulation of rat intestinal glucose and calcium absorption[J].Journal of Physiology,2007,580:593-604.
[26] KOKRASHVILI Z,RODRIGUEZ D,YEVSHAYEVA V,et al.Release of endogenous opioids fromduodenal enteroendocrine cells requires Trpm5[J].Gastroenterology,2009,137:598-606.
[27] MARGOLSKEE R F,DYER J,KOKRASHVILI Z,et al.T1R3 and gustducin in gut sense sugars to regulate expression of Na+-glucose cotransporter 1[J].Pro-ceedings of the National Academy of Sciences,2007,104:15075-15080.
[28] BARONE S,F(xiàn)USSELL S L,SINGH A K,et al.Slc2a5(Glut5)is essential for the absorption of fructose in the intestine and generation of fructose-induced hypertension[J].Journal of Biological Chemistry,2009,284:5056-5066.
[29] SOLEIMANI M.Dietary fructose,salt absorption and hypertension in metabolic syndrome:towards a new paradigm[J].Acta Physiologica(Oxf),2011,201:55-62.
[30] BROER S.Adaptation of plasma membrane amino acid transport mechanisms to physiologicaldemands[J].Pflugers Archiv:European Journal of Physiology,2002,444:457-466.
[31] REIMANN F,WILLIAMS L,DA SILVA XAVIER G,et al.Glutamine potently stimulates glucagon-like peptide-1 secretion from GLUTag cells[J].Diabetologia,2004,47:1592-1601.
[32] TOLHURST G,ZHENG Y,PARKER H E,et al.Glutamine triggers and potentiates glucagon-like peptide-1 secretion by raising cytosolic Ca2+and cAMP[J].Endocrinology,2011,152:405-413.
[33] NEMOZ-GAILLARD E,BERNARD C,ABELLO J,et al.Regulation of cholecystokinin secretion by peptones and peptidomimetic antibiotics in STC-1 cells[J].Endocrinology,1998,139:932-938.
[34] CHOI S,LEE M,SHIU A L,et al.GPR93 activation by protein hydrolysate induces CCK transcription and secretion in STC-1 cells[J].American Journal of Physiology:Gastrointestinal and Liver Physiology,2007,292:G1366-G1375.
[35] LIOU A P,SEI Y,ZHAO X,et al.The extracellular calcium sensing receptor is required for cholecystokinin secretion in response to L-phenylalanine in acutely isolated intestinal I cells[J].American Journal of Physiology:Gastrointestinal and Liver Physiology,2011,300:538-546.
[36] WANG Y,CHANDRA R,SAMSA L A,et al.Amino acids stimulate cholecystokinin release through the calcium-sensing receptor[J].American Journal of Physiology:Gastrointestinal and Liver Physiology,2010,300:528-537.
[37] REY O,YOUNG S H,JACAMO R,et al.Extracellular calcium sensing receptor stimulation in human colonic epithelial cells induces intracellular calcium oscillations and proliferation inhibition[J].Journal of Cell Physiology,2010,225:73-83.
[38] LI X,STASZEWSKI L,XU H,et al.Human receptors for sweet and umami taste[J].Proceedings of the National Academy of Sciences,2002,99:4692-4696.
[39] NELSON G,CHANDRASHEKAR J,HOON M A,et al.An amino-acid taste receptor[J].Nature,2002,416:199-202.
[40] LITTLE T J,F(xiàn)EINLE-BISSET C.Effects ofdietary fat on appetite and energy intake in health and obesity—oral and gastrointestinal sensory contributions[J].Physiology & Behavior,2011,104:613-620.
[41] SIMONS P J,BOON L.Lingual CD36 and obesity:a matter of fat taste[J]Acta Histochemica,2010,113:765-767.
[42] MARTIN C,CHEVROT M,POIRIER H,et al.CD36 as a lipid sensor[J].Physiology & Behavior,2011,105:36-42.
[43] SCHWARTZ G J,F(xiàn)U J,ASTARITA G,et al.The lipid messenger OEA linksdietary fat intake to satiety[J].Cell Metabolism,2008,8:281-288.
[44] REIMANN F.Molecular mechanisms underlying nutrientdetection by incretin-secreting cells[J].International Dairy Journal,2010,20:236-242.
[45] HIRASAWA A,TSUMAYA K,AWAJI T,et al.Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120[J].Nature Medicine,2005,11:90-94.
[46] KARAKI S,MITSUI R,HAYASHI H,et al.Shortchain fatty acid receptor,GPR43,is expressed by enteroendocrine cells and mucosal mast cells in rat intestine[J].Cell and Tissue Research,2006,324:353-360.
[47] NILSSON N E,KOTARSKY K,OWMAN C,et al.I-dentification of a free fatty acid receptor,F(xiàn)FA2R,expressed on leukocytes and activated by short-chain fatty acids[J].Biochemical and Biophysical Research Communications,2003,303:1047-1052.
[48] OVERTON H A,BABBS A J,DOEL S M,et al.Deorphanization of a G protein-coupled receptor for oleoylethanolamide and its use in thediscovery of small-molecule hypophagic agents[J].Cell Metabolism,2006(3):167-175.
[49] CHU Z L,CARROLL C,ALFONSO J,et al.A role for intestinal endocrine cell-expressed G protein-coupled receptor 119 in glycemic control by enhancing glucagon-like Peptide-1 and glucose-dependent insulinotropic Peptide release[J].Endocrinology,2008,149:2038-2047.
[50] RODRIGUEZ DE FONSECA F,NAVARRO M,GOMEZ R,et al.An anorexic lipid mediator regulated by feeding[J].Nature,2001,414:209-212.
[51] FU J,ASTARITA G,GAETANI S,et al.Food intake regulates oleoylethanolamide formation anddegradation in the proximal small intestine[J].Journal of Biological Chemistry,2007,282:1518-1528.
[52] JANG H J,KOKRASHVILI Z,THEODORAKIS M J,et al.Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1[J].Proceedings of the National Academy of Sciences,2007,104:15069-15074.
[53] TOLHURST G,REIMANN F,GRIBBLE F.Nutritional regulation of glucagon-like peptide-1 secretion[J].Journal of Physiology,2009,87:27-32.
[54] AZZOUT-MARNICHE D,GAUDICHON C,BLOUET C,et al.Liver glyconeogenesis:a pathway to cope with postprandial amino acid excess in high-protein fed rats[J]American Journal of Physiology:Regulatory,Integrative and Comparative Physiology,2007,292:1400-1407.
[55] MEYER J H,HLINKA M,TABRIZI Y,et al.Chemical specificities and intestinaldistributions of nutrientdriven satiety[J].American Journal of Physiology,1998,275:1293-1307.
[56] LE NEVé B,DANIEL H.Selected tetrapeptides lead to a GLP-1 release from the human enteroendocrine cell line NCIéH716[J].Regulatory Peptides,2011,167:14-20.
[57] MCLAUGHLIN J,GRAZIA LUCà M,JONES M N,et al.Fatty acid chain lengthdetermines cholecystokinin secretion and effect on human gastric motility[J].Gastroenterology,1999,116:46-53.
[58] EDFALK S,STENEBERG P,EDLUND H.Gpr40 is expressed in enteroendocrine cells and mediates free fatty acid stimulation of incretin secretion[J].Diabetes,2008,57:2280-2287.
[59] IAKOUBOV R,IZZO A,YEUNG A,et al.Protein kinase Czeta is required for oleic acid-induced secretion of glucagon-like peptide-1 by intestinal endocrine L cells[J].Endocrinology,2007,148:1089-1098.
[60] SUTHERLAND K,YOUNG R L,COOPER N J,et al.Phenotypic characterization of taste cells of the mouse small intestine[J].American Journal of Physiology-Gastrointestinal and Liver Physiology,2007,292:1420-1428.
[61] MORAN T H,BALDESSARINT A R,SALORIO C F,et al.Vagal aferent and eferent contributions to the inhibition of food intake by CCK[J].American Journal of Physiology,1997,272:1245-1251.
[62] SMEETS A J,SOENEN S,LUSCOMBE-MARSH N D,et al.Energy expenditure,satiety,and plasma ghrelin,glucagon-like peptide 1,and peptide tyrosine-tyrosine concentrations following a single high-protein lunch[J].The Journal of Nutriton,2008,138:698-702.
[63] BATTERHAM R L,HEFFRON H,KAPOOR S,et al.Critical role for peptide YY in protein-mediated satiation and body-weight regulation[J].Cell Metabolism,2006(4):223-233.
[64] ZHANG Y,GUO K,LEBLANC R E,et al.Increasingdietary leucine intake reducesdiet-induced obesity and improves glucose and cholesterol metabolism in mice via multimechanisms[J].Diabetes,2007,56:1647-1654.
[65] ROPELLE E R,PAULI J R,F(xiàn)ERNANDES M F,et al.A central role for neuronal AMP-activated protein kinase(AMPK)and mammalian target of rapamycin(mTOR) in high-proteindiet-induced weight loss[J].Diabetes,2008,57:594-605.
[66] COTA D,PROULX K,SMITH K A,et al.Hypothalamic mTOR signaling regulates food intake[J].Science,2006,312:927-930.
[67] KAUNITZ J D,AKIBA Y.Duodenal carbonic anhydrase:mucosal protection,luminal chemosensing,and gastric aciddisposal[J].The Keio Journal of Medicine,2006,55:96-106.
[68] LAINE L,TAKEUCHI K,TARNAWSKI A.Gastric mucosaldefense and cytoprotection:bench to bedside[J].Gastroenterology,2008,135(1):41-60.
[69] NAYEB-HASHEMI H,KAUNITZ J D.Gastroduodenal mucosaldefense[J].Current Opinion in Gastroenterology,2009,25(6):537-543.
[70] AKIBA Y,GHAYOURI S,TAKEUCHI T,et al.Carbonic anhydrases and mucosal vanilloid receptors help mediate the hyperemic response to luminal CO2in ratduodenum[J].Gastroenterology,2006,131:142-152.
[71] LUDWIG M G,VANEK M,GUERINI D,et al.Proton-sensing G-protein-coupled receptors[J].Nature,2003,425:93-98.
[72] MOGI C,TOBO M,TOMURA H,et al.Involvement of proton-sensing TDAG8 in extracellular acidifica-tion-induced inhibition of proinflammatory cytokine production in peritoneal macrophages[J].Journal of Immunology,2009,182:3243-3251.
[73] AKIBA Y,MIZUMORI M,GUTH P H,et al.Duodenal brush border intestinal alkaline phosphatase activity affects bicarbonate secretion in rats[J].American Journal of Physiology:Gastrointestinal and Liver Physiology,2007,293:G1223-G1233.
[74] UNEYAMA H,GABRIEL A S,KAWAI M,et al.Physiological role ofdietary free glutamate in the fooddigestion[J].Asia Pacific Journal of Clinical Nutrition,17:372-375.
[75] AKIBA Y,KAUNITZ J D.Luminal chemosensing and upper gastrointestinal mucosaldefenses[J].A-merican Journal of Clinical Nutrition,2009,90:826-831.