• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Kind of Essential Surfaces in the Complements of Knots

    2013-08-27 01:38:49HANYOUFAPANSHENGJUNANDWANGSHUXIN

    HAN YOU-FA,PAN SHENG-JUN AND WANG SHU-XIN

    (School of Mathematics,Liaoning Normal University,Dalian,Liaoning,116029)

    Communicated by Lei Feng-chun

    A Kind of Essential Surfaces in the Complements of Knots

    HAN YOU-FA,PAN SHENG-JUN AND WANG SHU-XIN

    (School of Mathematics,Liaoning Normal University,Dalian,Liaoning,116029)

    Communicated by Lei Feng-chun

    In this paper,by the twist-crossing number of knots,we give an upper bound on the Euler characteristic of a kind of essential surfaces in the complements of alternating knots and almost alternating knots,which improves the estimation of the Euler characteristic of the essential surfaces with boundaries under certain conditions.Furthermore,we give the genus of the essential surfaces.

    essential surface,twist-crossing number,almost alternating knot,reduced graph

    1 Introduction

    Menasco[1]discussed many properties of incompressible surfaces(including closed incompressible surfaces and essential surfaces)which are properly embedded in the complements of knots,and gave the def i nition of incompressible pairwise incompressible surfaces.By Menasco's method,if F is a properly embedded essential surface or incompressible pairwise incompressible surface in the complements of alternating knots,we may assume that F is in a standard position,even if F is not in a standard position,F can also be replaced by another surface F′,where F′is isotopic to F in the complement of K,and lies in a standard position(see[1–2]).Since surfaces lying in standard position have many good properties,the researchers have used them to analyze properties of surfaces which are properly embedded in the complements of knots.Menasco and Thistlethwaite[2]have proved the cabling conjecture and given an upper bound of the Euler characteristic of a kind of essential surfaces in the complements of alternating knots.Meantime,Menasco also has given a geometric proof to that alternating knots are nontrivial.Adams[3]has dealt with closed incompress-ible pairwise incompressible surfaces in the complements of almost alternating knots,and obtained many useful results.Han[4]has studied essential surfaces with meridional boundary in the complements of almost alternating knots,and proved that the essential surfaces with meridional boundary in the complements of almost alternating knots are f i nite under ambient isotopy.So it is meaningful for us to discuss properties of specif i c essential surfaces in the complements of alternating knots and almost alternating knots.

    In this paper,we mainly discuss properties of a kind of essential surfaces with boundary by using the triangulation of surfaces and the methods adopted by Menasco.The aim of this paper is to give an estimation of the Euler characteristic of the essential surfaces which are properly embedded in the complements of alternating knots and almost alternating knots. In Sections 2 and 3,we give the main theorems of this paper and their corollaries.

    2 A Kind of Essential Surfaces in the Complements of Alternating Knots

    Def i nition 2.1The twist-crossing number of a diagram D is the smallest positive integer n such that there exists a sequence a1,b1,···,an,bn,of regular points in cyclic order on the knot K,with the properties that for each i=1,2,···,n,

    (1)there is at most one singular point of K between aiand bi;

    (2)all singular points between biand ai+1project to crossing points in the same twist of D(an+1is taken to be a1).

    Remark 2.1Denote the twist-crossing number of a diagram D by TCN(D).

    Def i nition 2.2Let M be a bounded 3-manifold,and F a properly embedded surface in M.If F is incompressible and boundary incompressible,then F is called an essential surface in M.

    Let K?S3be a knot,and F be a properly embedded surface with boundary in the complement of K and lie in a standard position.Let C be a cell decomposition of F,andbe the corresponding cell decomposition of?F,where?F is the corresponding capped-of f closed surface of F.If we take the boundary components of F as fat vertices,then we can get the reduced graph?C(see[2]).

    Lemma 2.1[4]Let K be a prime alternating knot,which admits a standard alternating diagram D with TCN(D)=n,and let F be an essential surface with f i nite boundary slope in the exterior of K and with β boundary components,each of which has b(b/=0)longitudinal components.Then(1)s=0 if 1≤n≤5,(2)s≤max{0,-χ(F)-bβ}if n≥6,where s is the number of saddle-intersections of F with the crossing-balls of D.

    Remark 2.2When 1≤n≤5,all boundary edges and bubbles are good.

    Lemma 2.2[5]Every closed surface is a polyhedron of some closed and fake 2-manifold.

    Lemma 2.3[5]Let K be a polyhedron of some closed-fake 2-manifold.Then

    (1)3r=2e;

    (2)e=3(v-χ(K));

    where v,e and r denote the number of vertices,edges and regions of K,respectively.

    Proposition 2.1Let F be a closed surface which is glued by many polyhedrons,e and r be the numbers of edges,regions respectively in the corresponding polyhedron decomposition of F.If the number of edges of each polygon is greater than or equal to 4,then e≥2r.

    Proof.Let K be the polyhedrons decomposition of F,e and r be the numbers of edges and regions of K,respectively.Since each region of K has at least 4 edges,each region of K can be triangulated into many triangles.Based on Lemma 2.2,suppose that K′is another polyhedron decomposition of F,which is obtained from K,and each region of K′is a triangle.Let e′and r′be the numbers of edges and regions of K′,respectively.Let Ridenote the ith region of K,and eRidenote the number of edges of Ri(i=1,2,···,r).Thus

    By Lemma 2.2,3r′=2e′,and then

    Therefore,e≥2r.

    Theorem 2.1Let K be a prime alternating knot,which admits a standard alternating diagram D with TCN(D)=n,and let F be an essential surface with f i nite boundary slope in the exterior of K and with β boundary components,each of which has b(b/=0)longitudinal components.If all boundary edges are good(s=0),and the region which is bounded by c in the reduced graph?C has at least 4 edges,where c is any component of F∩then

    Proof.Let e and r denote the numbers of edges and regions of the reduced graph?C, respectively,and N be the smallest valency of any boundary vertex of?C.Then N≥nb(see [2]).By Proposition 2.1,

    Remark 2.3Theorem 2.1 improves the estimation of the Euler characteristic of essential surfaces in the complements of alternating knots.

    Corollary 2.1Let K be a prime alternating knot,which admits a standard alternating diagram D with TCN(D)≥4,and let F be an essential surface with f i nite boundary slope in the exterior of K and with β boundary components,each of which has b(b=1)longitudinalcomponents.If all boundary edges are good(s=0),and the region which is bounded by c in the reduced graph?C has at least 4 edges,where c is any component of F∩S2±,then g(F)=1.

    Proof.By Lemma 2.1,-χ(F)-bβ≤0.Since

    one has

    By Theorem 3.1,

    i.e.,

    Therefore,g(F)=1.

    3 A Kind of Essential Surfaces in the Complements of Almost Alternating Knots

    Def i nition 3.1A projection D of a knot in the 3-sphere is almost alternating,if one crossing change makes the projection alternating.

    Def i nition 3.2A knot is almost alternating if it has an almost alternating projection and does not have an alternating projection.

    Lemma 3.1[4]Let K be a prime almost alternating knot,which admits a standard almost alternating diagram D with TCN(D)≥4,and let F be an essential surface with fi nite boundary slope in the exterior of K and with β boundary components,each of which has} components.If for any,then s≤max,where s is the number of saddle-intersections of F with the crossing-balls of D,and r is the number of the regions of the reducedC?.

    Proposition 3.1Let K be a prime almost alternating knot,which admits a standard almost alternating diagram D with TCN(D)>1,and let F be an essential surface with fi nite boundary slope in the exterior of K and with β boundary components,each of which has b(b=1)longitudinal components.If for any c,and all boundary edges are good(s=0),then g(F)=0.

    Proof.By Lemma 3.1 and χ(F)=2-2g(F)-bβ,we know

    and so

    Therefore,g(F)=0.

    Lemma 3.2[2]Let K be a prime almost alternating knot,which admits a standard almost alternating diagram D with TCN(D)=n,and let F be an essential surface with f i nite boundary slope in the exterior of K,with β boundary components,and with longitudinal b (b/=0),and some vertex of the reduced intersection?C has valency N,then N≥(n-2)b.

    Theorem 3.1Let K be a prime almost alternating knot,which admits a standard almost alternating diagram D with TCN(D)=n,and let F be an essential surface with f i nite boundary slope in the exterior of K and with β boundary components,each of which has b (b/=0)longitudinal components.If the region bounded by c in the reduced graphhas at

    least 4 edges,where c is any component ofthen

    Proof.Let e and r be the numbers of edges and regions of the reduced graph?C,respectively,s be the number of saddle-intersections of F with the crossing-balls of D,r be the number of the regions of the reduced,and N be the smallest valency of any boundary vertex of?C.By Proposition 2.1,

    Therefore,e≤2s-2χ(F).By Lemma 3.2 and 2e≥Nβ+4s,one has

    Remark 3.1Theorem 3.1 improves Theorem 2.2 in[2].

    Corollary 3.1Let K be a prime almost alternating knot,which admits a standard almost alternating diagram D with TCN(D)≥6,and let F be an essential surface with f i nite boundary slope in the exterior of K and with β boundary components,each of which has b (b/=0)longitudinal components.If the region bounded by c in the reduced graph?C has at least 4 edges,where c is any component ofthen g(F)≥1.

    Proof.By Theorem 3.1 and TCN(D)≥6,one has g(F)≥1.

    [1]Meanasco W.Closed incompressible surface in alternating knot and link complement.Topology Appl.,1984,23(1):37–41.

    [2]Menasco W,Thistlethwaite W.Surface with boundary in alternating knot exteriors.J.Reine Angew.Math.,1992,426:47–65.

    [3]Adams C C,Brock J F,Bugbee J et al.Almost alternating links.Topology Appl.,1992,46(2): 151–165.

    [4]Han Y F.Incompressible boundary incompressible surfaces of knot complements.Acta Sci. Natur.Univ.Jilin,1995,2:21–24.

    [5]Chen X.Notes on Algebraic Topology.Beijing:Higer Education Press,1985.

    tion:57M15,57M25

    A

    1674-5647(2013)02-0143-05

    Received date:Jan.18,2011.

    The NSF(11071106)of China,the Program(LR2011031)for Liaoning Excellent Talents in University.

    E-mail address:hanyoufa@sina.com(Han Y F).

    欧美日韩福利视频一区二区| 中出人妻视频一区二区| 午夜福利成人在线免费观看| 我的亚洲天堂| 国产伦在线观看视频一区| 老司机在亚洲福利影院| 亚洲精品国产区一区二| 欧美在线黄色| 国产一区二区在线av高清观看| 人成视频在线观看免费观看| av福利片在线| 色尼玛亚洲综合影院| 99精品在免费线老司机午夜| 亚洲欧美精品综合一区二区三区| 国产精品久久久久久亚洲av鲁大| 老司机在亚洲福利影院| 一区二区日韩欧美中文字幕| 女性生殖器流出的白浆| 这个男人来自地球电影免费观看| 欧美丝袜亚洲另类 | 欧美日韩一级在线毛片| 中出人妻视频一区二区| 看免费av毛片| 午夜激情av网站| 老汉色∧v一级毛片| 色在线成人网| 国产一区二区激情短视频| 亚洲av第一区精品v没综合| 午夜免费激情av| 两人在一起打扑克的视频| 国产精品 欧美亚洲| 日日夜夜操网爽| 欧美性长视频在线观看| 伊人久久大香线蕉亚洲五| 日韩 欧美 亚洲 中文字幕| 欧美激情 高清一区二区三区| 国产精品九九99| 免费观看人在逋| 十八禁人妻一区二区| 日本一区二区免费在线视频| 观看免费一级毛片| 久久久久国产精品人妻aⅴ院| 精品国产亚洲在线| 在线观看一区二区三区| 国产精品爽爽va在线观看网站 | 老司机福利观看| 黄片播放在线免费| 欧美国产精品va在线观看不卡| 手机成人av网站| 亚洲精品在线美女| 国内揄拍国产精品人妻在线 | 亚洲成人久久爱视频| 精品欧美一区二区三区在线| 可以在线观看毛片的网站| 欧美精品啪啪一区二区三区| 91字幕亚洲| 男女做爰动态图高潮gif福利片| 欧美黑人精品巨大| 99国产综合亚洲精品| 久久久久久久精品吃奶| 美女 人体艺术 gogo| 最近在线观看免费完整版| 两性夫妻黄色片| 成年免费大片在线观看| 欧美最黄视频在线播放免费| 久久国产精品影院| 欧美又色又爽又黄视频| 久久精品国产清高在天天线| 51午夜福利影视在线观看| 在线观看免费日韩欧美大片| 亚洲成a人片在线一区二区| 一级作爱视频免费观看| 久久中文字幕一级| 夜夜夜夜夜久久久久| 欧美黑人精品巨大| 国产成人欧美| 亚洲在线自拍视频| 亚洲av电影不卡..在线观看| 午夜激情福利司机影院| 99在线视频只有这里精品首页| 琪琪午夜伦伦电影理论片6080| 在线永久观看黄色视频| 日韩 欧美 亚洲 中文字幕| 亚洲成人免费电影在线观看| 麻豆成人av在线观看| 免费无遮挡裸体视频| 亚洲精品中文字幕在线视频| 午夜福利欧美成人| 叶爱在线成人免费视频播放| 国产成人精品久久二区二区91| 啪啪无遮挡十八禁网站| 日本一区二区免费在线视频| 50天的宝宝边吃奶边哭怎么回事| 久久久久国产精品人妻aⅴ院| 午夜福利高清视频| 亚洲第一青青草原| 18美女黄网站色大片免费观看| 别揉我奶头~嗯~啊~动态视频| 欧美日韩亚洲国产一区二区在线观看| 欧美 亚洲 国产 日韩一| 午夜视频精品福利| 日本精品一区二区三区蜜桃| 亚洲国产欧美一区二区综合| 在线av久久热| 看片在线看免费视频| av免费在线观看网站| 天天躁狠狠躁夜夜躁狠狠躁| 久久中文字幕人妻熟女| 国产成人一区二区三区免费视频网站| 高潮久久久久久久久久久不卡| 免费在线观看视频国产中文字幕亚洲| 欧美日本视频| 人人妻人人澡欧美一区二区| 露出奶头的视频| 国产成人影院久久av| 亚洲av电影不卡..在线观看| 少妇熟女aⅴ在线视频| 国产高清视频在线播放一区| 男女床上黄色一级片免费看| 1024手机看黄色片| 天堂影院成人在线观看| 亚洲av中文字字幕乱码综合 | 伊人久久大香线蕉亚洲五| 欧美激情 高清一区二区三区| 欧美成人性av电影在线观看| 国产午夜福利久久久久久| 国产免费av片在线观看野外av| 国产91精品成人一区二区三区| 欧美乱妇无乱码| www国产在线视频色| 精品久久久久久久人妻蜜臀av| 一级黄色大片毛片| 免费av毛片视频| 18禁美女被吸乳视频| 国产色视频综合| 人人妻人人看人人澡| 亚洲精品中文字幕在线视频| 制服丝袜大香蕉在线| 国产精品美女特级片免费视频播放器 | 国产精品美女特级片免费视频播放器 | 国产亚洲精品久久久久久毛片| 亚洲久久久国产精品| 在线观看免费日韩欧美大片| 黄色a级毛片大全视频| 成人国产综合亚洲| 18禁观看日本| 亚洲国产欧洲综合997久久, | 中出人妻视频一区二区| 不卡av一区二区三区| 亚洲午夜理论影院| av在线天堂中文字幕| 午夜亚洲福利在线播放| 欧美黑人欧美精品刺激| 99re在线观看精品视频| 无限看片的www在线观看| 欧美性长视频在线观看| 老汉色∧v一级毛片| 91成人精品电影| 国产欧美日韩一区二区三| 琪琪午夜伦伦电影理论片6080| 男女视频在线观看网站免费 | 在线观看一区二区三区| 午夜福利18| 久久久久久人人人人人| 韩国精品一区二区三区| 大型黄色视频在线免费观看| 亚洲在线自拍视频| 国产激情欧美一区二区| 男男h啪啪无遮挡| 欧美精品啪啪一区二区三区| 国产精品亚洲一级av第二区| 波多野结衣巨乳人妻| 变态另类成人亚洲欧美熟女| 老汉色∧v一级毛片| 97人妻精品一区二区三区麻豆 | 欧美性猛交黑人性爽| 美女高潮到喷水免费观看| 丝袜美腿诱惑在线| 淫秽高清视频在线观看| 亚洲电影在线观看av| 久久国产精品人妻蜜桃| 看片在线看免费视频| 婷婷亚洲欧美| 成年版毛片免费区| 亚洲成人久久性| 97碰自拍视频| 中文字幕精品免费在线观看视频| 久久久久国产精品人妻aⅴ院| 变态另类成人亚洲欧美熟女| 国产一区二区三区视频了| 亚洲国产精品999在线| 女性被躁到高潮视频| 熟妇人妻久久中文字幕3abv| 一级毛片女人18水好多| 一本久久中文字幕| 香蕉国产在线看| 久久九九热精品免费| x7x7x7水蜜桃| 亚洲成a人片在线一区二区| 中文字幕最新亚洲高清| 国产精品亚洲av一区麻豆| 久久精品国产99精品国产亚洲性色| 黄色片一级片一级黄色片| 十分钟在线观看高清视频www| 精品一区二区三区四区五区乱码| 亚洲精华国产精华精| а√天堂www在线а√下载| 亚洲av熟女| 亚洲五月天丁香| av有码第一页| 亚洲熟妇熟女久久| 日韩精品免费视频一区二区三区| 在线观看免费视频日本深夜| 伊人久久大香线蕉亚洲五| 激情在线观看视频在线高清| 看黄色毛片网站| 丁香六月欧美| 久久青草综合色| 欧美另类亚洲清纯唯美| 一级毛片女人18水好多| 曰老女人黄片| 午夜影院日韩av| 久久久精品欧美日韩精品| 国产精品爽爽va在线观看网站 | 亚洲av五月六月丁香网| 12—13女人毛片做爰片一| 波多野结衣高清作品| 亚洲五月天丁香| 操出白浆在线播放| 亚洲成国产人片在线观看| 国产亚洲欧美98| 久久精品国产清高在天天线| 亚洲精品粉嫩美女一区| 90打野战视频偷拍视频| 视频在线观看一区二区三区| 18禁黄网站禁片午夜丰满| 日韩欧美免费精品| 国产欧美日韩一区二区三| 男女之事视频高清在线观看| 一个人观看的视频www高清免费观看 | 精品不卡国产一区二区三区| 女性被躁到高潮视频| 人人妻,人人澡人人爽秒播| 在线视频色国产色| 日韩三级视频一区二区三区| 99热只有精品国产| 亚洲性夜色夜夜综合| 男人操女人黄网站| 成年女人毛片免费观看观看9| 亚洲欧美一区二区三区黑人| 国产亚洲av嫩草精品影院| 热99re8久久精品国产| 国内久久婷婷六月综合欲色啪| 一本大道久久a久久精品| 一本大道久久a久久精品| 91字幕亚洲| 久久久久久久久久黄片| 日韩精品免费视频一区二区三区| 日韩视频一区二区在线观看| 在线观看日韩欧美| 最近在线观看免费完整版| 亚洲男人的天堂狠狠| 99国产精品99久久久久| 变态另类成人亚洲欧美熟女| 一区二区三区高清视频在线| 动漫黄色视频在线观看| 成人三级黄色视频| 日韩三级视频一区二区三区| 久久中文字幕人妻熟女| www.www免费av| 欧美一级毛片孕妇| 一卡2卡三卡四卡精品乱码亚洲| 麻豆一二三区av精品| 可以在线观看的亚洲视频| 欧美另类亚洲清纯唯美| 久久青草综合色| aaaaa片日本免费| 久久草成人影院| 性欧美人与动物交配| 巨乳人妻的诱惑在线观看| 韩国精品一区二区三区| 国产激情欧美一区二区| 99国产精品一区二区三区| 色哟哟哟哟哟哟| 久久久久久九九精品二区国产 | 欧美丝袜亚洲另类 | 亚洲成av片中文字幕在线观看| 欧美日本视频| 一本综合久久免费| 两性午夜刺激爽爽歪歪视频在线观看 | 国内精品久久久久精免费| 国产成人av激情在线播放| 色播在线永久视频| 不卡一级毛片| 欧美成人午夜精品| 国产精品影院久久| 午夜福利一区二区在线看| 在线免费观看的www视频| 嫩草影院精品99| 免费女性裸体啪啪无遮挡网站| 亚洲欧美一区二区三区黑人| 国产三级在线视频| 人人妻,人人澡人人爽秒播| 亚洲黑人精品在线| 91大片在线观看| 午夜视频精品福利| 久久久久久久精品吃奶| 日日夜夜操网爽| 免费看a级黄色片| 亚洲国产欧美一区二区综合| 日日夜夜操网爽| 搡老岳熟女国产| 又大又爽又粗| 亚洲avbb在线观看| 12—13女人毛片做爰片一| 1024香蕉在线观看| 无人区码免费观看不卡| 最新美女视频免费是黄的| 神马国产精品三级电影在线观看 | 久久青草综合色| 国内少妇人妻偷人精品xxx网站 | 亚洲自偷自拍图片 自拍| 亚洲片人在线观看| 麻豆国产av国片精品| 国产久久久一区二区三区| 久久久久国产精品人妻aⅴ院| 免费电影在线观看免费观看| 亚洲人成电影免费在线| 无限看片的www在线观看| 身体一侧抽搐| 国产三级黄色录像| 亚洲第一欧美日韩一区二区三区| 亚洲一区二区三区色噜噜| 黄色视频,在线免费观看| 欧美日韩亚洲国产一区二区在线观看| 侵犯人妻中文字幕一二三四区| 久久久久久久久久黄片| 午夜激情福利司机影院| 搞女人的毛片| 精品国产美女av久久久久小说| 色精品久久人妻99蜜桃| 成人精品一区二区免费| 欧美在线黄色| 久久九九热精品免费| 观看免费一级毛片| 免费看a级黄色片| 久久精品国产亚洲av高清一级| √禁漫天堂资源中文www| 一区二区三区高清视频在线| 久久精品91无色码中文字幕| √禁漫天堂资源中文www| 美女午夜性视频免费| 女警被强在线播放| 激情在线观看视频在线高清| 黄色视频不卡| 美女扒开内裤让男人捅视频| 亚洲av成人不卡在线观看播放网| 午夜福利在线观看吧| 久久草成人影院| 两性午夜刺激爽爽歪歪视频在线观看 | 国产蜜桃级精品一区二区三区| av欧美777| 一夜夜www| 成年免费大片在线观看| 国产一区二区三区视频了| 成在线人永久免费视频| 俺也久久电影网| 国产人伦9x9x在线观看| 亚洲中文字幕一区二区三区有码在线看 | 亚洲成av人片免费观看| 一级毛片高清免费大全| av在线播放免费不卡| 一本久久中文字幕| 脱女人内裤的视频| 国产三级在线视频| 在线观看免费日韩欧美大片| 国产亚洲精品一区二区www| 国产精品二区激情视频| 人妻丰满熟妇av一区二区三区| 美女高潮喷水抽搐中文字幕| 精品第一国产精品| 啦啦啦 在线观看视频| 中文字幕久久专区| 90打野战视频偷拍视频| 国产成+人综合+亚洲专区| 免费女性裸体啪啪无遮挡网站| 国产免费男女视频| 国产高清有码在线观看视频 | 国产成人欧美| 国产成人一区二区三区免费视频网站| 91成人精品电影| 国产成人欧美在线观看| 亚洲片人在线观看| 精品第一国产精品| 国产一区二区激情短视频| 一级毛片高清免费大全| 日韩欧美免费精品| 国产乱人伦免费视频| 大型av网站在线播放| 美女国产高潮福利片在线看| 精品久久久久久久末码| 一区二区三区激情视频| 国产精华一区二区三区| 丝袜在线中文字幕| 无人区码免费观看不卡| 成人三级黄色视频| 成人18禁在线播放| 亚洲男人天堂网一区| 国产在线精品亚洲第一网站| 国产亚洲欧美在线一区二区| 一本大道久久a久久精品| av视频在线观看入口| 婷婷精品国产亚洲av| 国产精品久久视频播放| 欧美亚洲日本最大视频资源| 国内精品久久久久久久电影| 美女午夜性视频免费| svipshipincom国产片| 国产91精品成人一区二区三区| 淫妇啪啪啪对白视频| 国产精品九九99| 国产亚洲精品av在线| 香蕉丝袜av| 婷婷亚洲欧美| 两性夫妻黄色片| 18禁观看日本| 免费看日本二区| 久热这里只有精品99| 精品第一国产精品| 90打野战视频偷拍视频| 色婷婷久久久亚洲欧美| 99久久无色码亚洲精品果冻| 亚洲熟女毛片儿| 久久午夜亚洲精品久久| 91字幕亚洲| 女人被狂操c到高潮| 国产又爽黄色视频| 高清在线国产一区| 国产午夜精品久久久久久| 国产成人精品久久二区二区免费| 免费女性裸体啪啪无遮挡网站| 免费无遮挡裸体视频| 亚洲五月婷婷丁香| 亚洲国产欧美日韩在线播放| 国内精品久久久久久久电影| 国产精品香港三级国产av潘金莲| 国产在线精品亚洲第一网站| 日韩视频一区二区在线观看| 精品电影一区二区在线| x7x7x7水蜜桃| avwww免费| 黑人欧美特级aaaaaa片| 90打野战视频偷拍视频| 曰老女人黄片| 男人操女人黄网站| 亚洲美女黄片视频| 国产久久久一区二区三区| 中文字幕人妻丝袜一区二区| 久久久久免费精品人妻一区二区 | 一本综合久久免费| 中国美女看黄片| 每晚都被弄得嗷嗷叫到高潮| 无人区码免费观看不卡| 久久狼人影院| 欧美一级a爱片免费观看看 | 久久久久国产一级毛片高清牌| 久久精品夜夜夜夜夜久久蜜豆 | netflix在线观看网站| 满18在线观看网站| 不卡一级毛片| 成人国语在线视频| 国产一卡二卡三卡精品| 午夜日韩欧美国产| 老鸭窝网址在线观看| 亚洲国产高清在线一区二区三 | 身体一侧抽搐| 十分钟在线观看高清视频www| 男女做爰动态图高潮gif福利片| 欧美一级a爱片免费观看看 | 欧美成人免费av一区二区三区| 香蕉av资源在线| 免费在线观看日本一区| 国内毛片毛片毛片毛片毛片| 国产视频一区二区在线看| 一进一出抽搐动态| av欧美777| 怎么达到女性高潮| 一夜夜www| 夜夜看夜夜爽夜夜摸| 日韩有码中文字幕| 国产精品香港三级国产av潘金莲| 日韩大尺度精品在线看网址| 国产黄色小视频在线观看| 中文亚洲av片在线观看爽| 国产极品粉嫩免费观看在线| 啦啦啦免费观看视频1| 日本一本二区三区精品| 嫩草影院精品99| 国产精品1区2区在线观看.| 在线观看日韩欧美| 久久狼人影院| 成人欧美大片| 免费人成视频x8x8入口观看| 久久久久久人人人人人| 人妻久久中文字幕网| 国产精品免费一区二区三区在线| 韩国av一区二区三区四区| 午夜福利在线观看吧| 大型黄色视频在线免费观看| 法律面前人人平等表现在哪些方面| 哪里可以看免费的av片| 两性午夜刺激爽爽歪歪视频在线观看 | 别揉我奶头~嗯~啊~动态视频| 国产成人系列免费观看| 50天的宝宝边吃奶边哭怎么回事| 国产一区二区激情短视频| 成人欧美大片| 琪琪午夜伦伦电影理论片6080| 成人一区二区视频在线观看| 亚洲,欧美精品.| 黄色丝袜av网址大全| 午夜福利欧美成人| 精品午夜福利视频在线观看一区| 一级a爱片免费观看的视频| 老司机福利观看| 久久精品aⅴ一区二区三区四区| 欧美另类亚洲清纯唯美| 久久精品aⅴ一区二区三区四区| 日本在线视频免费播放| 欧美午夜高清在线| 久久热在线av| 国产欧美日韩精品亚洲av| 成人欧美大片| a级毛片a级免费在线| 美国免费a级毛片| 免费看美女性在线毛片视频| 757午夜福利合集在线观看| 免费搜索国产男女视频| 一级a爱视频在线免费观看| 中亚洲国语对白在线视频| 久久国产精品影院| 久久九九热精品免费| ponron亚洲| e午夜精品久久久久久久| 亚洲美女黄片视频| 特大巨黑吊av在线直播 | 国产成人啪精品午夜网站| 两个人免费观看高清视频| 男男h啪啪无遮挡| 视频在线观看一区二区三区| 免费看a级黄色片| 亚洲人成伊人成综合网2020| 他把我摸到了高潮在线观看| 在线观看舔阴道视频| 大香蕉久久成人网| 97人妻精品一区二区三区麻豆 | 国产91精品成人一区二区三区| 中文资源天堂在线| 久久天躁狠狠躁夜夜2o2o| 午夜免费成人在线视频| 两个人看的免费小视频| 日韩欧美免费精品| 亚洲国产欧美日韩在线播放| 亚洲男人的天堂狠狠| 久久久久久大精品| 一级a爱视频在线免费观看| aaaaa片日本免费| 99热只有精品国产| 欧美精品啪啪一区二区三区| 可以在线观看的亚洲视频| 少妇被粗大的猛进出69影院| 精品卡一卡二卡四卡免费| 在线观看免费日韩欧美大片| 国产又爽黄色视频| 成人精品一区二区免费| 久久久久九九精品影院| 久久久国产欧美日韩av| 国产成人av激情在线播放| 久久久久久久精品吃奶| 自线自在国产av| 欧美大码av| 搡老妇女老女人老熟妇| 精品电影一区二区在线| 亚洲天堂国产精品一区在线| 搡老妇女老女人老熟妇| 18禁观看日本| 制服人妻中文乱码| 国产高清有码在线观看视频 | 午夜a级毛片| 中文字幕久久专区| 最近最新免费中文字幕在线| 欧美日本亚洲视频在线播放| 日韩大尺度精品在线看网址| 一级片免费观看大全| 欧美日本亚洲视频在线播放| 怎么达到女性高潮| 中亚洲国语对白在线视频| 村上凉子中文字幕在线| 日日夜夜操网爽| 又大又爽又粗| 国产又爽黄色视频| 色综合婷婷激情| 久久午夜亚洲精品久久| 欧美黑人精品巨大| 一本综合久久免费| 欧美日韩福利视频一区二区| 香蕉av资源在线| 欧美精品啪啪一区二区三区| 午夜激情福利司机影院| 欧美黑人欧美精品刺激| 精品福利观看| 成人国语在线视频| 国产亚洲欧美在线一区二区| 午夜激情av网站| 女人被狂操c到高潮|