• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Smoothing SAA Method for a Stochastic Linear Complementarity Problem

    2013-08-27 01:38:46ZHANGJIEZHANGHONGWEIANDZHANGLIWEI

    ZHANG JIE,ZHANG HONG-WEIAND ZHANG LI-WEI

    (1.School of Mathematics,Liaoning Normal University,Dalian,Liaoning,116029) (2.School of Mathematical Sciences,Dalian University of Technology,Dalian,Liaoning,116024)

    Communicated by Yin Jing-xue

    A Smoothing SAA Method for a Stochastic Linear Complementarity Problem

    ZHANG JIE1,ZHANG HONG-WEI2AND ZHANG LI-WEI2

    (1.School of Mathematics,Liaoning Normal University,Dalian,Liaoning,116029) (2.School of Mathematical Sciences,Dalian University of Technology,Dalian,Liaoning,116024)

    Communicated by Yin Jing-xue

    Utilizing the well-known aggregation technique,we propose a smoothing sample average approximation(SAA)method for a stochastic linear complementarity problem,where the underlying functions are represented by expectations of stochastic functions.The method is proved to be convergent and the preliminary numerical results are reported.

    aggregation technique,smoothing SAA method,stochastic linear complementarity problem

    1 Introduction

    In this paper,we consider the following stochastic linear complementarity problem(SLCP): fi ndsuch that

    To ease the notation,we write ξ(ω)as ξ and this should be distinguished from ξ being a deterministic vector of Ξ in a context.

    SLCP(1.1)is a natural extension of the deterministic complementarity problem and can be seen as a special case of the stochastic variational inequality problem which was f i rstproposed by G¨urkan et al.[1]Over the past several decades,the complementarity problem has been intensively studied for its extensively application in engineering,economics,game theory and networks(see[2]).While in practical,there are some important instances that the problem data contains some uncertain factors,and consequently,the stochastic complementarity models are proposed to ref l ect the uncertainties.Some examples of the stochastic complementarity problem,arising from the areas of economics,engineering and operations management can be found in[3].

    In this paper,we focus on numerical methods for solving(1.1).Evidently,if the integral involved in the mathematical expectation problems exists or is computable,then the problem (1.1)is reduced to the usual LCP problem and the existing methods in[2]can be applied directly to it.However,in many cases,an exact evaluation of the expected value in(1.1)for x is either impossible or prohibitively expensive.The sample average approximation(SAA) method is suggested to handle this difficulty(see[4–6]).The basic idea of SAA is to generate an independent identically distributed(iid)sampleof ξ,and then approximate the expected value with a sample average.In this context,SLCP(1.1)is approximated by

    where

    is a sample-average mapping of Ψ(x).We refer to(1.1)as a true problem and(1.2)as an SAA problem to(1.1).

    Recently,Chen and Fukushima[7]consider another type of stochastic linear complementarity problem:

    They formulate(1.4)as a problem of minimizing an expected residual def i ned by an NCP function,which is referred to as the ERM method.Then,they employ a qusi-Monte Carlo method and give some convergence results under suitable assumptions on the associated matrices.

    In this paper,inspired by ERM method,incorporating SAA method with the well known aggregation function,we propose a smoothing SAA method for solving(1.1).We study the almost sure existence of solutions of SAA problem when the sample size is sufficiently large and show that under moderate conditions,a sequence of SAA solutions converges to the solution of counterpart true problem with probability one at exponential rate as the sample size tends to inf i nity.Finally,some numerical results are also reported.

    Throughout this paper we use the following notations.Let‖·‖denote the Euclidean norm of a vector or the Frobenius norm of a matrix and

    denote the distance from a point x to a set D.Let B be the closed unite ball and B(x,δ) be the closed ball around x of radius δ>0.For two sets,we denote bythe deviation of set A from the set C.Note that D(·,·)satisf i es the triangle inequality, i.e.,for sets,the following inequality holds:

    2 Smoothing SAA Method Formulating

    Aggregation function is a well known smoothing function for max-type functions.Let

    where wi(i=1,···,m)are continuously dif f erentiable functions.It is clear that w(·)is continuous in Rnbut not dif f erentiable everywhere.For any t>0,the aggregation function of w(x),noted as w(t,x):,is def i ned by

    The function,viewed as an exponential penalty function for constrained minimization,is proposed by Kort and Bertsekas[8].Independently,Li[9-10]studied(2.1)and named it as the aggregation function.An interesting feature of w(t,x)(see Example 1.30 of[11])is

    which implies

    and the convergence is uniform with respect to x.We know from the def i nition that w(t,x) is a smoothing function with respect to x for t>0,and hence utilizing this property,over the past decade,some authors have used the aggregation function to propose smoothing methods for generalized linear complementarity problems and nonlinear complementarity problems(see[12–13]and the references therein).

    Notice that SLCP(1.1)is equivalent to

    We def i ne

    where

    Then we know from the def i nition that Gt(x)is continuously dif f erentiable with respect to t for all t>0,and

    Therefore it is natural to def i ne

    and

    Let

    It is then obvious that the nonnegative function f is zero at a point x if and only if x is a solution of SLCP(1.1),so that solving SLCP(1.1)is equivalent to f i nding the unconstrained global solutions of the problem(2.4).By taking independently and identically distributed random samples ξi(i=1,···,N)and introducing the smoothing function Gt(·)in(2.3), we obtain the following approximation of the problem(2.4):

    where

    with

    We denote by SLthe solution set of(2.4),bythe solution set of(2.5),and by S0the solution set of SLCP(1.1).

    3 Existence and Almost Sure Convergence

    It is well known that the R0property relates closely to the boundedness of level sets in the literature of the complementarity problem.Recall that M∈Rn×nis called an R0matrix if for x∈Rn

    If we denote

    then we have

    Lemma 3.1Ifis an R0matrix,then there existssuch thatis almost surely an R0matrix for all N≥.

    Proof.Assume that this lemma were not true.Then for any>0,there would exist ansuch thatis not an R0matrix almost surely.So we can choose a sequence {Nk}?N such that Nk→+∞as k→+∞andis not an R0matrix almost surely for each k.That is,for each k,we can f i ndsatisfying

    Let

    Then we have

    Notice that

    Therefore,letting k→+∞,we obtain a vectorsatisfying

    This contradicts the assumption thatis an R0matrix and completes the proof.

    By the def i nition of gt(·,·)and Proposition 3.2 of[13],we have the following lemma.

    Lemma 3.2Let t≥0.Then for any real numbers a and b,we have

    (i)g0(a,b)-tln2≤gt(a,b)≤g0(a,b).

    (ii)There exist δ>0 and L>0 such that

    Lemma 3.3Assume thatis an R0matrix.Then there existsˉN>0 such that for any positive numbers γ and tN,the level set

    is bounded almost surely for each N≥

    Proof.By Lemma 3.1,there exists an>0 such thatis almost surely an R0matrix for all N≥.To prove this lemma,we only need to show that→+∞almost surely for all N≥whenever→+∞for any sequence.Suppose that→+∞as k→+∞.From the def i nition we know that if→-∞or→-∞almost surely for some i as k→+∞,then it follows that

    for tN>0.So it suffices to consider the case when both sequencesandare bounded below almost surely for all i.Then,by dividing each element of these sequences byand passing to the limit,we obtain that for all N≥

    which,in turn,by Lemma 3.2,means

    Theorem 3.1Assume thatis an R0matrix.Then there exists an>0 such thatis nonempty and bounded almost surely for each N≥.Letalmost surely andas.Then,every accumulation point of the sequenceis contained inalmost surely.

    Proof.By Lemma 2.2,there exists an>0 such that for>0 and γ>0,the level set(3.1)is bounded almost surely for each N≥which,by Theorem 1.9 in[11],implies thatis nonempty and bounded almost surely for each N≥

    where

    Since

    we have

    which implies that

    and by Lemma 3.2,there exists an L>0 such that for N sufficiently large,

    Then combining(3.2),(3.4)and(3.5),we obtain

    In a similar way,we can also show

    Therefore,we have

    The proof is completed.

    We know from the knowledge of the deterministic linear complementarity problem that the matrixin(1.1)being a P matrix(for matrices M,for all x/=0 there exists an i such that>0)is a necessary and sufficient condition for the existence and uniqueness of the solution of SLCP(1.1).Thus we have the following result.

    Corollary 3.1Assume thatis a P matrix.Then there exists an>0 such thatis nonempty and bounded almost surely for each N≥.Letalmost surely for each N and tN↘0 as N→+∞.Then,every accumulation point of the sequenceis contained inalmost surely.

    4 Exponential Convergence Rate

    In this section,under suitable conditions,we show that with the increase of sample size the optimal solutions of the approximation problem(2.5)converge exponentially to a solution of SLCP(1.1)with probability approaching one.For this purpose,we need to make the following assumption:

    Assumption AFor every i∈{1,···,n},we have the following properties:

    (A1)For all x∈X,the moment generating function

    of the random variable[M(ξ)x]i-[E(M(ξ)x)]iis f i nite valued for all t in a neighborhood of zero.

    (A2)‖M(ξ)‖is measurable for all ξ∈Ξ.

    (A3)The moment generating

    of‖M(ξ)‖is f i nite valued for all t in a neighborhood of zero.

    Then by Theorem 6.52 in[6],we obtain the following lemma.

    Lemma 4.1Suppose that Assumption A holds and the set X is compact.Then for any ε>0,there exist positive constants

    independent of N such that .

    We need the following lemma which can be obtained by using a local upper Lipschitz property of a polyhedral multifunction given by Robinson[14].

    Lemma 4.2There exist positive numbers δ and α such that

    and

    Theorem 4.1Letalmost surely,tN↘0 and

    Suppose that

    (i)S0is nonempty;

    (ii)Assumption A holds;

    (iii){xN}?X w.p.1 and X is compact.

    Then for any ε>0,there exist positive constants

    independent of N such that for N sufficiently large

    Proof.We know from S0being nonempty that

    almost surely,which,by Lemma 4.1,implies that there exists an α>0 such that for N sufficiently large

    By the proof of Theorem 3.1,we have for N sufficiently large

    which means

    for N sufficiently large.Together with(4.1),by Lemma 3.2,it means that there exists an L>0 such that for N sufficiently large,

    dist(xN,S0)

    Since tN↘0,,by the proof of Theorem 3.1,and

    we have that for any positive number ε,

    hold for all N sufficiently large.On the other hand,for the above ε,by Lemma 4.1,there exist positive constants

    independent of N such that

    which,together with(4.3)and(4.4),implies that for N sufficiently large,

    where

    We have completed the proof.

    Corollary 4.1Assume thatis a P matrix and Assumptions(i)–(iii)in Theorem 4.1 hold.Let

    Then for any ε>0,there exist positive constants

    independent of N such that for N sufficiently large

    5 Numerical Results

    In this section,we present some preliminary numerical results obtained by the smoothing SAA method.Our numerical experiments are carried out in Matlab 7.1 running on a PC with Intel Pentium M of 1.60 GHz CPU and our tests are focused on dif f erent values of the smoothing parameter t and the sample size N.

    In our experiments,we set the initial values of Nkand tkas N1=100 and t1=5, respectively.Then,we employ the random number generator“unifrnd”in Matlab 7.1 to generate independently and identically distributed random samples{ξ1,ξ2,···,ξNk}.We solve the problems(2.5)with N=Nkand t=tkby the solver“fminsearch”in Matlab 7.1 to obtain the approximated optimal solution xNk.The initial point is

    The obtained solution xNkis used as the starting point in the next iteration.In addition, the parameters are updated by“Obj”denotes the values of the objective function of the problem(2.5)at xNk.

    Example 5.1Consider the stochastic linear complementary problem(1.1)in which ξ is uniformly distributed on[0,1].M(ξ(ω))and q(ξ(ω))are given by

    respectively.This problem has a unique solution

    for each ω∈Ω.The optimal values of the approximation problem(2.5)with Nkand tkcorresponding to this example is zero,which is shown in Table 5.1.

    Table 5.1The computational results for Example 5.1

    Example 5.2Consider the stochastic complementary problem(1.1)in which ξ is uniformly distributed on[0,1].M(ξ(w))and q(ξ(w))is given by

    respectively.This problem has a solution

    for each ω∈Ω.The numerical results of the approximation problem(2.5)with Nkand tkcorresponding to this example are shown in Table 5.2.

    Table 5.2The computational results for Example 5.2

    Our preliminary numerical results shown in Tables 5.1 and 5.2 reveal that our proposed method yields a reasonable solution of the problems considered.

    6 Conclusion

    In this paper,utilizing the aggregation technique,we propose a smoothing SAA method for a stochastic linear complementarity problem.Under suitable conditions,we obtain the almost surely convergence and exponential rate of this method.The preliminary numerical results indicate that the proposed method is able to solve SLCP successfully.

    [1]G¨urkan G,¨Ozge A Y,Robinson S M.Sample-path solution of stochastic variational inequalities.Math.Programming,1999,84:313–333.

    [2]Facchinei F,Pang J S.Finite-dimensional Variational Inequalities and Complementarity Problems.vol.I/II.New York:Springer-Verlag,2003.

    [3]Jiang H,Xu H.Stochastic approximation approaches to the stochastic variational inequality problem.IEEE Trans.Automat.Control,2008,53:1462–1475.

    [4]Rusczyˊnski A,Shapiro A.Stochastic Programming.Handbooks in OR&MS 10.Amsterdam: North-Holland,2003.

    [5]Xu H.An implicit programming approach for a class of stochastic mathematical programs with equilibrium constraints.SIAM J.Optim.,2006,16:670–696.

    [6]Shapiro A,Dentcheva D,Ruszczynski A.Lectures on Stochastic Programming:Modeling and Theory.Philadelphia:SIAM,2009.

    [7]Chen X J,Fukushima M.Expected residual minimization method for stochastic linear complementarity problems.Math.Oper.Res.,2005,30:1022–1038.

    [8]Kort B W,Bertsekas D P.A New Penalty Function Algorithm for Constrained Minimization. Proceedings of the 1972 IEEE Conference on Decision and Control.Louisiana:New Orleans, 1972.

    [9]Li X S.An aggregate function method for nonlinear programming.Sci.China Ser.A,1991, 34:1467–1473.

    [10]Li X S.An entropy-based aggregate method for minimax optimization.J.Engrg.Optim.,1992, 18:277–185.

    [11]Rockafellar R T,Wets R J B.Variational Analysis.Berlin-Heidelberg-New York:Springer-Verlag,1998.

    [12]Peng J,Lin Z.A non-interior continuation method for generalized linear complementarity problems.Math.Programming,1999,86:533–563.

    [13]Qi H,Liao L.A smoothing Newton method for extended vertical linear complementarity problems.SIAM J.Matrix Anal.Appl.,1999,21:45–66.

    [14]Robinson S M.Some continuity properties of polyhedral multifunctions.Math.Program.Study, 1981,14:206–214.

    tion:90C30

    A

    1674-5647(2013)02-0097-11

    Received date:Aug.19,2010.

    The NSF(11071029 and 11171138)of China.

    E-mail address:zj04212001@yahoo.com.cn(Zhang J).

    99热全是精品| 十分钟在线观看高清视频www| 波野结衣二区三区在线| 18禁观看日本| 日本午夜av视频| 人人妻人人爽人人添夜夜欢视频| 国产欧美日韩一区二区三区在线| 免费在线观看视频国产中文字幕亚洲 | 午夜91福利影院| 久久精品久久久久久噜噜老黄| 五月开心婷婷网| 亚洲精品久久成人aⅴ小说| 亚洲欧美中文字幕日韩二区| 女人精品久久久久毛片| 欧美精品人与动牲交sv欧美| 涩涩av久久男人的天堂| 一级毛片 在线播放| 亚洲中文av在线| 亚洲精品国产av蜜桃| 久久热在线av| 成人手机av| 日韩欧美一区视频在线观看| 男女午夜视频在线观看| 在线亚洲精品国产二区图片欧美| 国产无遮挡羞羞视频在线观看| 少妇人妻久久综合中文| 亚洲精品aⅴ在线观看| 欧美老熟妇乱子伦牲交| 老司机靠b影院| 美女福利国产在线| 黄片无遮挡物在线观看| 久久久久久久久久久免费av| 女人被躁到高潮嗷嗷叫费观| av在线播放精品| 久久久久久久久免费视频了| 久久国产精品大桥未久av| 精品亚洲成国产av| 高清欧美精品videossex| 制服人妻中文乱码| 亚洲精品,欧美精品| 啦啦啦 在线观看视频| 国产精品国产三级国产专区5o| 午夜福利视频精品| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲国产毛片av蜜桃av| 国产老妇伦熟女老妇高清| √禁漫天堂资源中文www| 日韩av不卡免费在线播放| 大香蕉久久网| 国产 精品1| 中文精品一卡2卡3卡4更新| 中文欧美无线码| 国产熟女欧美一区二区| 亚洲第一av免费看| 精品国产超薄肉色丝袜足j| 丰满少妇做爰视频| 亚洲欧洲国产日韩| 亚洲人成网站在线观看播放| 亚洲欧美精品综合一区二区三区| 国产精品女同一区二区软件| 又大又爽又粗| 久久国产精品男人的天堂亚洲| 国产免费视频播放在线视频| 国产精品国产三级专区第一集| 乱人伦中国视频| 午夜福利影视在线免费观看| 人体艺术视频欧美日本| 老熟女久久久| 日韩欧美精品免费久久| 精品一区二区免费观看| 久久精品人人爽人人爽视色| 国产一区有黄有色的免费视频| 日日摸夜夜添夜夜爱| 精品国产一区二区久久| 制服丝袜香蕉在线| 乱人伦中国视频| 国产成人a∨麻豆精品| 七月丁香在线播放| 伦理电影大哥的女人| 男女午夜视频在线观看| 日本av手机在线免费观看| 日本午夜av视频| 捣出白浆h1v1| 国产精品一区二区精品视频观看| av片东京热男人的天堂| 丝袜美腿诱惑在线| 亚洲人成网站在线观看播放| 丝袜美足系列| 免费人妻精品一区二区三区视频| 欧美成人午夜精品| 精品一区二区三区av网在线观看 | 日本色播在线视频| 满18在线观看网站| 国产探花极品一区二区| 一区二区三区激情视频| 老司机影院成人| 黄片播放在线免费| 亚洲精品av麻豆狂野| 最近中文字幕高清免费大全6| 精品一区二区免费观看| 日韩一卡2卡3卡4卡2021年| 自拍欧美九色日韩亚洲蝌蚪91| www.精华液| 丰满迷人的少妇在线观看| 啦啦啦视频在线资源免费观看| 热re99久久国产66热| 日韩欧美精品免费久久| 午夜福利影视在线免费观看| 亚洲国产精品成人久久小说| 国产精品99久久99久久久不卡 | 99九九在线精品视频| 黑人欧美特级aaaaaa片| 国精品久久久久久国模美| 久久热在线av| 国产视频首页在线观看| 一级毛片电影观看| 欧美日韩亚洲国产一区二区在线观看 | av福利片在线| 国产精品国产三级专区第一集| 美女大奶头黄色视频| 天天操日日干夜夜撸| 欧美日韩一区二区视频在线观看视频在线| 久久国产精品大桥未久av| 91精品三级在线观看| 免费黄频网站在线观看国产| 晚上一个人看的免费电影| 中文字幕制服av| 国产成人欧美| 热re99久久精品国产66热6| 少妇人妻精品综合一区二区| 日本欧美国产在线视频| 免费在线观看视频国产中文字幕亚洲 | 精品少妇久久久久久888优播| 夫妻午夜视频| 国产精品人妻久久久影院| 视频在线观看一区二区三区| 欧美日韩综合久久久久久| 免费观看人在逋| 欧美最新免费一区二区三区| 国产免费现黄频在线看| 久久av网站| kizo精华| 人人妻人人爽人人添夜夜欢视频| 久久天堂一区二区三区四区| 久久久精品免费免费高清| 亚洲人成网站在线观看播放| 午夜免费观看性视频| 午夜福利一区二区在线看| 亚洲精品久久成人aⅴ小说| 午夜福利乱码中文字幕| 一区二区日韩欧美中文字幕| 人妻 亚洲 视频| 午夜福利乱码中文字幕| 亚洲精华国产精华液的使用体验| 国产精品国产av在线观看| 在线观看免费视频网站a站| 亚洲国产看品久久| 日本欧美视频一区| 午夜影院在线不卡| 一区福利在线观看| 丝袜喷水一区| 人妻 亚洲 视频| 国产又色又爽无遮挡免| 国产又色又爽无遮挡免| 黄色一级大片看看| 女人久久www免费人成看片| 性高湖久久久久久久久免费观看| 国产成人精品福利久久| 久久精品国产亚洲av涩爱| 亚洲欧美成人精品一区二区| 1024香蕉在线观看| 欧美变态另类bdsm刘玥| 国产成人一区二区在线| 久热这里只有精品99| 男女无遮挡免费网站观看| 亚洲男人天堂网一区| 人人妻人人爽人人添夜夜欢视频| 国产一区二区三区综合在线观看| 久久久国产精品麻豆| 久久久久精品人妻al黑| 在线天堂中文资源库| 亚洲av电影在线进入| 国产高清不卡午夜福利| 90打野战视频偷拍视频| 日韩,欧美,国产一区二区三区| 男女无遮挡免费网站观看| 国产精品香港三级国产av潘金莲 | 婷婷成人精品国产| 777久久人妻少妇嫩草av网站| 9热在线视频观看99| www日本在线高清视频| 亚洲精品av麻豆狂野| 2021少妇久久久久久久久久久| 国产乱来视频区| 日本欧美视频一区| 黄色一级大片看看| 亚洲国产欧美一区二区综合| 亚洲国产av影院在线观看| 亚洲精品国产色婷婷电影| 咕卡用的链子| 国产亚洲一区二区精品| 狠狠精品人妻久久久久久综合| 国产xxxxx性猛交| 日本午夜av视频| 2018国产大陆天天弄谢| 久久精品久久精品一区二区三区| 一二三四中文在线观看免费高清| 夜夜骑夜夜射夜夜干| 一级a爱视频在线免费观看| 一级黄片播放器| 韩国精品一区二区三区| 国产精品麻豆人妻色哟哟久久| 亚洲精品久久成人aⅴ小说| 亚洲精品一二三| 高清视频免费观看一区二区| videosex国产| 亚洲精品美女久久久久99蜜臀 | 精品人妻在线不人妻| 女性生殖器流出的白浆| 狠狠婷婷综合久久久久久88av| 日本一区二区免费在线视频| 国产精品一区二区在线不卡| 丰满少妇做爰视频| 国产精品久久久久久精品电影小说| 黄网站色视频无遮挡免费观看| 九九爱精品视频在线观看| 秋霞伦理黄片| 欧美黑人欧美精品刺激| 亚洲成人av在线免费| 久久久亚洲精品成人影院| 在线观看免费日韩欧美大片| e午夜精品久久久久久久| 男女高潮啪啪啪动态图| 国产免费视频播放在线视频| 亚洲精品日本国产第一区| 在线观看www视频免费| 国产免费又黄又爽又色| 国产精品国产av在线观看| 国产精品.久久久| 亚洲国产精品一区二区三区在线| 香蕉国产在线看| 可以免费在线观看a视频的电影网站 | 中文字幕高清在线视频| 欧美日韩av久久| 黄色 视频免费看| 亚洲国产毛片av蜜桃av| 久久毛片免费看一区二区三区| 看十八女毛片水多多多| 老鸭窝网址在线观看| 人人妻人人澡人人看| 激情五月婷婷亚洲| 精品久久久精品久久久| 久久人人爽人人片av| 国产乱人偷精品视频| 亚洲精品一二三| 丝袜美腿诱惑在线| 99香蕉大伊视频| 欧美中文综合在线视频| 精品少妇内射三级| 秋霞在线观看毛片| 丁香六月天网| 99re6热这里在线精品视频| 在线天堂最新版资源| 欧美精品一区二区免费开放| 色吧在线观看| 我的亚洲天堂| 美女国产高潮福利片在线看| 天天躁夜夜躁狠狠躁躁| 日韩一区二区视频免费看| 国产在线免费精品| 日韩av在线免费看完整版不卡| 视频区图区小说| 观看美女的网站| 无限看片的www在线观看| 丝袜在线中文字幕| 女人被躁到高潮嗷嗷叫费观| 飞空精品影院首页| 国产精品麻豆人妻色哟哟久久| 男女午夜视频在线观看| 在线精品无人区一区二区三| 纵有疾风起免费观看全集完整版| 欧美日韩福利视频一区二区| 国产亚洲欧美精品永久| 中文字幕av电影在线播放| 一级a爱视频在线免费观看| 国产亚洲精品第一综合不卡| 在线精品无人区一区二区三| 成人毛片60女人毛片免费| 日本vs欧美在线观看视频| 9色porny在线观看| 免费日韩欧美在线观看| 欧美日韩亚洲高清精品| 国产又色又爽无遮挡免| 国产福利在线免费观看视频| 日本一区二区免费在线视频| 男女边吃奶边做爰视频| 男男h啪啪无遮挡| 青春草国产在线视频| 在线观看一区二区三区激情| 大香蕉久久网| av在线观看视频网站免费| 中文精品一卡2卡3卡4更新| 日日摸夜夜添夜夜爱| 国产在视频线精品| 搡老岳熟女国产| 黄色一级大片看看| 大香蕉久久成人网| 国产亚洲午夜精品一区二区久久| 王馨瑶露胸无遮挡在线观看| 一边摸一边做爽爽视频免费| 久久久精品免费免费高清| 国产有黄有色有爽视频| 操出白浆在线播放| 丰满乱子伦码专区| 99久国产av精品国产电影| 老鸭窝网址在线观看| 亚洲国产欧美在线一区| 亚洲成人手机| 18禁动态无遮挡网站| 国产不卡av网站在线观看| 亚洲七黄色美女视频| e午夜精品久久久久久久| 天天躁日日躁夜夜躁夜夜| 中文字幕制服av| 国产毛片在线视频| 婷婷色麻豆天堂久久| 2018国产大陆天天弄谢| 无限看片的www在线观看| 国产xxxxx性猛交| 国产熟女欧美一区二区| 一区二区av电影网| 高清不卡的av网站| 老司机靠b影院| 高清视频免费观看一区二区| 两性夫妻黄色片| 一边亲一边摸免费视频| 欧美乱码精品一区二区三区| 国产亚洲精品第一综合不卡| 国产免费福利视频在线观看| 久久久国产一区二区| 国产精品久久久久久精品电影小说| 精品少妇黑人巨大在线播放| 少妇被粗大猛烈的视频| 综合色丁香网| 久久精品久久久久久久性| 19禁男女啪啪无遮挡网站| 国产精品无大码| 青青草视频在线视频观看| 韩国高清视频一区二区三区| 18禁国产床啪视频网站| 欧美精品人与动牲交sv欧美| av又黄又爽大尺度在线免费看| 女人爽到高潮嗷嗷叫在线视频| 国产在线一区二区三区精| 性高湖久久久久久久久免费观看| 视频区图区小说| 好男人视频免费观看在线| 天天躁夜夜躁狠狠躁躁| 国产免费现黄频在线看| 国产极品粉嫩免费观看在线| 卡戴珊不雅视频在线播放| 999精品在线视频| 在线精品无人区一区二区三| 黄片无遮挡物在线观看| 最近中文字幕高清免费大全6| 国产精品蜜桃在线观看| 久久鲁丝午夜福利片| 婷婷色综合大香蕉| 卡戴珊不雅视频在线播放| 久久久久久久大尺度免费视频| 精品人妻熟女毛片av久久网站| 国产一区二区三区av在线| 精品第一国产精品| 另类精品久久| 日本黄色日本黄色录像| 中文字幕人妻熟女乱码| 大片免费播放器 马上看| 免费黄频网站在线观看国产| 精品国产乱码久久久久久男人| 桃花免费在线播放| 欧美日韩av久久| 国产精品国产av在线观看| 国产黄频视频在线观看| 黄片播放在线免费| 欧美 日韩 精品 国产| 日韩熟女老妇一区二区性免费视频| 少妇人妻 视频| 午夜福利影视在线免费观看| 少妇精品久久久久久久| 在线看a的网站| 搡老乐熟女国产| 天堂俺去俺来也www色官网| 久久精品国产亚洲av涩爱| 美女主播在线视频| 色播在线永久视频| 国产亚洲精品第一综合不卡| 精品福利永久在线观看| 夫妻午夜视频| 亚洲熟女毛片儿| 老汉色av国产亚洲站长工具| 人人妻人人澡人人看| 天天躁日日躁夜夜躁夜夜| 搡老岳熟女国产| 日韩一本色道免费dvd| 丰满迷人的少妇在线观看| 晚上一个人看的免费电影| 国产男女超爽视频在线观看| 亚洲精品乱久久久久久| 亚洲欧美中文字幕日韩二区| 国产毛片在线视频| 久久久久精品久久久久真实原创| 欧美日韩国产mv在线观看视频| 在线观看一区二区三区激情| 日韩av在线免费看完整版不卡| 综合色丁香网| 老熟女久久久| 交换朋友夫妻互换小说| 青春草亚洲视频在线观看| 18禁动态无遮挡网站| 天天添夜夜摸| 亚洲精品国产一区二区精华液| 国产精品一二三区在线看| 在线天堂中文资源库| 操出白浆在线播放| 99久久综合免费| 亚洲精品一区蜜桃| 亚洲av欧美aⅴ国产| 自拍欧美九色日韩亚洲蝌蚪91| 超碰成人久久| 一区二区日韩欧美中文字幕| 一级片免费观看大全| 久久久精品94久久精品| netflix在线观看网站| 精品人妻一区二区三区麻豆| 精品国产露脸久久av麻豆| 91aial.com中文字幕在线观看| 我的亚洲天堂| 在线亚洲精品国产二区图片欧美| 亚洲成色77777| 国产熟女午夜一区二区三区| 亚洲情色 制服丝袜| 久久久久久人妻| 欧美最新免费一区二区三区| 欧美激情 高清一区二区三区| 最新的欧美精品一区二区| 看免费av毛片| 天天躁夜夜躁狠狠躁躁| 国产成人精品久久二区二区91 | 国产精品熟女久久久久浪| 国产伦理片在线播放av一区| 精品一区二区三区四区五区乱码 | 少妇的丰满在线观看| 婷婷色av中文字幕| av.在线天堂| 亚洲国产精品一区三区| av在线app专区| 日韩大码丰满熟妇| 丝袜美足系列| 久久久久精品人妻al黑| 精品午夜福利在线看| 久久久久久人人人人人| 99精国产麻豆久久婷婷| 看免费av毛片| 国产日韩欧美在线精品| 香蕉国产在线看| 婷婷色综合www| 亚洲男人天堂网一区| 国产男人的电影天堂91| 国产精品久久久久久精品古装| 大香蕉久久网| 夫妻午夜视频| 日韩制服丝袜自拍偷拍| 精品福利永久在线观看| 丁香六月欧美| av视频免费观看在线观看| 亚洲国产av新网站| 韩国av在线不卡| 亚洲欧美精品自产自拍| 国产成人av激情在线播放| 在线观看一区二区三区激情| 国产黄频视频在线观看| 超碰成人久久| 欧美日本中文国产一区发布| 国产一区亚洲一区在线观看| 中文字幕制服av| 日韩一本色道免费dvd| 免费观看性生交大片5| 国产免费又黄又爽又色| 欧美日韩视频精品一区| 中文乱码字字幕精品一区二区三区| 男女无遮挡免费网站观看| 香蕉国产在线看| 日韩免费高清中文字幕av| 亚洲男人天堂网一区| 亚洲精品乱久久久久久| 亚洲国产成人一精品久久久| 欧美激情高清一区二区三区 | 亚洲伊人色综图| 精品福利永久在线观看| netflix在线观看网站| 国产毛片在线视频| av网站在线播放免费| 韩国精品一区二区三区| 又大又爽又粗| 久久精品亚洲熟妇少妇任你| 美女高潮到喷水免费观看| 伦理电影免费视频| 午夜福利视频在线观看免费| 日本av免费视频播放| 在线 av 中文字幕| 国产欧美亚洲国产| 激情五月婷婷亚洲| 免费黄频网站在线观看国产| 中文字幕人妻熟女乱码| 狂野欧美激情性bbbbbb| 狠狠婷婷综合久久久久久88av| 国产精品女同一区二区软件| 日本欧美视频一区| 久久这里只有精品19| 国产黄色视频一区二区在线观看| 90打野战视频偷拍视频| 黑人欧美特级aaaaaa片| 精品一区二区三卡| 日韩不卡一区二区三区视频在线| 亚洲欧美激情在线| 最近最新中文字幕大全免费视频 | 亚洲精品国产色婷婷电影| 午夜影院在线不卡| bbb黄色大片| 悠悠久久av| 最新的欧美精品一区二区| 成年人午夜在线观看视频| 久久女婷五月综合色啪小说| 久久影院123| 日韩电影二区| 亚洲欧美成人综合另类久久久| 免费看av在线观看网站| 欧美精品人与动牲交sv欧美| 日韩成人av中文字幕在线观看| 成人午夜精彩视频在线观看| 日韩一卡2卡3卡4卡2021年| 久久久久久免费高清国产稀缺| 欧美在线一区亚洲| 国产在视频线精品| 成人亚洲精品一区在线观看| 一边亲一边摸免费视频| 亚洲精品一区蜜桃| 中文字幕人妻熟女乱码| 亚洲熟女毛片儿| 一级,二级,三级黄色视频| 亚洲成人手机| 亚洲中文av在线| 9色porny在线观看| 亚洲人成网站在线观看播放| 精品久久蜜臀av无| 伊人久久国产一区二区| 国产 一区精品| 欧美成人午夜精品| 国产伦人伦偷精品视频| 亚洲婷婷狠狠爱综合网| 欧美激情极品国产一区二区三区| 人人澡人人妻人| av视频免费观看在线观看| 七月丁香在线播放| 久久久精品区二区三区| 满18在线观看网站| 精品久久久精品久久久| 午夜福利在线免费观看网站| 久久97久久精品| 国产精品一区二区在线观看99| 激情五月婷婷亚洲| 久久国产精品男人的天堂亚洲| 桃花免费在线播放| 嫩草影视91久久| 国产极品粉嫩免费观看在线| 老司机靠b影院| 免费人妻精品一区二区三区视频| 亚洲精品成人av观看孕妇| 亚洲人成电影观看| 丝袜脚勾引网站| 男女下面插进去视频免费观看| 中文字幕精品免费在线观看视频| 黑丝袜美女国产一区| 亚洲欧美一区二区三区久久| 五月开心婷婷网| 亚洲婷婷狠狠爱综合网| 精品酒店卫生间| 高清不卡的av网站| 亚洲中文av在线| 国产av国产精品国产| 在线天堂中文资源库| 精品少妇久久久久久888优播| 人妻一区二区av| 人人妻人人添人人爽欧美一区卜| 午夜免费男女啪啪视频观看| 亚洲欧洲精品一区二区精品久久久 | 国产一级毛片在线| 亚洲精品视频女| 国产日韩欧美视频二区| 国产极品天堂在线| 99热全是精品| 午夜av观看不卡| 欧美亚洲日本最大视频资源| 香蕉国产在线看| 亚洲av综合色区一区| 操出白浆在线播放| www.自偷自拍.com| 日日撸夜夜添| 精品亚洲成国产av| 18禁裸乳无遮挡动漫免费视频| 国产日韩欧美在线精品| 在线观看三级黄色| 久久狼人影院| 日本猛色少妇xxxxx猛交久久| 精品国产一区二区三区四区第35|