• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    兩個4-[(8-羥基-5-喹啉)偶氮]苯磺酸配合物的合成、結構及性質研究

    2013-08-20 00:56:40羅亞楠許憲祝于曉洋曲小姝
    無機化學學報 2013年12期
    關鍵詞:化工學院苯磺酸吉林

    羅亞楠 許憲祝 張 瀟 于曉洋 曲小姝

    (1 哈爾濱工業(yè)大學,城市水資源與水環(huán)境國家重點實驗室,哈爾濱 150080)(2 吉林化工學院,化學與制藥工程學院,吉林 132022)

    Coordination chemistry has developed tremendously in the past 30 years, owing to the synthesis and characterization methods arising for compound structures[1-6]. In the constructions of coordination polymers, one important strategy is the extension of lowdimensional building blocks to high-dimensional networks through weak intermolecular interactions,including hydrogen-bonding, π…π stacking and Van der Waals interactions, etc.[7]. Large numbers of coordination polymers possessing diversity of topologies and properties have been obtained, which is conveyed in the wide choice of organic ligands[8-11]. Among them,the ligands containing oxygen and nitrogen atoms are the focus due to their various coordination modes[12-15],and many such ligands possessing strong coordination abilities, unique features or rigid frame structures have been chosen to construct specific function coordination polymers[16-18]. For instance, a rigid ligand 3,3′,5,5′-azobenzenetetracarboxylic acid possessing intense blue emission has been used to construct blue fluorescent materials with some d10metals[19]. As we know, azo-based systems represent one type of bridging aromatic carboxylate ligand employed in the generation of coordination networks. For example, the ligands, 3,3′-azodibenzoate (3,3′-ADB) and 4,4′-azodibenzoate (4,4′-ADB), have been employed in the synthesis of [Cd(3,3′-ADB)2·(H2NMe2)·(NH4)]nand{Tb2(4,4′-ADB)3[(CH3)2SO]4·16[(CH3)2SO]}n, respectively[20-22]. On the other hand, 8-hydroxyquinoline (8-HQ)derivatives are well-known ligands with high coordinated ability to metal ions and display excellent fluorescent performance. For example, the d10metals coordination polymers constructed with 7-iodo-8-hydroxyquinoline-5-sulfonic acid and mercury[23]or zinc[24], and the main group metals lithium[25]or aluminum[26]coordination polymers based on 8-hydroxyquinoline-5-sulfonato have been reported because of rich structures and optical properties. However, the ligands containing simultaneously 8-hydroxyquinoline and benzenesulfonic acid connected via an azo group have not been reported. Based on the above, we have designed and synthesized successfully a ligand, 4-[(8-hydroxy-5-quinolinyl)azo]-benzenesulfonic acid (H2L),which may be an excellent candidate for constructing the coordination polymers with diverse structures and outstanding fluorescent performance. To the best of our knowledge, no examples of crystal compounds containing H2L have been reported yet.

    Here in, we report the syntheses of two compounds, namely [CuL(en)]·0.5H2O (1) and [CuL2][Cu(en)2]·2H2O (2). Interestingly, the crystalline structures of compounds 1 and 2 are both constructed from two discrete molecules (or ions), respectively,and the two discrete molecules (or ions) are connected by non-covalent interactions to form 3D supramolecular networks. Moreover, the coordination mode (Scheme 1) of H2L is identical to compounds 1 and 2, in which the quinoline nitrogen and deprotonated oxygen atoms of 8-HQ bind to Cu(Ⅱ)cation as the usual bidentate chelate and the sulfonate oxygen atoms does not participate in coordination. In addition, PXRD, IR, TGA experiments were carried out to check the phase purity and the stability of the two compounds. Fluorescent properties have also been investigated in solid state, and the results showed that the two compounds may have potential application in photoactive materials field.

    Scheme 1 Coordination mode of H2L ligand in compounds 1 and 2

    1 Experimental

    1.1 Materials and general methods

    All the starting materials were reagent grade and used as purchased without further purification.Distilled water was used throughout. The radical ligand H2L, 4-[(8-hydroxy-5-quinolinyl)azo]-benzenesulfonic acid, was prepared according to the literature method[27-28]. The elemental analyses were carried on a Perkin-Elmer 240C elemental analyzer. The infrared(IR) spectra were recorded (400~4 000 cm-1region)on a Nicolet Impact 410 FT-IR spectrometer using KBr pellets. Thermogravimetric analyses (TGA) were performed under oxygen atmosphere with a heating rate of 10 ℃·min-1using a Perkin-Elmer TGA 7 thermogravimetric analyzer.Fluorescence spectrum was performed on a HITACHIF-7000 Fluorescence Spectrophotometer at room temperature. PXRD were collected on a Siemens D5005 diffractometer by using Cu Kα(λ=0.154 18 nm)with a graphite monochromator.

    1.2 Syntheses of complexes

    [CuL(en)]·0.5H2O (1): A mixture of H2L (5 mg,0.015 mmol), CuCl2·2H2O (30 mg, 0.18 mmol), N,Ndimethylacetamide (DMA, 15 mL), H2O (2 mL) and en(0.012 5 mL) was stirred at room temperature for 1 h until a clear purple solution formed, finally sealed in a 25 mL glass bottle and heated at 100 ℃for 3 d.Afterwards, it was cooled to 25 ℃at a rate of 4 ℃·h-1.Brown sheet crystals were obtained after washing with DMA and drying in air. Yield: 55% based on copper.Anal. Calcd. for C34H36Cu2N10O9S2(%): C 44.39; H 3.94; N 15.23; Found(%): C 44.31; H 3.88; N 15.18.

    [CuL2][Cu(en)2]·2H2O (2): This compound was prepared in a similar manner as compound 1 except for H2L (10 mg, 0.030 mmol), DMA (12 mL) and H2O(6 mL). Brown sheet crystals were obtained after washing with DMA and drying in air. Yield: 32%based on copper. Anal. Calcd. for C34H38Cu2N10O10S2(%): C 43.54; H 4.08; N 14.93; Found(%): C 43.04; H 3.99; N 14.88.

    1.3 Crystal structure determination

    Compounds 1 and 2 were stable under ambient conditions and brown single crystals were glued on thin glass fibers. Diffraction intensities for two compounds were collected at 296 K on Bruker Smart Apex ⅡCCD diffractometer (Mo Kα, 0.071 073 nm).An empirical absorption correction was applied to the date using the SADABS program. The structures were solved by the direct method and refined by full matrix least squares (SHELX-97)[29]. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were located geometrically by the program OLEX2[30].The final formula was derived from crystallographic data combined with elemental and thermogravimetric analyses data. A summary of the crystallographic data and structural determination for compounds 1 and 2 is listed in Table 1.

    CCDC: 881778, 1; 889463, 2.

    2 Results and discussion

    2.1 Description of crystal structures

    Table 1 Crystal data and structure refinements for compounds 1 and 2

    Single-Crystal X-ray diffraction analysis reveals that the asymmetric unit of compound 1 contains two[CuL(en)] molecules A and B together with one disordered water molecule (Fig.1). In molecules A and B, Cu1 and Cu2 are both coordinated by one nitrogen atom, one oxygen atom from the quinolinol group of one L2-ligand and two nitrogen atoms from an en molecule, forming distorted square geometries,selected bond lengths and bond angles are provided in Table 2. The bond lengths of Cu1-N1, Cu1-N2, Cu1-O1 and Cu1-N9 are 0.197 7(4), 0.199 9(4), 0.195 3(4)and 0.200 2(4) nm, and the bond lengths of Cu2-N3, Cu2-N4, Cu2-O2 and Cu2-N10 are 0.196 4(5),0.199 0(5),0.193 1(4)and 0.199 7(4)nm,respectively.The angles of N1-Cu1-N2, N2-Cu1-O1, O1-Cu1-N9 and N9-Cu1-N1 are 84.57(17)°,93.07(16)°,83.17(15)°and 99.84 (17)°, and the angles of N3-Cu2-N4, N4-Cu2-O2,O2-Cu2-N10 and N10-Cu2-N3 are 84.70(20)°,91.43(19)°, 83.85(18)° and 100.01(19)°, respectively.From above data can see, molecules A and B of compound 1 are similar in the structure but the bond lengths and angles are different.

    Fig.1 Coordination environment of Cu1 and Cu2 in compound 1 with thermal ellipsoids at 30% probability

    Table 2 Selected bond lengths (nm) and angles (°) for compounds 1 and 2

    It is noteworthy that the cohesion of these molecules is strengthened by hydrogen bonding interactions, and hydrogen bond distances (nm) and angles (°) for compound 1 are listed in Table 3. In compound 1, N2 acting as H-donor bonds to thesulfonate oxygen atom O6iiiof the neighboring molecule A (N2…O6iii0.301 4(5) nm, N2-H2C…O6iii160°), thus the molecules A are linked into onedimensional (1D) chains through the N -H … O hydrogen bonding interactions in a head-to-tail manner. Similarly, the molecules B are connected into 1D chains through the hydrogen bonding interaction between N4 and sulfonate oxygen atom O3vof the adjacent molecule (N4…O3v0.302 0(7) nm, N4-H4A…O3v167°) (Fig.2a). Further, N1 and N3 acting as hydrogen bonding donors link, respectively, to the sulfonate oxygen atoms O5iiand O7iiiof the two neighboring molecules A and B (N1…O5ii0.304 6(6)nm, N1-H1C…O5ii163°; N3…O7iii0.288 3 (5) nm,N3-H3A…O7iii131°), which link the 1D chains A and B into two-dimensional (2D) layer structures in AB-A-B chains manner. Interestingly, through the hydrogen bonding linkages, the oxygen atoms and the nitrogen atoms show wavy structures along a axis and the neighboring chains A and B form a special “fish scales” structure (Fig.2a). Finally, four hydrogen bonds between the layers and layers to pillar the neighboring 2D layers into 3D supramolecular network(Fig.2b) (N1…O7iii0.293 9 (6) nm, N1-H1D…O7iii158°; N2…O1iv0.305 6 (6) nm, N2-H2D…O1iv160°;N3…O5i0.296 7 (7) nm, N3-H3A…O5i160°; N4…O2vi0.318 1 (8) nm, N4-H4B…O2vi171°). In particular, the π … π stacking interactions between molecules play important roles in stabilization of the supramolecular structure of compound 1, selected π…π interactions geometry data for compound 1 are listed in Table 4. There are π…π stacking interactions between L2-ligands in neighboring layers. As shown in Fig.2c, those planar L2-ligand molecules are parallel to each other. The distances of center to center, Cg3…Cg5iii, Cg4…Cg5iii, Cg8…Cg10i, Cg9…Cg10i, between adjacent quinoline and benzene rings are 0.357 8(3), 0.378 2(3), 0.365 3(4), 0.446 2(5) nm and the dihedral angle are 3.5(3)°, 4.4(3)°, 4.2(3),5.7(4)°, respectively, estimated by using PLATON program[31-32](Cg3 is the centroid of N9/C3/C4/C5/C6/C11, Cg4 is the centroid of C6/C7/C8/C9/C10/C11,Cg5iiiis the centroid of C12iii/C13iii/C14iii/C15iii/C16iii/C17iii, Cg8 is the centroid of N10/C25/C24/C28/C27/C26, Cg9 is the centroid of C20/C21/C22/C23/C24/C25 and Cg10iis the centroid of C29i/C30i/C31i/C32i/

    C33i/C34iof L2-ligand).

    Table 3 Hydrogen bond distances and angles in compounds 1 and 2

    Fig.2 (a) Hydrogen bonding interactions between nitrogen and oxygen atoms connect N and O atoms into 2D layer structures;(b) 2D layers are linked into a 3D supramolecular network through interlayer hydrogen bonding interactions; (c) π…π stacking interactions in compound 1

    Fig.3 Coordination environment of Cu1 and Cu2 in compound 2 with thermal ellipsoids at 30% probability

    Fig.4 (a) Hydrogen bonding interactions between nitrogen and oxygen atoms connect unit Ⅰand unit Ⅱinto 2D layer structures; (b) 2D layers are linked into a 3D supramolecular network through interlayer hydrogen bonding interactions; (c) π…π stacking interactions between adjacent [CuL2]2-anions in compound 2

    Single-Crystal X-ray diffraction analysis reveals that compound 2 is constructed from two ions. As shown in Fig.3, the structure consists of discrete centrosymmetric [Cu(en)2]2+cations and [CuL2]2-anions together with two crystallization water molecules. Cu1 is coordinated by two nitrogen atoms (N3 and N3i) and two oxygen atoms (O4 and O4i) from the quinolinol groups of two L2-ligands, and Cu2 is chelated by four nitrogen atoms (N1, N1ii, N2 and N2ii) from two en molecules. The coordination environments of the two Cu (II) are both distorted square geometries, selected bond lengths and bond angles are provided in Table 2. The bond lengths for Cu-N are in the range (0.195 6 (2)~0.201 7 (2) nm), and the bond lengths for Cu-O are 0.1925 (2) nm. The angles of N3-Cu1-O4 and N2-Cu2-N1 are 85.14(8)° and 84.96(9)°, respectively.

    In compound 2, the en molecules, sulfonate groups and two crystallization water molecules play an important role in the formation of hydrogen bonds,and hydrogen bond distances (nm) and angles (°) for compound 2 are listed in Table 3. N1 and N2 acting as hydrogen bonding donors link, respectively, to the sulfonate oxygen atoms O1iii, O2iiiand O2vof neighboring two L2-ligands (N1…O1iii0.319 4(4) nm,N1-H1B…O1iii150°; N1…O2iii0.335 9 (4) nm, N1-H1B…O2iii147°; N2…O2v0.294 6(4) nm, N2-H2B…O2v165°), which connect [Cu (en)2]2+cations and[CuL2]2-anions into 1D chain structures (Fig.4a). N1 of the en molecules acting as hydrogen bonding donor links to the sulfonate oxygen atoms O1 (N1 …O1 0.312 3(3) nm, N1-H1A…O1 148°) and the 1D chain structures are linked into 2D layer structures (Fig.4a).In addition, The en molecules N2 and the crystallization water O5 acting as hydrogen bonding donors link, respectively, to the sulfonate oxygen atoms O3iv, O1viand O3v(N2…O3iv0.299 1(3) nm,N2-H2A…O3iv146°; O5…O1vi0.298 8 (4) nm, O5-H5A…O1vi173°; O5…O3v0.318 3(3) nm, O5-H5B…O3v165°) to form a N-H …O hydrogen bonding linkages which pillar the neighboring 2D layers into a 3D supramolecular network (Fig.4b). Moreover, it is obvious that compound 2 involves abundant π…π stacking interactions, selected π … π interactions geometry data for compound 2 are listed in Table 4.The neighboring two L2-ligands are parallel to each other in intermolecules, and π…π interactions exist between quinoline and benzene rings (Fig.4c). The distances of center to center, Cg3…Cg5v, Cg4…Cg5v,Cg4i…Cg3v, Cg4i…Cg4v, between adjacent quinoline and benzene rings are 0.365 2(2),0.394 6(2),0.371 3(2),0.356 6(2) nm and the dihedral angle are 11.8(2)°,13.5(2)°, 1.9(2)°, 0°, respectively, estimated by using PLATON program[31-32](Cg3 is the centroid of N3/C1/C2/C3/C4/C5, Cg4 is the centroid of C4/C5/C6/C7/C8/C9, Cg5vis the centroid of C10v/C11v/C12v/C13v/C14v/C15v, Cg4iis the centroid of C4i/C5i/C6i/C7i/C8i/C9i,Cg3vis the centroid of N3v/C1v/C2v/C3v/C4v/C5vand Cg4vis the centroid of C4v/C5v/C6v/C7v/C8v/C9vof L2-ligand). Hydrogen bonding and π … π stacking interactions are weaker than the coordination bonds,but they play important roles in stabilizing the molecular packing in crystal engineering.

    2.2 IR spectra

    Table 4 Selected π…π interactions geometries for compounds 1 and 2

    The IR spectrums of compounds 1 and 2 were measured and listed in Fig.5 and Fig.6.Bands at 1 650 and 1 257 cm-1for compound 1 (1 663 and 1 259 cm-1for compound 2) correspond to stretching vibrations of the benzene skeleton, band at 1 583 cm-1(1 584 cm-1for compound 2) corresponds to C =N stretching vibration of the pyridine rings, band at 1 510 cm-1(1 504 cm-1for compound 2) corresponds to N=N,bands at 1 470 and 1 397 cm-1(1 465 and 1 405 cm-1for compound 2) correspond to C-H bending vibrations, bands at 1 330 and 1 190 cm-1(1 326 and 1 187 cm-1for compound 2) correspond to S=O of the sulfonate groups, and bands at 1 110, 1 057 and 1 021 cm-1(1 114, 1 054 and 1 022 cm-1for compound 2)correspond to sulfonate groups[33]. The O-H stretching band of the water of crystallization is observed at 3 447 cm-1(3 436 cm-1for compound 2).IR spectrums of compounds 1 and 2 are similar because there are identical functional groups in compounds 1 and 2,however, the slightly differences of their IR spectrums are owing to the different coordination modes of the ligands.

    Fig.5 IR spectra of compound 1

    Fig.6 IR spectra of compound 2

    2.3 Powder X-ray diffractions

    We examined the structural homogeneity of bulk powder samples of compound 1 through comparison of experimental and simulated PXRD patterns. The peak positions of the experimental patterns are nearly in agreement with those of the simulated ones generated from single-crystal X-ray diffraction data (Fig.7),suggesting that the product of compound 1 is pure single phase.

    Fig.7 Experimental (a) and simulative (b) powder X-ray diffraction patterns for compound 1

    2.4 TGA

    TGA curve (Fig.8) shows weight losses of compound 1: The weight loss of 2.12% (Calcd. 1.96%)from 85 ℃to 115 ℃is attributed to the release of the crystallization H2O. The total weight loss of 77.92%from 328 to 980 ℃can be attributed to the release of en and L2-(Calcd. 78.63%).

    TGA curve (Fig.9) shows weight losses of compound 2: Compound 2 losses its crystallization H2O from 130 to 270 ℃(Expt. 4.20%, Calcd. 3.83%).The total weight loss of 66.86% from 270 to 937 ℃corresponds to the removal of the en and L2-(Calcd.66.32%).

    Fig.8 TGA curve of compound 1

    2.5 Fluorescent properties

    The fluorescent properties of compounds 1, 2 and the free ligand H2L have been carried out in the solid state at room temperature under the same condition.As shown in Fig.10, compounds 1 and 2 both display the emissions maxima at 367 nm when excited at 234 nm. The free ligand exhibits emission maximum at 354 nm upon excitation at 236 nm. Compounds 1 and 2 are red-shifted with respect to the free ligand H2L,which can likely be attributed to ligand based π→π*or n→π* electronic transitions including the -N=Nbased π→π* transition[34-35]. The coordination of H2L to the metal ion does not affect these ligand-specific transitions in its products 1 and 2 substantially except for some minor changes. The fluorescence makes them potentially useful photoactive materials.

    Fig.9 TGA curve of compound 2

    Fig.10 Solid-state fluorescent spectrum of the H2L(a, a′), compound 1 (b, b′) and compound 2(c, c′) at room temperature

    3 Conclusions

    The self-assembly reaction of the rigid ligand H2L and Cu (Ⅱ)salts yields two Cu (Ⅱ)coordination polymers [CuL(en)]·0.5H2O (1) and [CuL2][Cu(en)2]·2H2O (2). The solvent ratio of DMA and H2O (7.5∶1 in 1 and 2∶1 in 2) and the metal/ligand ratio (6∶1 in 1 and 3∶1 in 2) have a remarkable influence on the selfassembly of the rigid ligand with metal atoms and result the different motifs of compound 1 and 2.Compound 1 contains two [CuL(en)] molecules A and B, and the neighboring molecules A and B form a special “fish scales” structure. Compound 2 is constructed from[Cu(en)2]2+cations and[CuL2]2-anions.The crystalline structures of compounds 1 and 2 are both connected by non-covalent interactions to form 3D supramolecular networks.The fluorescent properties of compounds 1 and 2 were also determined in solid state at room temperature. This work demonstrates that the azo ligands could be used in producing new frameworks and topologies of coordination compounds with potential fluorescent properties. On the basis of this work, further syntheses and structural studies of new coordination polymers with azo ligands are also under way in our laboratory.

    [1] Daniel M C, Astruc D. Chem. Rev., 2004,104:293-346

    [2] Kitagawa S, Kitaura R, Noro S. Angew. Chem. Int. Ed.,2004,43:2334-2375

    [3] Eddaoudi M, Moler D B, Li H L, et al. Acc. Chem. Res.,2001,34(4):319-330

    [4] YANG Ying-Qun (楊穎群), CHEN Man-Sheng (陳滿生),CHEN Zhi-Min (陳 志 敏), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2011,27(9):1847-1851

    [5] Yaghi O M, O′Keeffe M, Ockwig N W, et al. Nature, 2003,423:705-714

    [6] Tranchemontagne D J, Mendoza-Cortés J L, O′Keeffe M,et al. Chem. Soc. Rev., 2009,38:1257-1283

    [7] Kolotuchin S V, Fenlon E E, Wilson S R, et al. Angew.Chem. Int. Ed., 1995,34:2654-2657

    [8] Wang X L, Qin C, Wu S X, et al. Angew. Chem. Int. Ed.,2009,48(29):5291-5295

    [9] Dikarev E V, Li B, Chernyshev V V, et al. Chem. Commun.,2005:3274-3276

    [10]ZHU Dun-Ru(朱敦如), ZHOU Jun(周俊), YANG Jie(楊捷), et al. J. Nanjing Univ. Tech.(Nanjing Gongye Daxue Xuebao), 2007,29:103-110

    [11]XIA Jun(夏軍), ZHANG Ming(張明), ZHAO Bin(趙斌),et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2006,22(8):1406-1410

    [12]Larsen R W. J. Am. Chem. Soc., 2008,130:11246-11247

    [13]Xu G C, Ding Y J, Okamura T A, et al. CrystEngComm,2008,10:1052-1062

    [14]Luo F, Che Y X, Zheng J M. Cryst. Growth Des., 2008,8:176-178

    [15]Zeng M H, Wang Q X, Tan Y X, et al. J. Am. Chem. Soc.,2010,132:2561-2563

    [16]Long J R, Bloch E D, Britt D, et al. J. Am. Chem. Soc.,2010,132:14382-14384

    [17]Katsoulis D E. Chem. Rev., 1998,98:359-388

    [18]Müller A. Serain C. Acc. Chem. Res., 2000,33:2-10

    [19]Liu W L, Ye L H, Liu X F, et al. CrystEngComm, 2008,10:1395-1403

    [20]Chen Z F, Xiong R G, Abrahams B F, et al. J. Chem. Soc.Dalton Trans., 2001,17:2453-2455

    [21]Reineke T M, Eddaoudi M, Moler D B, et al. J. Am. Chem.Soc., 2000,122:4843-4844

    [22]Chen Z F, Zhang Z L, Tan Y H, et al. CrystEngComm,2008,10:217-231

    [23]Balasubramani K, Thomas P, Bocelli G, et al. J. Coord.Chem., 2005,58:1689-1694

    [24]Lu Y G, Cheng W, Meng X R, et al. J. Mol. Struct., 2008,875:183-188

    [25]Thomas M P, Murugesan S. J. Coord. Chem., 2006,59:1167-1172

    [26]Camerel F, Barberá J, Otsuki J, et al. Adv. Mater., 2008,20:3462-3467

    [27]Park J S, Jeong S, Dho S K, et al. Dyes Pigm., 2010,87:49-54

    [28]Aytül S, Zeynel S, Nermin E. Dyes Pigm., 2008,76(2):470-476

    [29]Sheldrick G M. SHELXTL V. 5.10. Structure Determination Software Suite, Bruker AXS, Madison, 1998.

    [30]Dolomanov O V, Bourhis L J, Gildea R J, et al. J. Appl.Cryst., 2009,42:339-341

    [31]Spek A L, Appl J. J. Appl. Crystallogr., 2003,36:7-13

    [32]Spek A L. PLATON, A Multipurpose Crystallographic Tool,Utrecht University, Netherlands, 2006.

    [33]Yuan L, Qin C, Wang X L, et al. Solid State Sci., 2008,10:967-975

    [34]Yu X Y, Ye L, Zhang X, et al. Dalton Trans., 2010,39(44):10617-10625

    [35]Lan A J, Padmanabhan M, Li K H, et al. Inorg. Chim. Acta,2011,366:68-75

    猜你喜歡
    化工學院苯磺酸吉林
    使固態(tài)化學反應100%完成的方法
    13.吉林卷
    國家開放大學石油和化工學院學習中心列表
    【鏈接】國家開放大學石油和化工學院學習中心(第四批)名單
    吉林卷
    學生天地(2020年31期)2020-06-01 02:32:24
    吉林卷
    學生天地(2019年30期)2019-08-25 08:53:24
    苯磺酸氨氯地平治療輕中度高血壓的效果分析
    頂空氣相色譜法測定甲苯磺酸拉帕替尼原料藥中的7種殘留溶劑
    《化工學報》贊助單位
    化工學報(2016年3期)2016-03-14 08:37:00
    厄貝沙坦聯(lián)合苯磺酸氨氯地平治療糖尿病合并高血壓的臨床研究
    国产精华一区二区三区| 床上黄色一级片| 一个人观看的视频www高清免费观看| bbb黄色大片| 久久伊人香网站| 成人欧美大片| 91字幕亚洲| 国产高清视频在线观看网站| 欧美色视频一区免费| 亚洲天堂国产精品一区在线| 亚洲国产高清在线一区二区三| 亚洲国产精品999在线| 国产精品免费一区二区三区在线| 国产精品 国内视频| 又爽又黄无遮挡网站| 日日摸夜夜添夜夜添小说| 亚洲国产高清在线一区二区三| 久久久成人免费电影| 最新在线观看一区二区三区| 亚洲一区高清亚洲精品| 内射极品少妇av片p| 国产精品综合久久久久久久免费| 97超视频在线观看视频| 欧美色视频一区免费| xxx96com| 12—13女人毛片做爰片一| 亚洲av美国av| 一本一本综合久久| 99热精品在线国产| 男人舔奶头视频| 亚洲精品国产精品久久久不卡| 亚洲最大成人手机在线| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲国产精品久久男人天堂| 亚洲色图av天堂| 亚洲自拍偷在线| 中文字幕熟女人妻在线| 在线看三级毛片| 天堂av国产一区二区熟女人妻| 欧美区成人在线视频| 久久婷婷人人爽人人干人人爱| 久久久久久久精品吃奶| 欧美大码av| 在线观看66精品国产| 国产精品av视频在线免费观看| 日韩欧美免费精品| 国产成人啪精品午夜网站| 欧美精品啪啪一区二区三区| 婷婷六月久久综合丁香| 最近最新免费中文字幕在线| 在线播放国产精品三级| 国产精品99久久99久久久不卡| 男人舔女人下体高潮全视频| 日韩高清综合在线| 九色国产91popny在线| 九九在线视频观看精品| 国产蜜桃级精品一区二区三区| 老鸭窝网址在线观看| 欧美另类亚洲清纯唯美| 国产精品99久久99久久久不卡| 国产主播在线观看一区二区| 久久性视频一级片| 丁香六月欧美| 亚洲自拍偷在线| 国产黄色小视频在线观看| 久久精品国产99精品国产亚洲性色| 国产伦在线观看视频一区| 男女午夜视频在线观看| 啪啪无遮挡十八禁网站| 亚洲人成网站高清观看| 91久久精品电影网| 亚洲av电影在线进入| 免费在线观看亚洲国产| 国产精品国产高清国产av| 亚洲精品成人久久久久久| 亚洲av第一区精品v没综合| 成年女人毛片免费观看观看9| 搞女人的毛片| 一进一出好大好爽视频| 男插女下体视频免费在线播放| 国产高清三级在线| 12—13女人毛片做爰片一| 国产一区二区亚洲精品在线观看| 精品无人区乱码1区二区| 搡老熟女国产l中国老女人| 日本与韩国留学比较| 在线观看美女被高潮喷水网站 | 国产精品久久电影中文字幕| 动漫黄色视频在线观看| 99在线人妻在线中文字幕| 久9热在线精品视频| 人妻丰满熟妇av一区二区三区| 999久久久精品免费观看国产| 久久精品影院6| 狂野欧美白嫩少妇大欣赏| 国产亚洲精品综合一区在线观看| 亚洲美女黄片视频| 69av精品久久久久久| 亚洲精品乱码久久久v下载方式 | 国产麻豆成人av免费视频| 18+在线观看网站| 免费看a级黄色片| 制服丝袜大香蕉在线| 蜜桃亚洲精品一区二区三区| 欧美日韩综合久久久久久 | 国产精品亚洲一级av第二区| 国产高清视频在线观看网站| 热99re8久久精品国产| 亚洲在线自拍视频| 亚洲专区国产一区二区| 长腿黑丝高跟| 男女视频在线观看网站免费| 亚洲av不卡在线观看| 国产精品一区二区三区四区免费观看 | 久久久久久久久大av| 成年人黄色毛片网站| av专区在线播放| 神马国产精品三级电影在线观看| 久久久久久久精品吃奶| 亚洲在线自拍视频| 色在线成人网| 男人的好看免费观看在线视频| 日韩大尺度精品在线看网址| 精品人妻1区二区| 日本a在线网址| 欧美国产日韩亚洲一区| 欧美一区二区精品小视频在线| 国产精品爽爽va在线观看网站| 亚洲一区高清亚洲精品| 国产精品久久久久久久电影 | 好看av亚洲va欧美ⅴa在| 欧美av亚洲av综合av国产av| 桃红色精品国产亚洲av| 好看av亚洲va欧美ⅴa在| 男女下面进入的视频免费午夜| 久久久久国内视频| 成人一区二区视频在线观看| 97人妻精品一区二区三区麻豆| 国产精品久久久久久人妻精品电影| 制服人妻中文乱码| 午夜福利高清视频| 狠狠狠狠99中文字幕| 亚洲久久久久久中文字幕| 精品国产亚洲在线| 观看美女的网站| 蜜桃久久精品国产亚洲av| 女同久久另类99精品国产91| 亚洲av第一区精品v没综合| 蜜桃久久精品国产亚洲av| 成年女人看的毛片在线观看| 免费观看人在逋| 国产精品久久电影中文字幕| 久久精品人妻少妇| 性色av乱码一区二区三区2| 欧美国产日韩亚洲一区| 久久欧美精品欧美久久欧美| 日本 欧美在线| 久久久精品大字幕| 国产乱人视频| 午夜福利在线观看吧| 欧美一级a爱片免费观看看| 神马国产精品三级电影在线观看| 十八禁人妻一区二区| 免费一级毛片在线播放高清视频| 色噜噜av男人的天堂激情| 日本一二三区视频观看| 99国产精品一区二区三区| 免费av毛片视频| 亚洲人成电影免费在线| 无限看片的www在线观看| 99久久精品热视频| xxxwww97欧美| 欧美三级亚洲精品| 亚洲av电影在线进入| 亚洲国产中文字幕在线视频| 欧美+亚洲+日韩+国产| 女人十人毛片免费观看3o分钟| 黑人欧美特级aaaaaa片| 2021天堂中文幕一二区在线观| 欧美成人a在线观看| 观看免费一级毛片| 欧美在线黄色| 18禁黄网站禁片午夜丰满| 久久久久国产精品人妻aⅴ院| 婷婷六月久久综合丁香| 亚洲成人久久爱视频| 亚洲一区二区三区不卡视频| 十八禁网站免费在线| 国产中年淑女户外野战色| www日本在线高清视频| 日韩欧美三级三区| 老司机福利观看| 我的老师免费观看完整版| 一夜夜www| 国产成人a区在线观看| 国产午夜精品久久久久久一区二区三区 | 亚洲avbb在线观看| 99国产极品粉嫩在线观看| 91在线精品国自产拍蜜月 | 深爱激情五月婷婷| 人妻丰满熟妇av一区二区三区| 国产真实伦视频高清在线观看 | 欧美成人性av电影在线观看| 午夜视频国产福利| 亚洲av免费在线观看| 两人在一起打扑克的视频| 精品福利观看| 亚洲av日韩精品久久久久久密| 99热这里只有精品一区| 国产爱豆传媒在线观看| 亚洲精品久久国产高清桃花| 午夜日韩欧美国产| 18禁国产床啪视频网站| 亚洲欧美精品综合久久99| 老汉色∧v一级毛片| 观看美女的网站| 国产成人a区在线观看| 少妇人妻一区二区三区视频| av女优亚洲男人天堂| 日韩精品中文字幕看吧| 国产一区二区激情短视频| 熟女少妇亚洲综合色aaa.| 每晚都被弄得嗷嗷叫到高潮| 成人无遮挡网站| 在线播放无遮挡| 国产欧美日韩一区二区三| 99久久精品国产亚洲精品| 久久香蕉精品热| 国产精品自产拍在线观看55亚洲| 校园春色视频在线观看| av天堂在线播放| 久久精品91无色码中文字幕| 内射极品少妇av片p| 波多野结衣高清作品| 蜜桃亚洲精品一区二区三区| 国产精品影院久久| 别揉我奶头~嗯~啊~动态视频| 色老头精品视频在线观看| 久久久久久国产a免费观看| 国产精品久久电影中文字幕| 日韩精品青青久久久久久| 欧美成人一区二区免费高清观看| 韩国av一区二区三区四区| 亚洲激情在线av| 两人在一起打扑克的视频| 成年女人看的毛片在线观看| 一区二区三区免费毛片| 亚洲最大成人中文| 久久久精品欧美日韩精品| 两个人看的免费小视频| 国产高清激情床上av| 欧美色欧美亚洲另类二区| 国产极品精品免费视频能看的| 亚洲av一区综合| 脱女人内裤的视频| 日韩欧美一区二区三区在线观看| 亚洲第一欧美日韩一区二区三区| 99国产极品粉嫩在线观看| 久久性视频一级片| 色老头精品视频在线观看| 噜噜噜噜噜久久久久久91| 最近最新中文字幕大全电影3| 91av网一区二区| 亚洲成人久久爱视频| 在线观看免费视频日本深夜| 丝袜美腿在线中文| 少妇的逼水好多| 久久精品国产清高在天天线| 欧美另类亚洲清纯唯美| 18禁黄网站禁片免费观看直播| 18禁黄网站禁片午夜丰满| 国产精品久久久久久久电影 | 黄色日韩在线| 亚洲熟妇中文字幕五十中出| 亚洲欧美日韩高清专用| 美女被艹到高潮喷水动态| 亚洲av成人不卡在线观看播放网| 嫩草影院精品99| 亚洲第一欧美日韩一区二区三区| 手机成人av网站| 国产成年人精品一区二区| 老司机午夜十八禁免费视频| 内射极品少妇av片p| 国产免费av片在线观看野外av| a在线观看视频网站| 18+在线观看网站| 久久婷婷人人爽人人干人人爱| 日韩高清综合在线| 99热这里只有是精品50| 91字幕亚洲| 欧美zozozo另类| 亚洲天堂国产精品一区在线| 久久久久亚洲av毛片大全| 国产黄色小视频在线观看| 国产久久久一区二区三区| 国产爱豆传媒在线观看| 女人十人毛片免费观看3o分钟| 蜜桃亚洲精品一区二区三区| 久久精品国产亚洲av涩爱 | 亚洲国产精品久久男人天堂| 手机成人av网站| 久久精品国产亚洲av香蕉五月| 真人一进一出gif抽搐免费| 国产亚洲精品av在线| 欧美午夜高清在线| 成年女人毛片免费观看观看9| 波多野结衣高清无吗| 黄片大片在线免费观看| 欧美区成人在线视频| 69av精品久久久久久| 欧美+日韩+精品| 国产精品爽爽va在线观看网站| 免费观看精品视频网站| 老汉色av国产亚洲站长工具| 国产成人a区在线观看| 国产欧美日韩一区二区三| 中出人妻视频一区二区| 日韩欧美精品v在线| bbb黄色大片| 老汉色∧v一级毛片| 日本 欧美在线| 欧美精品啪啪一区二区三区| 岛国在线免费视频观看| www日本在线高清视频| 国内毛片毛片毛片毛片毛片| 日韩欧美在线乱码| 九九热线精品视视频播放| 啦啦啦观看免费观看视频高清| 日韩欧美一区二区三区在线观看| av黄色大香蕉| 精品国产三级普通话版| 久久伊人香网站| 男女下面进入的视频免费午夜| 久久草成人影院| 又粗又爽又猛毛片免费看| 亚洲成av人片免费观看| 精品不卡国产一区二区三区| a在线观看视频网站| 在线观看66精品国产| 天天躁日日操中文字幕| 一个人看的www免费观看视频| 欧美日韩乱码在线| 亚洲va日本ⅴa欧美va伊人久久| 深爱激情五月婷婷| 一个人看视频在线观看www免费 | 国产精品98久久久久久宅男小说| 色播亚洲综合网| 欧美激情久久久久久爽电影| 日本免费a在线| 国产亚洲精品av在线| 亚洲av电影在线进入| 成人精品一区二区免费| 国产黄a三级三级三级人| 国产成人a区在线观看| 99热只有精品国产| 亚洲欧美日韩高清在线视频| 免费高清视频大片| a级一级毛片免费在线观看| 中文字幕人妻丝袜一区二区| 脱女人内裤的视频| 国产三级黄色录像| 人人妻人人看人人澡| 久久精品综合一区二区三区| 亚洲中文日韩欧美视频| 精品久久久久久久毛片微露脸| 看片在线看免费视频| 男女床上黄色一级片免费看| 国产探花在线观看一区二区| 亚洲熟妇熟女久久| 国产精品野战在线观看| 亚洲性夜色夜夜综合| xxx96com| 国产av不卡久久| 人妻丰满熟妇av一区二区三区| 久久中文看片网| 亚洲不卡免费看| 国产高清激情床上av| 亚洲不卡免费看| 99久久精品热视频| 男女那种视频在线观看| 亚洲国产欧洲综合997久久,| 人妻丰满熟妇av一区二区三区| 十八禁网站免费在线| 免费人成在线观看视频色| 国产黄a三级三级三级人| 国产av麻豆久久久久久久| 久久久久久国产a免费观看| 99久久精品一区二区三区| АⅤ资源中文在线天堂| 亚洲人成网站高清观看| 女生性感内裤真人,穿戴方法视频| 一级毛片女人18水好多| 最新中文字幕久久久久| 精品人妻一区二区三区麻豆 | 国产精品久久久久久久久免 | 亚洲精品色激情综合| 亚洲欧美日韩高清在线视频| 美女黄网站色视频| 可以在线观看毛片的网站| 久久久久久国产a免费观看| 中文字幕高清在线视频| 日本免费a在线| 欧美日韩国产亚洲二区| 亚洲av第一区精品v没综合| 又黄又爽又免费观看的视频| 国产精品 国内视频| 欧美区成人在线视频| 青草久久国产| 色哟哟哟哟哟哟| 可以在线观看的亚洲视频| 91字幕亚洲| xxxwww97欧美| 色噜噜av男人的天堂激情| 色尼玛亚洲综合影院| 国产免费av片在线观看野外av| 最新美女视频免费是黄的| 国产高清视频在线观看网站| 看黄色毛片网站| 久久久精品欧美日韩精品| 熟妇人妻久久中文字幕3abv| 亚洲精品影视一区二区三区av| 国产精品亚洲一级av第二区| 别揉我奶头~嗯~啊~动态视频| 亚洲 国产 在线| 夜夜夜夜夜久久久久| 亚洲欧美日韩无卡精品| 日本在线视频免费播放| www.999成人在线观看| 高潮久久久久久久久久久不卡| 国产一区二区在线av高清观看| 国产精品野战在线观看| 免费观看人在逋| 亚洲av五月六月丁香网| 18禁裸乳无遮挡免费网站照片| 国模一区二区三区四区视频| 在线观看66精品国产| 精品久久久久久久末码| 每晚都被弄得嗷嗷叫到高潮| 色视频www国产| 在线视频色国产色| 亚洲久久久久久中文字幕| 国产私拍福利视频在线观看| 国产色婷婷99| 叶爱在线成人免费视频播放| h日本视频在线播放| 黄片大片在线免费观看| 嫩草影视91久久| 两人在一起打扑克的视频| 日韩 欧美 亚洲 中文字幕| 中文字幕人妻熟人妻熟丝袜美 | 99国产精品一区二区三区| 欧美黑人巨大hd| 一级黄色大片毛片| 一本久久中文字幕| 身体一侧抽搐| e午夜精品久久久久久久| 男女下面进入的视频免费午夜| 制服人妻中文乱码| 九九热线精品视视频播放| 一个人看视频在线观看www免费 | 又粗又爽又猛毛片免费看| 国产色爽女视频免费观看| 国产av不卡久久| 91九色精品人成在线观看| 亚洲七黄色美女视频| 小说图片视频综合网站| 亚洲成人久久爱视频| 女人高潮潮喷娇喘18禁视频| 日韩欧美在线二视频| 中文字幕人妻丝袜一区二区| 亚洲无线观看免费| 成人无遮挡网站| 午夜福利高清视频| 人妻久久中文字幕网| 精品乱码久久久久久99久播| 在线国产一区二区在线| 夜夜爽天天搞| 12—13女人毛片做爰片一| 欧美3d第一页| 在线观看一区二区三区| 一级毛片女人18水好多| 久久久国产精品麻豆| 日本熟妇午夜| 免费观看的影片在线观看| 欧美+亚洲+日韩+国产| 欧美成人免费av一区二区三区| 美女黄网站色视频| 91在线观看av| 欧美成人一区二区免费高清观看| 中文字幕av成人在线电影| 特大巨黑吊av在线直播| 久久精品国产清高在天天线| 18+在线观看网站| 99久久无色码亚洲精品果冻| 悠悠久久av| 成人鲁丝片一二三区免费| 丰满的人妻完整版| 午夜日韩欧美国产| 久久精品91无色码中文字幕| 伊人久久大香线蕉亚洲五| 欧美极品一区二区三区四区| 久久精品影院6| 老司机深夜福利视频在线观看| 俺也久久电影网| 欧美又色又爽又黄视频| 亚洲国产中文字幕在线视频| 有码 亚洲区| 又黄又爽又免费观看的视频| 最近在线观看免费完整版| 日韩欧美精品v在线| 最新美女视频免费是黄的| 嫩草影院精品99| 黄色成人免费大全| 午夜激情福利司机影院| 黄色女人牲交| 中文字幕高清在线视频| 中亚洲国语对白在线视频| 大型黄色视频在线免费观看| 亚洲精品乱码久久久v下载方式 | 手机成人av网站| 别揉我奶头~嗯~啊~动态视频| 精华霜和精华液先用哪个| 国内久久婷婷六月综合欲色啪| 久久精品综合一区二区三区| h日本视频在线播放| 国产成人aa在线观看| 午夜福利欧美成人| 可以在线观看毛片的网站| 女人十人毛片免费观看3o分钟| 1000部很黄的大片| 亚洲av电影不卡..在线观看| 有码 亚洲区| 白带黄色成豆腐渣| 狂野欧美白嫩少妇大欣赏| 国产高清激情床上av| 看片在线看免费视频| 欧美黑人巨大hd| 欧美+亚洲+日韩+国产| 欧美国产日韩亚洲一区| 中文字幕熟女人妻在线| 熟女电影av网| xxxwww97欧美| 亚洲av美国av| 亚洲欧美日韩东京热| 欧美色视频一区免费| 3wmmmm亚洲av在线观看| 免费在线观看日本一区| 亚洲aⅴ乱码一区二区在线播放| 老熟妇仑乱视频hdxx| 蜜桃久久精品国产亚洲av| 欧美日韩中文字幕国产精品一区二区三区| 婷婷亚洲欧美| 美女 人体艺术 gogo| 亚洲片人在线观看| 中文字幕av在线有码专区| 母亲3免费完整高清在线观看| 伊人久久大香线蕉亚洲五| 黄色丝袜av网址大全| 麻豆国产97在线/欧美| 国语自产精品视频在线第100页| 少妇人妻精品综合一区二区 | 欧美性猛交黑人性爽| 欧美最新免费一区二区三区 | 在线播放国产精品三级| 99国产综合亚洲精品| 国产午夜福利久久久久久| 99久久综合精品五月天人人| 女生性感内裤真人,穿戴方法视频| 国产精品99久久99久久久不卡| 99热6这里只有精品| 色吧在线观看| 在线十欧美十亚洲十日本专区| 真人一进一出gif抽搐免费| 男人舔女人下体高潮全视频| 午夜免费男女啪啪视频观看 | 国产三级中文精品| 最新美女视频免费是黄的| 18禁美女被吸乳视频| 悠悠久久av| 成人18禁在线播放| 我要搜黄色片| 欧美一区二区精品小视频在线| 色尼玛亚洲综合影院| 欧美一区二区亚洲| 国产99白浆流出| 99久久综合精品五月天人人| 久久精品综合一区二区三区| 国产视频一区二区在线看| xxxwww97欧美| 久久精品影院6| av福利片在线观看| 最新在线观看一区二区三区| 哪里可以看免费的av片| 变态另类成人亚洲欧美熟女| 很黄的视频免费| 美女高潮喷水抽搐中文字幕| 久久久久国产精品人妻aⅴ院| 在线免费观看不下载黄p国产 | 亚洲自拍偷在线| 国产精品电影一区二区三区| 中亚洲国语对白在线视频| 无遮挡黄片免费观看| 成人一区二区视频在线观看| 免费看十八禁软件| 国产成人系列免费观看| 真人做人爱边吃奶动态| 黄片大片在线免费观看| 国产不卡一卡二| 在线播放无遮挡| 99在线视频只有这里精品首页| 久久久成人免费电影| 国产探花极品一区二区| 成人av在线播放网站| 18禁国产床啪视频网站| 国产毛片a区久久久久|