• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Two-dimensional shallow water equations with porosity and their numerical scheme on unstructured grids

    2013-07-31 16:04:21ZhiliWANGYanfenGENG
    Water Science and Engineering 2013年1期

    Zhi-li WANG, Yan-fen GENG*

    1. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210024, P. R. China

    2. School of Transportation, Southeast University, Nanjing 210096, P. R. China

    Two-dimensional shallow water equations with porosity and their numerical scheme on unstructured grids

    Zhi-li WANG1, Yan-fen GENG*2

    1. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210024, P. R. China

    2. School of Transportation, Southeast University, Nanjing 210096, P. R. China

    In this study, porosity was introduced into two-dimensional shallow water equations to reflect the effects of obstructions, leading to the modification of the expressions for the flux and source terms. An extra porosity source term appears in the momentum equation. The numerical model of the shallow water equations with porosity is presented with the finite volume method on unstructured grids and the modified Roe-type approximate Riemann solver. The source terms of the bed slope and porosity are both decomposed in the characteristic direction so that the numerical scheme can exactly satisfy the conservative property. The present model was tested with a dam break with discontinuous porosity and a flash flood in the Toce River Valley. The results show that the model can simulate the influence of obstructions, and the numerical scheme can maintain the flux balance at the interface with high efficiency and resolution.

    shallow water equations with porosity; source term; Roe-type Riemann solver; finite volume method; unstructured grid

    1 Introduction

    Free surface flows exist in estuaries, along coasts, and in river and lake regions. In most free surface flows, the hydrostatic pressure assumption is generally valid. Situations where the hydrostatic pressure assumption may be questionable have been discussed in several previous studies (Heggelund et al. 2004; Yuan and Wu 2004; Lee et al. 2006). With the hydrostatic pressure assumption and Boussinesq approximation, the shallow water equations can be obtained from the Navier-Stokes (NS) equations. The shallow water equations have been widely applied in ocean and hydraulic engineering, including simulations of tidal flows in estuary and coastal water regions, wave propagation, stationary hydraulic jumps, and open channel flows (Wang et al. 2005b; Lu et al. 2005; Ding et al. 2004 ).

    The shallow water equations are more simple than the NS equations, and they reduce the numerical calculations for free surface flows enormously, so the shallow water equations aresuitable for the numerical simulation of water flow in large-scale oceans, estuaries, rivers, and lakes (Lu et al. 2005; Wang 2005; Zhou et al. 2001). Numerical models of shallow water equations are effective for simulation of free surface flows, but when there are islands, buildings, or other structures in the numerical region, denser grids, which increase the numerical computation, are needed. Furthermore, the time step is often determined by the smallest grid size, which further reduces the efficiency of the model. In order to overcome these problems, we introduce the porosity to reflect the effects of obstructions and derive two-dimensional porous shallow water equations based on the laws of conservation of mass and momentum.

    Recently, the Godunov-type numerical models have been widely used in computational aerodynamics (Harten et al. 1983; Li 2008) and computational hydraulics (Zoppou and Roberts 2000; Wang et al. 2005a; Geng et al. 2005), since they have several desirable properties, including being monotone and conservative, and having good shock-capturing capabilities with a correct shock speed value and an inherent upwind property. In the well-known work of Godunov, in order to reduce computational time, the exact solution of the Riemann problem was replaced by an approximate solution such as the Roe-type solver (Roe 1981), Osher-type solver (Osher and Solomon 1982), and HLL-type solver (Harten et al. 1983). In this study, the finite volume method and Roe-type approximate Riemann solver were used for the discretization of the two-dimensional porous shallow water equations, in which the source terms of the bed slope and porosity were treated by the local characteristic decomposition and upwind fashion to satisfy equilibrium and steady-state conditions.

    2 Two-dimensional shallow water equations with porosity

    The continuity and momentum equations with porosity are derived based on the laws of conservation of mass and momentum. There is an infinitesimally small control volume with a length of Δx and a width of Δy in the horizontal plane and a water depth h in the vertical direction. If there is a solid structure with a length of Δx′ and a width of Δy′ within the control volume, we can define the porosity as

    The value of φ lies between 0 and 1, φ=1 means no solid structures in the control volume, and φ=0 means no water in the control volume. In this study, we assume that the porosity on the sides of the control volume is equal to φ.

    2.1 Continuity equation

    The total mass m of water in the control volume is

    where ρ is the water density.

    The mass fluxesQwxandQsyacross the western and southern sides flowing into the control volume are, respectively,

    whereuandvare the depth-averaged velocities in thexandydirections, respectively.

    The mass fluxesQexandQnyacross the eastern and northern sides flowing out of the control volume are, respectively,

    Based on the law of conservation of mass, we have

    Substituting Eqs. (2) through (6) into Eq. (7), and assuming that water is not compressible, which means thatρis constant, the conservative form of the continuity equation can be obtained:

    2.2 Momentum equation

    To save space, the momentum equation in thexdirection is derived in detail only. The total momentum of water in thexdirection in the control volume is

    The mass forces across the western, eastern, southern, and northern sides of the control volume are, respectively,

    The hydrostatic pressures exerted on the western and eastern sides of the control volume are, respectively,

    Bottom pressure in the x direction due to the bottom slope can be written as

    The friction resistance at the bottom is accounted for by a classical Stickler law, and can be written as

    The resistance caused by the obstructions, which includes the configuration resistance and friction resistance, is assumed to be identical over the entire flow region and to be proportional to the square of the velocities (Wang et al. 2008):

    Based on the law of conservation of momentum (Newton’s second law) in the control volume, we obtain the following expression:

    Substituting Eqs. (9) through (16) into Eq. (17) and dividing by ρ, the momentum equation in the x direction can be obtained:

    The momentum equation in the y direction can be obtained in a similar way:

    The continuity equation (Eq. (8)), and the momentum equations (Eqs. (18) and (19)), constitute a closed system of a two-dimensional depth-averaged shallow water model with porosity. Generally, a vector form of the model can be expressed as

    3 Numerical solution

    Eq. (20) is discretized using the finite volume method on unstructured grids. The average variables are stored at the center of each grid cell, and the edges of each grid cell are defined as the faces of control volume.

    The domain is paved with a set of non-overlapping polygonal cells: {Ωi,i=1,2,…,I}, where i is the serial number of cells and I is the total number of cells. A polygonal cell Ωιis built with vertices labeled as mi,k, where k is the serial number of vertices, and k=1,2,…,Ei; and Ειdenotes the number of vertices of the cell Ωι. The two cells that share the jth side of the grid are identified by the indices j1and j2. If the jth side is the boundary of the computational region, we set j2=?1.

    Integrating Eq. (20) over the cell Ωιyields

    where F=(E, H), Αιis the area of the cell Ωι, and s is the integration variable. Using the Green formula, we obtain

    The second term of Eq. (23) can be rewritten as

    wherelijis the length of thejth side of the cellΩι;Fn=F·n=Enx+Hny; andFnijis the flux through thejth side of the cellΩι, which is discretized with a Roe-type approximate Riemann solver.

    3.1 Flux computation

    The fluxFndepends on the conservational variableUand porosityφ. With the variables stored at the cell center,Uandφare discontinuous at the cell boundary, which is known as the Riemann problem:

    wheren0is the coordinate along the outward normal direction of the cell boundary oriented from the center of the cell boundary,t0is the initial time, and the variables with the subscripts L and R denote the values of the variables on the left and right sides of the interface between two cell, respectively. At thejth side of the cellΩι, ifUL=Uj1andUR=Uj2(whereUj1andUj2are the values of theconservational variableUat the cellsj1andj2that share thejth side, respectively), the numerical scheme is only first order in space. If we assume thatUis linearly varied in space, the second-order total variation diminishing (TVD) numerical scheme can be obtained with monotonic upstream schemes for conservation laws (van Leer 1979; Wang et al. 2005b).

    Using the matrix theory, the matrixAcan be diagonalized as

    For the Riemann problem of Eq. (26), the flux through the left side of the interface can be written as (Tan 1998)

    where Δ(?) denotes the difference between the values of variables on the left and right sides of the interface. Substituting Eqs. (28) and (32) into (30), the flux through the left side of the interface can be obtained:

    3.2 Computation of bed slope and porosity source term

    The bed slope and porosity source termS0is a function of water depthh, the bed elevationzb, and porosityφ.h,zb, andφare discontinuous at the cell boundary and can be respectively expressed as

    where

    The upwind method is used for the discretization of the bed slope and porosity source terms (Wang et al. 2008; Bermudez et al. 1998). The bed slope and porosity source terms on the left and right sides of the cell boundary are, respectively,

    whereIis the unit matrix, andγ=(γ1,γ2,γ3).

    3.3 C-property relative to a stationary solution

    The centered discretization of bed slope source terms gives rise to spurious waves (Wang et al. 2008). Bermudez and Vazquez (1994) proposed a conservation property (C-property) which prevents the appearance of spurious waves. The C-property characterizes the accuracy of a numerical scheme used for approximating a steady state solution representing water at rest. The steady state solution is characterized by

    whereηis the water level.

    To keep water at rest, the discharge flux must be zero:

    From this we can get the average porosity at the cell face:

    Under the rest water conditions (38), Eq. (20) can be simplified as

    where the terms on the left side of Eq. (42) are the hydrostatic pressure, and the first and second terms on the right side are the bed slope source term and additional porosity source term, respectively. If the numerical scheme satisfies Eq. (42), we can say that it satisfies the C-property. Since the bed elevation is constant, from a mathematical point of view, if the numerical model satisfies the C-property, the momentum flux must equal the hydrostatic pressure flux:

    3.4 Wet/dry fronts

    3.5 Stability constraint

    Since the numerical scheme is explicit in time, the time step is limited by the following Courant-Friedrichs-Lewy (CFL) condition (Cea et al. 2006):

    4 Model test

    Two applications of the model are presented for validation purposes. First, a dam break in a channel with discontinuous porosity was simulated, and the calculated results were compared with analytical results. Second, a flash flood in the Toce River Valley was simulated, and the calculated results were compared with the experimental results.

    4.1 Dam break with discontinuous porosity

    Initially, a gate was placed atx= 100 m and water was kept at rest. The water depths upstream and downstream of the gate wereh1= 10 m andh2= 1 m, respectively (Fig. 1). The gate was suddenly removed and a large volume of water was released. The numerical model used uniform rectangle grids with 200 computational cells and a time steptΔ of 0.04 s. Fig. 2 depicts the numerical and analytical water depths and velocities att= 0.3 s. The agreement between the computed and analytical solutions is seen to be quite good. The propagation speeds of the various waves are computed correctly.

    Fig. 1Dam break with discontinuous porosity (Unit: m)

    Fig. 2Numerical and analytical results of dam break with discontinuous porosity att= 0.3 s

    4.2 Flash flood in Toce River Valley

    Testa et al. (2007) presented a physical model study of a flash flood in the Toce River Valley, in Italy, which impacted an idealized urban district composed of an array of square blocks (Fig. 3). The aim of this test was to show that the shallow water model on fine grids could be advantageously replaced with the porous shallow water model on much coarser grids, where the effects of the blocks were modeled using porosity. There were two block configurations: aligned and staggered as in the physical experiments performed by Testa et al. (2007), but only the staggered layout (Fig. 3) was used for testing here.

    Fig. 3Gauge stations with staggered arrangement

    Two numerical models were built to simulate the physical model. The first model was a classical shallow water (CSW) model (Wang et al. 2005) on fine grids (Fig. 4(a)), in which the blocks were treated as the impermeable boundaries. The second model was the proposed porous shallow water (PSW) model on coarse grids, in which the effects of the blocks were modeled by the porosity (Fig. 4(b)). The CSW model and PSW model were made of 4 567 and 1 696 triangle cells, respectively. For wet and dry fronts, the values ofht1andht2were 0.000 1 m and 0.001 m, respectively. A uniform Manning’s roughness coefficientn=0.016 2 m-1/3?s was assigned to all cells to model bottom shear. In the PSW model, the approach for vegetative resistance modeling (Nepf 1999) was used to calculate the drag force of the blocks. The drag forceRsexerted by the blocks on the fluid is

    whereRs=(Rsx,Rsy), withRsxandRsybeing thexandycomponents ofRs, respectively;u=(u,v);dis the projected length of the blocks, i.e., the length of the blocks as seen by an observer moving in the direction of flow; andCDis a bulk drag coefficient, which is a function of blocks’ density (Nepf 1999). The value ofCDfor square-shaped obstructions is tabulated in textbooks asCD=2.0 (Munson et al. 2006). Based on these considerations, the head loss coefficientCsin Eq. (21) can be calculated as follows:

    Fig. 4Numerical meshes

    The discharge hydrograph lasting 60 seconds, obtained from the experiments performed by Testa et al. (2007), was used as the upstream boundary condition (Fig. 5). A zero-order extrapolation or so-called soft boundary condition was implemented at the downstream boundary (Wang et al. 2005). Fig. 6 shows time series of water depth at gauge stations 3, 5, 7, and 10. Predictions of the CSW model (Wang et al. 2005) and PSW model are shown, along with water depth measurements reported by Testa et al. (2007). Fig. 6 shows that the results of both the CSW model and the PSW model match the experimental results. At gauge stations 3 and 7, the two models’ predictions are both close to the experimental results. At gauge station 5, compared with the experimental results, predictions of the two models are both underestimates. At gauge station 10, the CSW model overestimates the water depth while the PSW model underestimates the water depth.

    Fig. 5Discharge hydrograph at upstream boundary

    Fig. 6 Predicted and measured water depths at different gauge stations

    The PSW model predictions match the CSW model predictions, but it should be noted that the CPU time required by the 60-second simulation with the Pentium 4 processor is 18 seconds for the PSW model and 176 seconds for the CSW model. This example shows that the PSW model can simulate the influence of blocks with high efficiency.

    5 Conclusions

    Through introducing the porosity to reflect the effects of obstructions, the two-dimensional porous shallow water equations including the continuity and momentum equations were derived based on the laws of conservation of mass and momentum. The unstructured finite volume method and modified Roe-type approximate Riemann solver were used for the solution of the two-dimensional porous shallow water equations. The bed slope source term and the additional porosity source term were both decomposed in the characteristic direction. It has been shown that the numerical scheme exactly satisfies the conservative property. Numerical results of a dam break in a channel with discontinuous porosity and a flash flood in the Toce River Valley with an urban district show that the porous shallow water equations and numerical scheme can simulate the influence of blocks with high efficiency and resolution.

    Alcrudo, F., and Benkhaldoun, F. 2001. Exact solutions to the Riemann problem of the shallow water equations with a bottom step. Computers and Fluids, 30(6), 643-671. [doi:10.1016/S0045-7930 (01)00013-5]

    Bermudez, A., Dervieux, A., Desideri, J. A., and Vazquez, M. E. 1998. Upwind schemes for the twodimensional shallow water equations with variable depth using unstructured meshes. Computer Methodsin Applied Mechanics and Engineering, 155(1-2), 49-72. [doi:10.1016/S0045-7825(97)85625-3]

    Bermudez, A., and Vazquez, M. E. 1994. Upwind methods for hyperbolic conservation laws with source terms. Computers and Fluids, 23(8), 1049-1071. [doi:10.1016/0045-7930(94)90004-3]

    Cea, L., French, J. R., and Vazquez-Cendon, M. E. 2006. Numerical modelling of tidal flows in complex estuaries including turbulence: An unstructured finite volume solver and experimental validation. International Journal for Numerical Methods in Engineering, 67(13), 1909-1932. [doi:10.1002/ nme.1702]

    Ding, L., Pang, Y., Zhao, D. H., Wu, J. Q., and Lu, J. 2004. Analysis of applicability of flux difference splitting scheme on 2D flow-pollutant calculation. Advanced in Water Science, 15(5), 561-565. (in Chinese)

    Geng, Y. F., Wang, Z. L., and Jin, S. 2005. A high resolution Godunov-type scheme for one dimensional shallow water flow. Journal of Hydrodynamics, Ser. A, 20(4), 507-512 (in Chinese)

    Harten, A., Lax, P. D., and van Leer, B. 1983. On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Review, 25(1), 35-61. [doi:10.1137/1025002]

    Heggelund, Y., Vikebo, F., Berntsen, J., and Furnes, G. 2004. Hydrostatic and non-hydrostatic studies of gravitational adjustment over a slope. Continental Shelf Research, 24(18), 2133-2148. [doi: 10.1016/j.csr.2004.07.005]

    Lee, J. W., Teubner, M. D., Nixon, J. B., and Gill, P. M. 2006. A 3-D non-hydrostatic pressure model for small amplitude free surface flows. International Journal for Numerical Methods in Fluids, 50(6), 649-672. [doi:10.1002/fld.1054]

    Li, Z. W. 2008. Study on the dissipative effect of approximate Riemann solver on hypersonic heatflux simulation. Chinese Journal of Theoretical and Applied Mechanics, 40(1), 19-25. (in Chinese)

    Lu, Y. J., Zhuo, L. Q., Shao, X. J., Wang, H. C., and Li, H. L. 2005. A 2D mathematical model for sediment transport by waves and tidal currents. China Ocean Engineering, 19(4), 571-586.

    Munson, B. R., Young, D. F., and Okiishi, T. H. 2006. Fundamentals of Fluid Mechanics. 2nd ed. New York: John Wiley & Sons.

    Nepf, H. M. 1999. Drag, turbulence and diffusion in flow through emergent vegetation. Water Resources Research, 35(2), 479-489. [doi:10.1029/1998WR900069]

    Osher, S., and Solomon, F. 1982. Upwind difference schemes for hyperbolic system of conservation laws. Mathematics of Computation, 38(158), 339-374.

    Roe, P. L. 1981. Approximate Riemann solvers, parameter vectors, and difference schemes. Journal of Computational Physics, 43(2), 357-372. [doi:10.1016/0021-9991(81)90128-5]

    Shi, H. D., and Liu, Z. 2005. A finite volume method with unstructured triangular grids for numerical modeling of tidal current. China Ocean Engineering, 19(4), 693-700.

    Sleigh, P. A., and Gaskell, P. H., Berzins, M., and Wright, N. G. 1998. An unstructured finite-volume algorithm for predicting flow in rivers and estuaries. Computers and Fluids, 27(4), 479-508.

    Stoker, J. J. 1957. Water Waves: The Mathematical Theory with Applications. New York: Wiley-Interscience.

    Tan, W. Y. 1998. Computational Hydraulics-Finite Volume Method. Beijing: Tsinghua University Press. (in Chinese)

    Testa, G., Zuccala, D., Alcrudo, F., Mulet, J., and Soares-Frazao, S. 2007. Flash flood flow experiment in a simplified urban district. Journal of Hydraulic Research, 45(s1), 37-44. [doi:10.1080/00221686. 2007.9521831]

    van Leer, B. 1979. Towards the ultimate conservative difference scheme, V: A second-order sequel to Godunov’s method. Journal of Computational Physics, 32(1), 101-136. [doi:10.1016/0021-9991 (79)90145-1]

    Wang, J. S., Ni, H. G., and He, Y. S. 2000. Finite-difference TVD scheme for computation of dam-break problems. Journal of Hydraulic Engineering, 126(4), 253-262. [doi:10.1061/(ASCE)0733-9429 (2000)126:4(253)]

    Wang, Z. L. 2005. The Unstructured 2D and 3D Shallow Water Model Study Based on Godunov and Semi-Lagrangian Method. Ph. D. dissertation. Dalian: Dalian University of Technology. (in Chinese)

    Wang, Z. L., Geng, Y. F., and Jin, S. 2005a. An unstructured finite volume algorithm for nonlinear two-dimensional shallow water equation. Journal of Hydrodynamics, Ser. B, 17(3), 306-312.

    Wang, Z. L., Geng, Y. F., and Jin, S. 2005b. Flux balance method for shallow water equation with source terms. Advanced in Water Science, 16(3), 373-379. (in Chinese).

    Wang, Z. L., Lu, Y. J., and Geng, Y. F. 2008. One dimensional shallow water equations with porosity and their numerical discretization schemes. Chinese Journal of Theoretical and Applied Mechanics, 40(5), 585-592. (in Chinese).

    Yuan, H. L., and Wu, C. H. 2004. A two-dimensional vertical non-hydrostatic σ model with an implicit method for free-surface flows. International Journal for Numerical Methods in Fluids, 44(8), 811-835. [doi: 10.1002/fld.670]

    Zhao, D. H., Shen, H. W., Tabios, III, G. Q., Lai, J. S., and Tan, W. Y. 1994. Finite-volume two-dimensional unsteady-flow model for river basins. Journal of Hydraulic Engineering, 120(7), 863-883. [doi: 10.1061/(ASCE)0733-9429(1994)120:7(863)]

    Zhou, J. G., Causon, D. M., Mingham, C. G., and Ingram, D. M. 2001. The surface gradient method for the treatment of source terms in the shallow water equation. Journal of Computational Physics, 168(1), 1-25. [doi:10.1006/jcph.2000.6670]

    Zoppou, C., and Roberts, S. 2000. Numerical solution of the two-dimensional unsteady dam break. Applied Mathematical Modelling, 24(7), 457-475. [doi:10.1016/S0307-904X(99)00056-6]

    (Edited by Yan LEI)

    This work was supported by the National Natural Science Foundation of China (Grants No. 50909065 and 51109039) and the National Basic Research Program of China (973 Program, Grant No. 2012CB417002).

    *Corresponding author (e-mail: yfgeng@seu.edu.cn)

    Received Dec. 5, 2011; accepted May 9, 2012

    纯流量卡能插随身wifi吗| 男女午夜视频在线观看| 欧美 亚洲 国产 日韩一| 免费观看性生交大片5| 久久精品国产亚洲av天美| 亚洲精品国产色婷婷电影| 日本wwww免费看| 波野结衣二区三区在线| 狠狠精品人妻久久久久久综合| 青青草视频在线视频观看| 99香蕉大伊视频| 欧美精品人与动牲交sv欧美| 成人毛片a级毛片在线播放| 美女高潮到喷水免费观看| 免费黄网站久久成人精品| 两个人看的免费小视频| 制服丝袜香蕉在线| 1024香蕉在线观看| 亚洲精品在线美女| 成人18禁高潮啪啪吃奶动态图| 1024视频免费在线观看| 十八禁网站网址无遮挡| 日本91视频免费播放| 午夜91福利影院| 又大又黄又爽视频免费| 国产精品麻豆人妻色哟哟久久| 少妇 在线观看| 久久久精品94久久精品| 亚洲人成77777在线视频| 精品一区二区三卡| 少妇熟女欧美另类| 丝袜美足系列| 国产精品三级大全| 国产极品天堂在线| 99精国产麻豆久久婷婷| av视频免费观看在线观看| 男人舔女人的私密视频| 国产精品熟女久久久久浪| 久久热在线av| 2022亚洲国产成人精品| 看免费成人av毛片| 午夜免费观看性视频| 欧美 日韩 精品 国产| 国产精品熟女久久久久浪| 久久久久久久久免费视频了| 一级毛片 在线播放| 汤姆久久久久久久影院中文字幕| 免费大片黄手机在线观看| 天天影视国产精品| 国产 精品1| xxxhd国产人妻xxx| 男女边吃奶边做爰视频| 美女主播在线视频| 99精国产麻豆久久婷婷| 免费在线观看完整版高清| 999久久久国产精品视频| 综合色丁香网| √禁漫天堂资源中文www| 七月丁香在线播放| 国产欧美日韩综合在线一区二区| 天天躁夜夜躁狠狠久久av| 伦理电影大哥的女人| 涩涩av久久男人的天堂| 欧美日韩亚洲高清精品| 又黄又粗又硬又大视频| 我的亚洲天堂| 国产精品 欧美亚洲| 中文字幕人妻熟女乱码| 久久久久久久久久久久大奶| 国产高清不卡午夜福利| 亚洲,欧美精品.| 亚洲国产看品久久| 伊人久久大香线蕉亚洲五| 国产精品久久久久久精品电影小说| 男女国产视频网站| 国产片内射在线| 亚洲美女视频黄频| 午夜日本视频在线| 国产熟女欧美一区二区| 亚洲,欧美,日韩| 久久婷婷青草| 91成人精品电影| 欧美 日韩 精品 国产| 免费黄色在线免费观看| 我要看黄色一级片免费的| 久久精品久久精品一区二区三区| 2018国产大陆天天弄谢| 69精品国产乱码久久久| 国产精品一区二区在线观看99| 国产精品久久久久久精品古装| 国产免费一区二区三区四区乱码| 久久久久久伊人网av| 黄网站色视频无遮挡免费观看| 97在线视频观看| 在线观看免费日韩欧美大片| 久久鲁丝午夜福利片| 天天影视国产精品| 久久精品久久久久久久性| 99久久精品国产国产毛片| 美女国产高潮福利片在线看| 国产精品熟女久久久久浪| 久久午夜综合久久蜜桃| 最近最新中文字幕免费大全7| 在线观看免费日韩欧美大片| 纵有疾风起免费观看全集完整版| 久久亚洲国产成人精品v| 国产一区有黄有色的免费视频| 欧美日韩亚洲高清精品| 最近手机中文字幕大全| 亚洲国产精品一区三区| 哪个播放器可以免费观看大片| 国产在线免费精品| 亚洲,欧美,日韩| av视频免费观看在线观看| 欧美av亚洲av综合av国产av | 欧美亚洲 丝袜 人妻 在线| 女人久久www免费人成看片| 国产色婷婷99| 涩涩av久久男人的天堂| 在线亚洲精品国产二区图片欧美| 在线 av 中文字幕| 夜夜骑夜夜射夜夜干| 一二三四中文在线观看免费高清| 国产精品 欧美亚洲| 波多野结衣一区麻豆| 国产福利在线免费观看视频| 国产成人精品在线电影| 在线观看一区二区三区激情| 亚洲av综合色区一区| 午夜日韩欧美国产| 啦啦啦中文免费视频观看日本| 一本色道久久久久久精品综合| 最黄视频免费看| 亚洲av国产av综合av卡| 黑丝袜美女国产一区| 亚洲久久久国产精品| 巨乳人妻的诱惑在线观看| 建设人人有责人人尽责人人享有的| 日本欧美国产在线视频| 久久99热这里只频精品6学生| 一边亲一边摸免费视频| 免费不卡的大黄色大毛片视频在线观看| 日韩精品有码人妻一区| 1024视频免费在线观看| 日本-黄色视频高清免费观看| 在线精品无人区一区二区三| 午夜福利乱码中文字幕| av在线老鸭窝| 亚洲国产毛片av蜜桃av| av在线app专区| 亚洲成人一二三区av| 欧美成人午夜精品| 热99国产精品久久久久久7| 久久99热这里只频精品6学生| 精品一区在线观看国产| 各种免费的搞黄视频| 亚洲国产av影院在线观看| 日韩中字成人| 亚洲精品视频女| 中文天堂在线官网| videosex国产| 亚洲伊人色综图| 国产探花极品一区二区| 国产成人aa在线观看| 观看美女的网站| 亚洲伊人久久精品综合| 国产免费福利视频在线观看| 久久久精品免费免费高清| 成年女人在线观看亚洲视频| 天天躁夜夜躁狠狠躁躁| 另类精品久久| 97人妻天天添夜夜摸| 男男h啪啪无遮挡| 国产精品一区二区在线不卡| 菩萨蛮人人尽说江南好唐韦庄| 国产精品无大码| 日韩一本色道免费dvd| 香蕉丝袜av| 欧美日本中文国产一区发布| 国产精品 欧美亚洲| 日韩不卡一区二区三区视频在线| 午夜日本视频在线| 在线看a的网站| 肉色欧美久久久久久久蜜桃| 黄片小视频在线播放| 国产又色又爽无遮挡免| 你懂的网址亚洲精品在线观看| 亚洲av中文av极速乱| av.在线天堂| 欧美激情 高清一区二区三区| 男女午夜视频在线观看| 国产精品久久久久久久久免| 国产无遮挡羞羞视频在线观看| 国产精品久久久久成人av| 国产免费视频播放在线视频| 精品少妇久久久久久888优播| 日韩中文字幕视频在线看片| 成人黄色视频免费在线看| 久久精品亚洲av国产电影网| 亚洲av国产av综合av卡| 国产女主播在线喷水免费视频网站| 香蕉丝袜av| av.在线天堂| 免费观看av网站的网址| av.在线天堂| 国产熟女欧美一区二区| 伦理电影大哥的女人| 深夜精品福利| 欧美精品高潮呻吟av久久| 久久精品国产鲁丝片午夜精品| 18禁观看日本| 精品99又大又爽又粗少妇毛片| 999精品在线视频| 国产成人欧美| 狠狠精品人妻久久久久久综合| 亚洲国产最新在线播放| 亚洲 欧美一区二区三区| 亚洲av福利一区| 亚洲av福利一区| 亚洲成国产人片在线观看| 国产亚洲欧美精品永久| 久久精品国产自在天天线| 男女边摸边吃奶| 丝袜美腿诱惑在线| 男女啪啪激烈高潮av片| 肉色欧美久久久久久久蜜桃| 免费观看在线日韩| 黑丝袜美女国产一区| 美女脱内裤让男人舔精品视频| 免费高清在线观看日韩| av.在线天堂| 国产免费福利视频在线观看| 国产女主播在线喷水免费视频网站| 纵有疾风起免费观看全集完整版| 满18在线观看网站| 永久网站在线| 亚洲av日韩在线播放| 永久免费av网站大全| 免费观看av网站的网址| 永久免费av网站大全| 日韩av在线免费看完整版不卡| 男女边摸边吃奶| 欧美亚洲 丝袜 人妻 在线| 久久精品亚洲av国产电影网| 91aial.com中文字幕在线观看| 视频区图区小说| 免费观看a级毛片全部| 国产一区亚洲一区在线观看| 成人影院久久| 天堂8中文在线网| 高清不卡的av网站| 久久国内精品自在自线图片| 亚洲精品成人av观看孕妇| 日韩制服丝袜自拍偷拍| 精品人妻在线不人妻| 深夜精品福利| 99精国产麻豆久久婷婷| 麻豆av在线久日| 日韩一卡2卡3卡4卡2021年| www.精华液| 久久97久久精品| 五月天丁香电影| 国产精品蜜桃在线观看| 一级爰片在线观看| 欧美黄色片欧美黄色片| 亚洲av电影在线进入| 美女大奶头黄色视频| 中文字幕人妻熟女乱码| 欧美另类一区| 午夜91福利影院| 人妻系列 视频| av在线app专区| 男女无遮挡免费网站观看| 亚洲在久久综合| 久久久亚洲精品成人影院| 日本vs欧美在线观看视频| 多毛熟女@视频| 男男h啪啪无遮挡| 久久久久精品性色| av线在线观看网站| 久久国产精品男人的天堂亚洲| 看非洲黑人一级黄片| 啦啦啦中文免费视频观看日本| 亚洲精品久久成人aⅴ小说| 久久这里只有精品19| 亚洲五月色婷婷综合| 亚洲经典国产精华液单| 天堂8中文在线网| 久久精品熟女亚洲av麻豆精品| 日韩伦理黄色片| 国产成人aa在线观看| 大陆偷拍与自拍| 亚洲国产精品一区三区| 精品亚洲乱码少妇综合久久| 99香蕉大伊视频| 在线免费观看不下载黄p国产| 国产男女超爽视频在线观看| 精品少妇内射三级| 五月开心婷婷网| 国产日韩一区二区三区精品不卡| 天天影视国产精品| 最近最新中文字幕免费大全7| 婷婷色av中文字幕| 欧美日韩成人在线一区二区| 一边摸一边做爽爽视频免费| 中文字幕另类日韩欧美亚洲嫩草| 嫩草影院入口| 亚洲成色77777| 看免费av毛片| 国产一区二区三区综合在线观看| 两个人看的免费小视频| 热99久久久久精品小说推荐| 国产精品 欧美亚洲| 国产免费又黄又爽又色| 亚洲国产av影院在线观看| 国产无遮挡羞羞视频在线观看| 一级,二级,三级黄色视频| 高清欧美精品videossex| 亚洲经典国产精华液单| 亚洲成人手机| 人人妻人人澡人人爽人人夜夜| 9色porny在线观看| 蜜桃在线观看..| 国产精品三级大全| 亚洲第一av免费看| 中文精品一卡2卡3卡4更新| 性色av一级| 国产在线免费精品| 黄色毛片三级朝国网站| 欧美黄色片欧美黄色片| 日韩中文字幕视频在线看片| 亚洲伊人色综图| 视频区图区小说| 中文字幕制服av| 街头女战士在线观看网站| 秋霞在线观看毛片| 国产黄频视频在线观看| 亚洲精品在线美女| 欧美日韩视频精品一区| 飞空精品影院首页| 26uuu在线亚洲综合色| 国产一级毛片在线| 亚洲色图 男人天堂 中文字幕| 少妇 在线观看| 欧美精品人与动牲交sv欧美| 九色亚洲精品在线播放| 午夜日本视频在线| 秋霞在线观看毛片| 在线观看免费日韩欧美大片| 日韩中文字幕欧美一区二区 | 久久久精品免费免费高清| 中文精品一卡2卡3卡4更新| 波多野结衣av一区二区av| 精品国产一区二区久久| 韩国精品一区二区三区| 99热网站在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精品乱久久久久久| 国产色婷婷99| 国产亚洲午夜精品一区二区久久| 考比视频在线观看| 亚洲精品国产色婷婷电影| 国产午夜精品一二区理论片| 中国国产av一级| 成人午夜精彩视频在线观看| 欧美另类一区| 亚洲第一青青草原| 国产精品三级大全| 蜜桃在线观看..| 成人影院久久| 亚洲,欧美,日韩| 色视频在线一区二区三区| 深夜精品福利| 国精品久久久久久国模美| 国产欧美亚洲国产| 午夜日韩欧美国产| 欧美激情高清一区二区三区 | 涩涩av久久男人的天堂| 中文字幕色久视频| 国产xxxxx性猛交| 爱豆传媒免费全集在线观看| 国产成人精品一,二区| 精品久久蜜臀av无| 久久国产精品男人的天堂亚洲| 久久久久国产一级毛片高清牌| 久久久久久久亚洲中文字幕| 亚洲精品国产一区二区精华液| 精品一品国产午夜福利视频| 国产精品 欧美亚洲| 欧美变态另类bdsm刘玥| 国产精品一区二区在线不卡| 午夜福利,免费看| 天堂8中文在线网| 精品少妇黑人巨大在线播放| 午夜福利视频精品| 夫妻性生交免费视频一级片| 性色avwww在线观看| 美女脱内裤让男人舔精品视频| 一本久久精品| 亚洲精品aⅴ在线观看| 午夜激情av网站| 麻豆av在线久日| 少妇人妻精品综合一区二区| 在线观看免费日韩欧美大片| 欧美亚洲日本最大视频资源| 最新中文字幕久久久久| 国产乱人偷精品视频| 日韩一卡2卡3卡4卡2021年| 国产乱人偷精品视频| 日本vs欧美在线观看视频| 日日啪夜夜爽| 成年女人毛片免费观看观看9 | 9热在线视频观看99| 亚洲欧美一区二区三区黑人 | 大香蕉久久成人网| 亚洲精品在线美女| 视频区图区小说| 十八禁高潮呻吟视频| 七月丁香在线播放| av在线老鸭窝| 亚洲内射少妇av| 久久精品aⅴ一区二区三区四区 | 国产精品麻豆人妻色哟哟久久| 亚洲成国产人片在线观看| 久久久久久久亚洲中文字幕| 免费av中文字幕在线| 欧美激情 高清一区二区三区| 国产精品女同一区二区软件| 国产伦理片在线播放av一区| 久久人人爽av亚洲精品天堂| 午夜福利,免费看| av国产精品久久久久影院| 老汉色av国产亚洲站长工具| 国产精品久久久久久av不卡| 大陆偷拍与自拍| 国产精品熟女久久久久浪| 纵有疾风起免费观看全集完整版| 亚洲精品成人av观看孕妇| 91国产中文字幕| 亚洲精品国产av蜜桃| 久久这里只有精品19| 国产野战对白在线观看| 国产亚洲欧美精品永久| 欧美激情 高清一区二区三区| 综合色丁香网| 成人亚洲精品一区在线观看| 一本大道久久a久久精品| 欧美精品一区二区大全| 麻豆精品久久久久久蜜桃| 亚洲熟女精品中文字幕| 晚上一个人看的免费电影| 极品人妻少妇av视频| 一个人免费看片子| 国产亚洲欧美精品永久| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 日本91视频免费播放| av片东京热男人的天堂| 日韩电影二区| 国产综合精华液| 美女高潮到喷水免费观看| 热re99久久国产66热| 亚洲成人av在线免费| 不卡av一区二区三区| 成人毛片60女人毛片免费| 少妇人妻精品综合一区二区| 91aial.com中文字幕在线观看| 久久久久久人人人人人| kizo精华| 卡戴珊不雅视频在线播放| 久久99精品国语久久久| videossex国产| 久久亚洲国产成人精品v| 校园人妻丝袜中文字幕| 你懂的网址亚洲精品在线观看| 亚洲欧美精品综合一区二区三区 | 久久久久网色| 亚洲精品,欧美精品| 自线自在国产av| 中文精品一卡2卡3卡4更新| 亚洲第一青青草原| videossex国产| 美女大奶头黄色视频| 老汉色∧v一级毛片| 国产一区二区在线观看av| 久久国产精品男人的天堂亚洲| 久久影院123| 久久女婷五月综合色啪小说| 国产精品熟女久久久久浪| 一区二区三区精品91| 欧美成人午夜免费资源| 国产精品三级大全| 国产成人精品福利久久| 热99国产精品久久久久久7| 欧美日韩成人在线一区二区| 十八禁高潮呻吟视频| 97在线视频观看| www.av在线官网国产| 欧美国产精品va在线观看不卡| 亚洲精品自拍成人| 久久精品国产a三级三级三级| 国产男女内射视频| www.av在线官网国产| 国产精品熟女久久久久浪| 成人手机av| 亚洲伊人色综图| 欧美另类一区| 人人妻人人澡人人爽人人夜夜| 黄色视频在线播放观看不卡| 99热国产这里只有精品6| 精品一区二区三卡| 综合色丁香网| 亚洲欧美一区二区三区黑人 | 色吧在线观看| 18+在线观看网站| 99久久综合免费| a级毛片在线看网站| 久久久久久人妻| xxx大片免费视频| 欧美黄色片欧美黄色片| 亚洲精品国产av成人精品| 欧美日韩成人在线一区二区| 国产野战对白在线观看| 9色porny在线观看| 免费女性裸体啪啪无遮挡网站| 丰满饥渴人妻一区二区三| 日韩一卡2卡3卡4卡2021年| 日韩一区二区视频免费看| av在线播放精品| 男女下面插进去视频免费观看| 国产精品免费视频内射| 午夜av观看不卡| 国产精品国产三级国产专区5o| 亚洲精品,欧美精品| 久久久国产一区二区| 免费看不卡的av| av卡一久久| 亚洲经典国产精华液单| 一级黄片播放器| 大香蕉久久成人网| 丝袜喷水一区| 高清av免费在线| 大香蕉久久网| 免费观看无遮挡的男女| 国产免费福利视频在线观看| 欧美成人精品欧美一级黄| 国产国语露脸激情在线看| 午夜福利一区二区在线看| av一本久久久久| 人人妻人人澡人人爽人人夜夜| 最近手机中文字幕大全| 午夜av观看不卡| 欧美日韩亚洲高清精品| 亚洲欧洲日产国产| 亚洲第一青青草原| 亚洲av免费高清在线观看| a级片在线免费高清观看视频| 国产精品女同一区二区软件| 天堂中文最新版在线下载| 不卡av一区二区三区| 欧美日韩精品成人综合77777| 久久久久久人人人人人| 欧美国产精品一级二级三级| 热99久久久久精品小说推荐| 午夜福利影视在线免费观看| 国产免费福利视频在线观看| 国产精品免费视频内射| 日本色播在线视频| 国产爽快片一区二区三区| 性少妇av在线| 亚洲成av片中文字幕在线观看 | 亚洲第一av免费看| 亚洲精品国产一区二区精华液| videosex国产| 热re99久久国产66热| 亚洲人成电影观看| 国产日韩欧美亚洲二区| 多毛熟女@视频| 99精国产麻豆久久婷婷| 9热在线视频观看99| 国产麻豆69| 精品亚洲成a人片在线观看| 9色porny在线观看| www.av在线官网国产| 免费黄色在线免费观看| 中国三级夫妇交换| 久久精品熟女亚洲av麻豆精品| 99久久综合免费| 永久网站在线| 如何舔出高潮| 国产一区二区在线观看av| 国产精品国产av在线观看| 久久久久久久久免费视频了| 寂寞人妻少妇视频99o| 久久久久久人妻| 久久久久视频综合| 伦理电影大哥的女人| 热99国产精品久久久久久7| 视频区图区小说| 午夜影院在线不卡| 美女福利国产在线| 国产极品天堂在线| 欧美 日韩 精品 国产| 国产片内射在线| 十八禁网站网址无遮挡| 9热在线视频观看99| 亚洲精品,欧美精品| 日韩电影二区| 丰满迷人的少妇在线观看| 亚洲欧美精品自产自拍| 五月天丁香电影| 日韩一卡2卡3卡4卡2021年| 亚洲精品美女久久久久99蜜臀 | 一本—道久久a久久精品蜜桃钙片| 波多野结衣av一区二区av| 国产免费视频播放在线视频|