• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Estimation of hydraulic jump on corrugated bed using artificial neural networks and genetic programming

    2013-07-31 16:08:57AkramABBASPOURDavoodFARSADIZADEHMohammadAliGHORBANI
    Water Science and Engineering 2013年2期

    Akram ABBASPOUR*, Davood FARSADIZADEH, Mohammad Ali GHORBANI

    Department of Water Engineering, University of Tabriz, Tabriz 51666-14766, Iran

    Estimation of hydraulic jump on corrugated bed using artificial neural networks and genetic programming

    Akram ABBASPOUR*, Davood FARSADIZADEH, Mohammad Ali GHORBANI

    Department of Water Engineering, University of Tabriz, Tabriz 51666-14766, Iran

    Artificial neural networks (ANNs) and genetic programming (GP) have recently been used for the estimation of hydraulic data. In this study, they were used as alternative tools to estimate the characteristics of hydraulic jumps, such as the free surface location and energy dissipation. The dimensionless hydraulic parameters, including jump depth, jump length, and energy dissipation, were determined as functions of the Froude number and the height and length of corrugations. The estimations of the ANN and GP models were found to be in good agreement with the measured data. The results of the ANN model were compared with those of the GP model, showing that the proposed ANN models are much more accurate than the GP models.

    artificial neural networks; genetic programming; corrugated bed; Froude number; hydraulic jump

    1 Introduction

    The transition of a supercritical open channel flow into a subcritical flow is associated with the formation of a hydraulic jump. Hydraulic jumps have been extensively studied because of their frequent occurrence in nature and their use as energy dissipators in outlet works of hydraulic structures (Hager 1992).

    A complete description of a hydraulic jump also involves its length Lj, which is the distance between the two cross-sections with the sequent depth y2and upstream supercritical depth y1. From the practical point of view, the jump length is an important variable to define the downstream limit beyond which no bed protection is necessary. The jump length is hard todefine in actual experiments, mainly because the end cross-section of the hydraulic jump is difficult to locate due to surface waves and residual turbulence (Hager 1992).

    Because of the complexity of hydraulic jumps, more practical tools are required to model hydraulic jump processes. Regressions have been most commonly used to estimate jump characteristics. However, regression analysis may have large uncertainties, and the computed jump depth and length can be far from the actual ones. Also, the regression analysis has some limitations caused by predefined equations for modeling.

    Recently, artificial neural networks (ANNs) and genetic programming (GP) have been used to model hydraulic jump processes. They have been used to estimate the scouring around piles by Kambekar and Deo (2003) and the scouring below spillways by Azmathullah et al. (2008). Also, a combination of the fuzzy inference system (FIS) with ANNs, ANFIS, has been employed to estimate the wave characteristics by Mahjoobi et al. (2008). GP and ANNs have been successfully applied in maritime engineering (Kalra and Deo 2007; Singh et al. 2007; Gaur and Deo 2008).

    The purpose of this study was to investigate the characteristics of hydraulic jumps in a horizontal flume with a corrugated bed using the ANN and GP methods. These soft computing tools can evaluate the relative importance of input parameters, such as the relative roughness, the corrugation wavelength, and the Froude number, on the jump process.

    2 Materials and methods

    2.1 Experimental setup

    The experimental setup consisted of a main flume in a discharge collection channel. The main flume was 0.25 m wide and 0.50 m deep, and had a bed slope of 0.002. A triangular weir was placed at the end of the channel to measure the discharge. A supercritical approach flowwas produced using a sluice gate. A corrugated polyethylene sheet with sinusoidal corrugations of wavelengthsand heighttwas installed perpendicular to the flow direction in the flume so that the corrugation crests were at the level of the upstream bed carrying the supercritical flow. The flow channel section of the experiment is illustrated in Fig. 1 (Abbaspour et al. 2009). A total of 123 experimental groups were conducted. Ranges of the variables in the experiment are shown in Table 1. Hydraulic jumps on the corrugated bed were produced for different Froude numbers, and the hydraulic parameters were measured. The water surface profiles of the jumps on the corrugated bed were measured at the centerline of the flume with a point gauge with an accuracy of 0.1 mm. The supercritical depthy1and sequent depthy2of the jumps were continuously measured using ultra sonic sensors, and the data was saved on a computer and processed with the VisiDAQ software. The length of the jump,Lj, in the experiment was recorded. The values of the Reynolds number in this experiment were in the range of 61 200 to 175 600.

    Fig. 1Sketch of free jump on corrugated bed in experiment (Abbaspour et al. 2009)

    Table 1Ranges of field data in experiment

    whereELis the difference between the specific energy before and after the jump, andEL=E2?E1.

    2.2 Artificial neural network (ANN)

    An artificial neural network (ANN) is an information processing paradigm that is inspiredby the way biological nervous systems, such as the brain, process information. It is composed of a large number of highly interconnected processing elements (neurons) working in unison to solve specific problems. Neurons are arranged in layers, including an input layer, hidden layers, and an output layer. There is no specific rule that dictates the number of hidden layers. The function is established largely based on the connections between the elements of the network. In the input layer, each neuron is designated for one of the input parameters. The network learns by applying the back-propagation algorithm, which compares the neural network simulated values with the actual values and calculates the estimation errors. The data set in the network is divided into a learning data set, which is used to train the network, and a validation data set, which is used to test the network performance. In the present study, the neural network fitting tool (nftool) of MATLAB 7.5 was used.

    After training the network, verification is conducted until the success of the training can be established. In the simulation of hydraulic jumps, characteristic data were investigated with the neural network using the Levenberg-Marquardt algorithm, which is an approximation of Newton’s method. In order to check the sensitivity of the neural networks, a simulation study was carried out with hidden nodes of different numbers, 5, 10, 15, and 20.

    The correlation coefficient (R), the root mean square error (RMSE), the mean absolute error (MAE), and the Nash-Sutcliffe efficiency coefficient (NSE) statistics were used to evaluate the model accuracy. R shows the degree to which two variables were linearly related. Different types of information about the predictive capabilities of the model are measured through RMSE and MAE. An efficiency of 1 (NSE = 1) corresponds to a perfect match of the modeled values to the observed data.

    whereXiis the observed values,Xis the mean ofXi,Yiis the estimated values,Yis the mean ofYi, andnis the number of data sets.

    2.3 Genetic programming (GP)

    In artificial intelligence, genetic programming (GP) is an evolutionary algorithm-based methodology inspired by biological evolution to find computer programs that perform a user-defined task. GP initializes a population consisting of random members known as chromosomes, and the fi tness of each chromosome is evaluated with respect to a target value. The principle of Darwinian natural selection is used to select and reproduce fi tter programs. GP creates computer programs that consist of variables and several mathematical function sets as the solution. The function set of a system can be composed of arithmetic operations (+, ?, ×, ÷), function calls (such as ex,x, sqrt, and power), even relational operators (>, <, =) or conditional operators, and a terminal set with variables and constants (x1,x2,…,xn). An initial population is randomly created with a number of individuals formed by nodes (operators, variables, and constants) and previously defined according to the problem domain. An objective function must be defined to evaluate the fitness of each individual. Selection, crossover, and mutation operators are then applied to the best individuals and a new population is created. The whole process is repeated until the given generation number is reached (Koza 1992).

    The fitness of a GP individual may be computed using Eq. (9):

    whereXjis the value returned by a chromosome for the fitness casej, andYjis the expected value for the fitness casej.

    In the GP model many operators, like sin, cos, and log, and mathematical functions were used, and it was found that the functions of the proposed GP model were complex. Also, the GP model using more operators has larger estimated difference. In this study, for simplicity, only four arithmetic operators (+, ?, ×, ÷) were used. The functional and operational parameter settings used in the GP model are shown in Table 2. The performance of the GP model in training and testing sets was validated in terms of the common statistical measuresR,RMSE,MAE, andNSE.

    Table 2Parameters of GP Model

    3 Results and discussion

    3.1 Hydraulic jump estimation using ANN model

    Different ANN structures were tried in terms of hidden layer node numbers. In this study, the number of neurons in the hidden layer was obtained using the trial and error method. From the simulation study, which was carried out using the ANN model, it was found that with 15 neurons in the hidden layer, the estimation accuracy increased to some extent.

    Fig. 2Comparison of measured and estimatedvalues using ANN model for training, validation, and testing data

    Fig. 3Comparison of measured and estimatedvalues using ANN model for training, validation, and testing data

    Fig. 4Comparison of measured and estimatedvalues using ANN model for training, validation, and testing data

    3.2 Hydraulic jump estimation using GP model

    The superior performance of the GP model, compared with other methods, is attributed to the powerful artificial intelligence techniques for computer learning inspired by natural evolution to find an appropriate mathematical model to fit a set of points. GP employs a population of functional expressions and also numerical constants, based on how closely they fit to the corresponding data (Koza 1992).

    Fig. 5Comparison of measured and estimatedvalues using GP model for training and testing data

    Fig. 6Comparison of measured and estimatedvalues using GP model for training and testing data

    Fig. 7Comparison of measured and estimatedvalues using GP model for training and testing data

    where1C,2C,3C,4C,5C, and6Care constant coefficients that are determined by the GP model (Table 3).

    Table 3Constant coefficients in GP model

    3.3 Comparison of ANN model with GP model

    The ANN and GP models are compared in Figs. 2 through 7. It can be seen from the fit line equations (the equations are assumed to bey=ax+b) in the scatter plots of the GP model that the coefficientsaandbfor the ANN model, with a higherRvalue, are, respectively, closer to 1 and 0 than the GP model. This can be clearly observed from its fit line equation coefficients.

    Table 4 compares the ANN and GP models, with all statistical measures,R,RMSE,NSE, andMAE, of the training and testing data. According to Table 4, the ANN model has lower absolute error as compared with the GP model, showing that the proposed ANN models are much more accurate than the GP models for water engineering.

    Table 4RMSE,MAE,R, andNSEstatistics of training and testing data of ANN and GP models

    4 Conclusions

    Abbaspour, A., Hosseinzadeh Dalir, A., Farsadizadeh, D., and Sadraddini, A. A. 2009. Effect of sinusoidal corrugated bed on hydraulic jump characteristics.Journal of Hydro-Environment Research, 3(2), 109-117. [doi:10.1016/j.jher.2009.05.003]

    Azmathullah, H. M., Deo, M. C., and Deolalikar, P. B. 2008. Alternative neural networks to estimate the scour below spillways.Advances in Engineering Software, 39(8), 689-698. [doi:10.1016/j.advengsoft.2007. 07.004]

    Carollo, F. G., Ferro, V., and Pampalone, V. 2007. Hydraulic jumps on rough beds.Journal of Hydraulic Engineering, 133(9), 989-999. [doi:10.1061/(ASCE)0733-9429(2007)133:9(989)]

    Ead, S. A., and Rajaratnam, N. 2002. Hydraulic jumps on corrugated beds.Journal of Hydraulic Engineering128(7), 656-663. [doi:10.1061/(ASCE)0733-9429(2002)128:7(656)]

    Gaur, S., and Deo, M. C. 2008. Real-time wave forecasting using genetic programming.Ocean Engineering, 35(11-12), 1166-1172. [doi:10.1016/j.oceaneng.2008.04.007]

    Hager, W. H. 1992.Energy Dissipators and Hydraulic Jump. Dordrecht: Kluwer Academic Publishers.

    Hughes, W. C., and Flack, J. E. 1984. Hydraulic jump properties over a rough bed.Journal of Hydraulic Engineering, 110(12), 1751-1771. [doi:10.1061/(ASCE)0733-9429(1984)110:12(1755)]

    Kalra, R., and Deo, M. C. 2007. Genetic programming for retrieving missing information in wave records along the west coast of India.Applied Ocean Research, 29(3), 99-111. [doi:10.1016/j.apor.2007.11.002]

    Kambekar, A. R., and Deo, M. C. 2003. Estimation of pile group using neural networks.Applied Ocean Research, 25(4), 225-234. [doi:10.1016/j.apor.2003.06.001]

    Koza, J. R. 1992.Genetic Programming: On the Programming of Computers by Means of Natural Selection. Cambridge: A Bradford Book.

    Mahjoobi, J., Etemad-Shahidi, A., and Kazeminezhad, M. H. 2008. Hindcasting of wave parameters using different soft computing methods.Applied Ocean Research, 30(1), 28-36. [doi:10.1016/j.apor. 2008.03.002]

    Mohamed Ali, H. S. 1991. Effect of roughened-bed stilling basin on length of rectangular hydraulic jump.Journal of Hydraulic Engineering, 117(1), 83-93. [doi:10.1061/(ASCE)0733-9429(1991)117:1(83)]

    Negm, A. M. 2002. Optimal roughened length of prismatic stilling basins.Proceeding of the 5th International Conference on Hydroscience and Engineering Conference. Warsaw.

    Singh, A. K., Deo, M. C., and SanilKumar, V. 2007. Neural network-genetic programming for sediment transport.Proceedings of the ICE, Maritime Engineering, 160(3), 113-119. [doi:10.1680/maen. 2007.160.3.113]

    Tokyay, N. D. 2005. Effect of channel bed corrugations on hydraulic jumps.Conference Proceedings of Impacts of Global Climate Change, 408-416. Anchorage: Environmental and Water Resources Institute (EWRI) of ASCE. [doi:10.1061/40792(173)408]]

    Vischer, D. L., and Hager, W. H. 1995.Energy Dissipators:Iahr Hydraulic Structures Design Manual 9. Rotterdam: Taylor & Francis Group.

    (Edited by Yun-li YU)

    *Corresponding author (e-mail: akabbaspour@yahoo.com)

    Received Jul. 19, 2012; accepted Feb. 27, 2013

    精品午夜福利在线看| 亚洲久久久久久中文字幕| 一级毛片aaaaaa免费看小| 亚洲成av人片在线播放无| 搞女人的毛片| 亚洲性久久影院| av在线亚洲专区| 国产精品国产高清国产av| 欧美激情久久久久久爽电影| 高清午夜精品一区二区三区| 国产av码专区亚洲av| av天堂中文字幕网| 国产av码专区亚洲av| 日韩精品青青久久久久久| 哪个播放器可以免费观看大片| 色综合亚洲欧美另类图片| 久久久精品94久久精品| 一二三四中文在线观看免费高清| av视频在线观看入口| 国产探花在线观看一区二区| 人人妻人人看人人澡| 国产毛片a区久久久久| 91午夜精品亚洲一区二区三区| 哪个播放器可以免费观看大片| 黑人高潮一二区| 亚洲av电影在线观看一区二区三区 | 国产高潮美女av| 国产精品国产三级专区第一集| 午夜福利高清视频| 色噜噜av男人的天堂激情| 国产一区亚洲一区在线观看| 99在线人妻在线中文字幕| 欧美性猛交黑人性爽| 国产一区二区亚洲精品在线观看| 深爱激情五月婷婷| 亚洲aⅴ乱码一区二区在线播放| av卡一久久| 最近手机中文字幕大全| 一本一本综合久久| 在线免费观看不下载黄p国产| 又爽又黄a免费视频| 特级一级黄色大片| 熟女电影av网| 国内少妇人妻偷人精品xxx网站| 少妇被粗大猛烈的视频| 国产不卡一卡二| 国产精品av视频在线免费观看| 精品人妻视频免费看| 欧美bdsm另类| 日日撸夜夜添| 欧美zozozo另类| 麻豆精品久久久久久蜜桃| 高清在线视频一区二区三区 | 欧美激情久久久久久爽电影| 老司机影院毛片| av在线蜜桃| 亚洲精品乱码久久久久久按摩| 亚洲成人中文字幕在线播放| 亚洲av成人av| 搡老妇女老女人老熟妇| 久久国内精品自在自线图片| 非洲黑人性xxxx精品又粗又长| 特大巨黑吊av在线直播| 99热这里只有是精品50| 亚洲国产日韩欧美精品在线观看| av天堂中文字幕网| 免费看a级黄色片| 免费不卡的大黄色大毛片视频在线观看 | 亚洲第一区二区三区不卡| 精品人妻视频免费看| 国产黄色小视频在线观看| 干丝袜人妻中文字幕| 搞女人的毛片| 国产私拍福利视频在线观看| 三级毛片av免费| 午夜免费男女啪啪视频观看| 日本午夜av视频| 99国产精品一区二区蜜桃av| 久久人妻av系列| .国产精品久久| 免费av毛片视频| 亚洲va在线va天堂va国产| 国产综合懂色| 亚洲精品自拍成人| 亚洲av熟女| 精品久久久久久成人av| 国产成人精品久久久久久| 国产亚洲91精品色在线| 建设人人有责人人尽责人人享有的 | 自拍偷自拍亚洲精品老妇| 美女xxoo啪啪120秒动态图| 国产精品一二三区在线看| 国产免费男女视频| 亚洲伊人久久精品综合 | 成人高潮视频无遮挡免费网站| 亚洲精品成人久久久久久| 日韩av在线大香蕉| 联通29元200g的流量卡| 国产精品无大码| 久久精品久久精品一区二区三区| 老女人水多毛片| 日本黄色视频三级网站网址| 有码 亚洲区| 精品无人区乱码1区二区| 91狼人影院| 美女大奶头视频| 日日摸夜夜添夜夜爱| 日本三级黄在线观看| 精品国产一区二区三区久久久樱花 | 国产在视频线精品| 亚洲国产精品久久男人天堂| 乱码一卡2卡4卡精品| 色哟哟·www| 男女视频在线观看网站免费| 乱系列少妇在线播放| 国产v大片淫在线免费观看| 青春草视频在线免费观看| 少妇裸体淫交视频免费看高清| 欧美zozozo另类| 亚洲精品影视一区二区三区av| 18禁裸乳无遮挡免费网站照片| 中文乱码字字幕精品一区二区三区 | 国产成人91sexporn| 九九热线精品视视频播放| 久久久久九九精品影院| 亚洲欧美精品综合久久99| 久久这里有精品视频免费| 国产老妇女一区| 免费观看a级毛片全部| 国产一区二区在线av高清观看| 午夜老司机福利剧场| 午夜精品国产一区二区电影 | 免费看光身美女| eeuss影院久久| 丰满少妇做爰视频| av专区在线播放| 人人妻人人澡欧美一区二区| 丰满少妇做爰视频| 18+在线观看网站| 91av网一区二区| 亚洲精品影视一区二区三区av| 久久人妻av系列| 又粗又爽又猛毛片免费看| 一个人免费在线观看电影| 亚洲美女搞黄在线观看| 国产精品综合久久久久久久免费| 午夜亚洲福利在线播放| 久久久精品大字幕| 久久国产乱子免费精品| 麻豆成人午夜福利视频| 欧美日本视频| 在线免费观看的www视频| av女优亚洲男人天堂| 亚洲无线观看免费| 婷婷六月久久综合丁香| 午夜精品在线福利| 日本熟妇午夜| 高清av免费在线| 国产视频内射| 在线天堂最新版资源| 色综合站精品国产| 一卡2卡三卡四卡精品乱码亚洲| 精品熟女少妇av免费看| 亚洲av电影在线观看一区二区三区 | av在线天堂中文字幕| 久久久久久久国产电影| 亚洲激情五月婷婷啪啪| 一区二区三区乱码不卡18| 免费一级毛片在线播放高清视频| 欧美bdsm另类| 非洲黑人性xxxx精品又粗又长| 国产精品一区二区三区四区免费观看| 久久精品综合一区二区三区| 久久精品国产鲁丝片午夜精品| 日韩欧美 国产精品| 偷拍熟女少妇极品色| 内地一区二区视频在线| 欧美精品一区二区大全| 在线观看美女被高潮喷水网站| 精品人妻一区二区三区麻豆| 亚洲精品,欧美精品| 性插视频无遮挡在线免费观看| 国产成人精品一,二区| 欧美日本亚洲视频在线播放| 亚洲精品国产av成人精品| 看片在线看免费视频| 久久精品久久久久久噜噜老黄 | av在线观看视频网站免费| 亚洲精品影视一区二区三区av| 秋霞伦理黄片| 国产精品福利在线免费观看| 在线免费十八禁| 国产探花极品一区二区| 床上黄色一级片| 中文字幕制服av| 国产一级毛片七仙女欲春2| 国产一区二区亚洲精品在线观看| 国产精品一区www在线观看| 久久久a久久爽久久v久久| 欧美三级亚洲精品| 精品免费久久久久久久清纯| 天堂网av新在线| 91aial.com中文字幕在线观看| 18禁裸乳无遮挡免费网站照片| 亚洲欧美成人精品一区二区| 国产精品一区二区三区四区久久| 女人被狂操c到高潮| 久久精品91蜜桃| 超碰av人人做人人爽久久| 国产 一区 欧美 日韩| 2021天堂中文幕一二区在线观| 日韩高清综合在线| 免费看光身美女| 又粗又硬又长又爽又黄的视频| 少妇熟女欧美另类| 亚洲欧美精品自产自拍| 亚洲五月天丁香| 大又大粗又爽又黄少妇毛片口| 97人妻精品一区二区三区麻豆| 99久久精品国产国产毛片| 特级一级黄色大片| 国产亚洲91精品色在线| 精品人妻一区二区三区麻豆| 久久99蜜桃精品久久| 2021少妇久久久久久久久久久| 久久精品国产亚洲av涩爱| 亚州av有码| 久久久国产成人精品二区| 永久网站在线| 久久午夜福利片| 日韩成人伦理影院| 亚洲av成人av| 老女人水多毛片| 国产 一区精品| 国产精品熟女久久久久浪| 欧美激情国产日韩精品一区| 久久久久久大精品| 国产免费又黄又爽又色| 久久久久久久久大av| 国产精品一二三区在线看| 成年女人看的毛片在线观看| av视频在线观看入口| 国产激情偷乱视频一区二区| 五月玫瑰六月丁香| 18禁动态无遮挡网站| 一区二区三区高清视频在线| 午夜老司机福利剧场| 欧美人与善性xxx| 亚洲18禁久久av| 亚洲人成网站在线播| 国产高清不卡午夜福利| 亚洲自偷自拍三级| 国产黄色视频一区二区在线观看 | 好男人在线观看高清免费视频| 日本熟妇午夜| 听说在线观看完整版免费高清| 国产成人a区在线观看| 美女大奶头视频| 国产精品一区www在线观看| 亚洲经典国产精华液单| 久久精品久久精品一区二区三区| 国产伦理片在线播放av一区| 综合色av麻豆| 免费人成在线观看视频色| 99久久精品热视频| 亚洲av不卡在线观看| 精品人妻偷拍中文字幕| 一本一本综合久久| 欧美三级亚洲精品| 18禁裸乳无遮挡免费网站照片| 免费看光身美女| 九九热线精品视视频播放| 久久人妻av系列| 91av网一区二区| 欧美xxxx黑人xx丫x性爽| 久久精品国产99精品国产亚洲性色| 一个人看视频在线观看www免费| 菩萨蛮人人尽说江南好唐韦庄 | 麻豆一二三区av精品| 日产精品乱码卡一卡2卡三| 最近视频中文字幕2019在线8| 在线免费观看不下载黄p国产| 亚洲性久久影院| 自拍偷自拍亚洲精品老妇| 欧美一区二区国产精品久久精品| 亚洲av成人精品一区久久| 热99在线观看视频| 国产精品久久电影中文字幕| 日韩欧美精品v在线| 狂野欧美白嫩少妇大欣赏| 日本免费在线观看一区| 69av精品久久久久久| 国产精品人妻久久久久久| 国产精品人妻久久久影院| 国产精品久久电影中文字幕| 最新中文字幕久久久久| 五月玫瑰六月丁香| 中文在线观看免费www的网站| 日本色播在线视频| 一级黄片播放器| 中文天堂在线官网| 国产精品嫩草影院av在线观看| 三级经典国产精品| 亚洲国产精品成人综合色| 高清视频免费观看一区二区 | 国产精品一区www在线观看| 欧美日韩一区二区视频在线观看视频在线 | 成人亚洲欧美一区二区av| 69人妻影院| 色5月婷婷丁香| 亚洲精品国产成人久久av| 免费人成在线观看视频色| 日韩欧美三级三区| 一级爰片在线观看| 中文精品一卡2卡3卡4更新| 中文字幕人妻熟人妻熟丝袜美| 亚洲国产精品sss在线观看| 欧美xxxx性猛交bbbb| 亚洲中文字幕一区二区三区有码在线看| 亚洲五月天丁香| www.av在线官网国产| 超碰av人人做人人爽久久| 少妇的逼水好多| 国产亚洲91精品色在线| 联通29元200g的流量卡| 国产一区二区在线av高清观看| 国产日韩欧美在线精品| 亚洲av成人av| 免费人成在线观看视频色| 国产成年人精品一区二区| 一卡2卡三卡四卡精品乱码亚洲| 少妇人妻一区二区三区视频| 女人被狂操c到高潮| av在线观看视频网站免费| 久久精品夜色国产| 日产精品乱码卡一卡2卡三| 久久精品夜色国产| 国产亚洲5aaaaa淫片| 国产黄色视频一区二区在线观看 | 免费看日本二区| 国产精品福利在线免费观看| 久久久久性生活片| 国产亚洲5aaaaa淫片| 一级黄片播放器| 亚洲精品自拍成人| 建设人人有责人人尽责人人享有的 | or卡值多少钱| 97超碰精品成人国产| 精品午夜福利在线看| 久热久热在线精品观看| 亚洲av日韩在线播放| 一区二区三区乱码不卡18| 三级男女做爰猛烈吃奶摸视频| 六月丁香七月| 在线天堂最新版资源| 国语对白做爰xxxⅹ性视频网站| 成人亚洲欧美一区二区av| 精品久久久久久久末码| 插逼视频在线观看| 一本一本综合久久| 91久久精品电影网| 秋霞在线观看毛片| 少妇人妻一区二区三区视频| 午夜福利成人在线免费观看| 最新中文字幕久久久久| 又爽又黄a免费视频| 美女国产视频在线观看| 观看免费一级毛片| 亚洲国产欧美在线一区| 一级毛片aaaaaa免费看小| 国产一区二区在线av高清观看| 啦啦啦韩国在线观看视频| 国产高清视频在线观看网站| 最近最新中文字幕大全电影3| 欧美日韩在线观看h| 成人性生交大片免费视频hd| 欧美不卡视频在线免费观看| 18禁在线无遮挡免费观看视频| av福利片在线观看| 国产亚洲av嫩草精品影院| 高清午夜精品一区二区三区| 国产片特级美女逼逼视频| 国产免费一级a男人的天堂| 一本一本综合久久| 91午夜精品亚洲一区二区三区| 国产中年淑女户外野战色| 国产亚洲5aaaaa淫片| 啦啦啦啦在线视频资源| 国产不卡一卡二| 日本三级黄在线观看| 亚洲伊人久久精品综合 | 少妇丰满av| 亚洲久久久久久中文字幕| 久久婷婷人人爽人人干人人爱| 尤物成人国产欧美一区二区三区| 亚洲av免费在线观看| 中文字幕久久专区| 狂野欧美激情性xxxx在线观看| 中文资源天堂在线| av在线播放精品| 色综合色国产| 美女cb高潮喷水在线观看| av在线蜜桃| 亚洲欧美一区二区三区国产| av在线观看视频网站免费| 久久精品国产99精品国产亚洲性色| 精品久久久久久久久亚洲| 亚洲久久久久久中文字幕| 久久99热这里只有精品18| 又爽又黄a免费视频| 亚洲精品色激情综合| 久久久精品大字幕| 狂野欧美激情性xxxx在线观看| 国产成人一区二区在线| 欧美zozozo另类| 老司机影院毛片| 国产精华一区二区三区| 男女啪啪激烈高潮av片| 免费看日本二区| 成人国产麻豆网| 精品久久久久久久久久久久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产亚洲精品久久久com| 1000部很黄的大片| 国产老妇伦熟女老妇高清| 人人妻人人澡人人爽人人夜夜 | 国产人妻一区二区三区在| 天堂影院成人在线观看| 国产精品福利在线免费观看| 一本一本综合久久| 色综合色国产| 乱人视频在线观看| 国产精品国产高清国产av| 欧美成人一区二区免费高清观看| 日本-黄色视频高清免费观看| av女优亚洲男人天堂| 汤姆久久久久久久影院中文字幕 | 欧美zozozo另类| 国产精品国产高清国产av| 日韩欧美精品免费久久| 欧美一区二区精品小视频在线| 最近的中文字幕免费完整| 国产午夜精品久久久久久一区二区三区| 成人二区视频| 日日撸夜夜添| 天堂av国产一区二区熟女人妻| 免费大片18禁| 精品不卡国产一区二区三区| 精品久久久久久久末码| 欧美激情久久久久久爽电影| 岛国毛片在线播放| 热99re8久久精品国产| 亚洲,欧美,日韩| 国产成年人精品一区二区| 亚洲在线自拍视频| 精品午夜福利在线看| 精品久久久噜噜| 91av网一区二区| 少妇人妻精品综合一区二区| 国内精品美女久久久久久| 午夜老司机福利剧场| 国产黄片美女视频| 69av精品久久久久久| 国产成人freesex在线| 激情 狠狠 欧美| 色尼玛亚洲综合影院| 美女大奶头视频| 成人鲁丝片一二三区免费| 久久久久精品久久久久真实原创| 国产精品麻豆人妻色哟哟久久 | 性插视频无遮挡在线免费观看| 午夜福利在线观看免费完整高清在| 亚洲人与动物交配视频| av免费观看日本| 国产又黄又爽又无遮挡在线| 狂野欧美激情性xxxx在线观看| 岛国毛片在线播放| 久久久色成人| 亚洲乱码一区二区免费版| 免费黄网站久久成人精品| 亚洲国产欧洲综合997久久,| 麻豆成人av视频| 天天躁日日操中文字幕| 22中文网久久字幕| 一卡2卡三卡四卡精品乱码亚洲| 国产一区亚洲一区在线观看| 欧美日韩国产亚洲二区| 性色avwww在线观看| 日韩av在线免费看完整版不卡| 老司机福利观看| av又黄又爽大尺度在线免费看 | 日本猛色少妇xxxxx猛交久久| 久久久久久久久久成人| 最近手机中文字幕大全| 人人妻人人澡欧美一区二区| 天堂影院成人在线观看| 噜噜噜噜噜久久久久久91| h日本视频在线播放| 中文乱码字字幕精品一区二区三区 | 少妇被粗大猛烈的视频| 中文字幕久久专区| 一夜夜www| 国产午夜福利久久久久久| 国产视频内射| 日日撸夜夜添| 国产亚洲精品av在线| 亚洲高清免费不卡视频| 日韩精品青青久久久久久| 内地一区二区视频在线| 国国产精品蜜臀av免费| 看十八女毛片水多多多| 乱系列少妇在线播放| 国产不卡一卡二| 精品国内亚洲2022精品成人| 国产黄片视频在线免费观看| 亚洲中文字幕一区二区三区有码在线看| 麻豆av噜噜一区二区三区| 国产精品久久久久久精品电影| 老师上课跳d突然被开到最大视频| 爱豆传媒免费全集在线观看| 91狼人影院| 69av精品久久久久久| 亚洲精品aⅴ在线观看| 男人狂女人下面高潮的视频| 五月玫瑰六月丁香| 亚洲欧美日韩东京热| 久久国内精品自在自线图片| 精品人妻视频免费看| 一级爰片在线观看| 91在线精品国自产拍蜜月| 国产免费福利视频在线观看| 欧美成人精品欧美一级黄| 国产亚洲91精品色在线| 黄色一级大片看看| 久99久视频精品免费| 日韩中字成人| 国产精品电影一区二区三区| 91精品伊人久久大香线蕉| 欧美精品一区二区大全| 欧美高清性xxxxhd video| 久久精品综合一区二区三区| av天堂中文字幕网| 麻豆精品久久久久久蜜桃| 我的女老师完整版在线观看| 欧美日韩国产亚洲二区| 一本一本综合久久| eeuss影院久久| av专区在线播放| 性插视频无遮挡在线免费观看| 亚洲精品亚洲一区二区| 天堂影院成人在线观看| 我要搜黄色片| 国产免费一级a男人的天堂| 亚洲av不卡在线观看| 精品久久国产蜜桃| av天堂中文字幕网| 色视频www国产| 国产精品人妻久久久影院| 亚洲最大成人中文| 亚洲成人久久爱视频| 亚洲美女视频黄频| 久久久欧美国产精品| 欧美xxxx黑人xx丫x性爽| 人人妻人人澡欧美一区二区| 国产一区有黄有色的免费视频 | 禁无遮挡网站| 精品人妻视频免费看| 免费人成在线观看视频色| 欧美成人a在线观看| 亚洲精品久久久久久婷婷小说 | 婷婷六月久久综合丁香| 国产亚洲精品av在线| 亚洲av免费高清在线观看| 看非洲黑人一级黄片| 麻豆一二三区av精品| 日韩高清综合在线| 国模一区二区三区四区视频| 国产午夜精品久久久久久一区二区三区| 国产免费又黄又爽又色| 免费搜索国产男女视频| 国产极品天堂在线| 久久久精品大字幕| 国产成人a∨麻豆精品| 国产精品国产三级专区第一集| 十八禁国产超污无遮挡网站| 日本av手机在线免费观看| 午夜福利高清视频| 乱码一卡2卡4卡精品| 69人妻影院| 久久久久久九九精品二区国产| 国产精品久久电影中文字幕| 亚洲av电影在线观看一区二区三区 | 国产成人a区在线观看| 99国产精品一区二区蜜桃av| 神马国产精品三级电影在线观看| 久久久久久久亚洲中文字幕| 91久久精品国产一区二区成人| 亚洲精品久久久久久婷婷小说 | 亚洲国产精品专区欧美| 中文资源天堂在线| 精品一区二区三区视频在线| 久久久成人免费电影| 色5月婷婷丁香| 在线免费十八禁| 国产成人免费观看mmmm| 久久鲁丝午夜福利片| 日韩 亚洲 欧美在线| 日韩欧美三级三区| 国产精品.久久久| 99热这里只有是精品在线观看| 久久精品影院6| 色网站视频免费| 成人二区视频| 丰满乱子伦码专区| 寂寞人妻少妇视频99o|