• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Preliminary Phylogenetic Analysis of Luidia (Paxillosida:Luidiidae) from Chinese Waters with Cytochrome Oxidase Subunit I (COI) Sequences

    2013-07-29 03:00:50XIAONing1LIURuiyu1YUANShuai3andSHAZhongli1
    Journal of Ocean University of China 2013年3期

    XIAO Ning1), 2), LIU Ruiyu1), YUAN Shuai3), and SHA Zhongli1), *

    ?

    A Preliminary Phylogenetic Analysis of(Paxillosida:Luidiidae) from Chinese Waters with Cytochrome Oxidase Subunit I (COI) Sequences

    XIAO Ning, LIU Ruiyu, YUAN Shuai, and SHA Zhongli

    1),,266071,2),100049,3),041000,

    Forbes(Paxillosida: Luidiidae) are common soft bottom sea stars with 49 described species. Because of substantial morphological diversity, the taxonomy of the genus is complex and hasn’t been resolved definitely. In order to resolve general taxonomic issues, and determine species boundaries and phylogenetic relationships within the genus, the sequences of cytochrome oxidase subunit Ι (COΙ) gene from 24 specimens ofbelonging to eight taxa in Chinese waters, were studied. Threesequences of two species in genusfrom GenBank were used to analyze the phylogenetic relationships. The molecular phylogeny exhibited three main clades, each with strong bootstrap support: Clade A includingfrom the Sea of Japan; Clade B including seven nominal species (von Martens,Goto,Liu, Liao and Li,Fisher,Fisher,Sladen andGray) from Chinese waters; and Clade C includingMüller & Troschel from Chinese waters. Our molecular phylogeny results support the morphological Quinaria-Group and Alternata-Group assigned by D?derlein. Seven nominal species we sampled do not exhibit genetic distances that are large enough to recognize them as separate species. Cryptic species may exist in ‘’ from the Yellow Sea and the Sea of Japan. Meaningful morphological characters need further investigation in.

    Echinodermata;; China; DNA taxonomy; cryptic species

    1 Introduction

    The starfish genusForbes, 1839, is the only valid genus of Luidiidae (Asteroidea: Paxillosida) with 49 species described worldwide to date (Mah and Hansson, 2012). It has a wide distribution, mainly in shallow waters of tropical and subtropical seas (Clark and McKnight, 2000), and is partly confined to temperate waters (Djakonov, 1950). These animals mainly feed on molluscs and other echinoderms, live in sandy or muddy substrate (Sloan, 1980). Only a few species are recorded in considerable depths, such asDüben & Koren, 1845 in up to 1300m (Clark and Downey, 1992).is a common inshore species and has been the subject of many biological studies (Schram., 2011; Gui., 2011).

    There are many taxonomic studies of. D?derlein (1920) divided more than 40 species ofincluding ten subgenera into four groups. He emphasized the form and appearance of primary ossicle systems and the deve- lopment of spines, spinelets, and pedicellariae as useful morphological features. Blake (1973) studied the internal consistency of D?derlein’s groups with respect to ossicle morphology. The ossicle morphology of most species ofsupports the systematic arrangement by D?derlein (1920). Fell (1963) elevated most of D?derlein’s subgenera to generic rank. Clark & Downey (1992) stated that the limits of the four main groups and some of the subgenera within them were blurred and did not accept Fell’s taxonomic treatment.

    In China,von Martens, 1865 andGoto, 1914 were first reported from Qingdao by Chang (1948). From then on six speciesoffrom southern China have been recorded (Liao and Clark, 1995), includingFisher, 1913,Gray, 1840,Sladen, 1889,Müller & Troschel, 1842,Fisher, 1913 andvon Martens. Liu. (2006) described two new species,Liu, Liao & Li, 2006 from the Yellow Sea, andLiu, Liao & Li, 2006 from the South China Sea. To date, nine species ofhave been recorded from Chinese waters (Liu., 2007). However, morphological variation is very high inand taxonomic boundaries are difficult to be determined. Usually the taxonomic characters are not discrete, and many characters are only expressed in adult but not in juvenile specimens. Therefore many questions are still unsettled in the identification ofthrough morphology. For example, the identification between the sister speciesandremains questionable (Chang, 1948; Hayashi, 1973; Imaoka., 1990; Liao and Clark, 1995; Liu., 2006).

    Considering the morphological complexity, molecular phylogenetic analyses were carried out onliving in Chinese waters based on mitochondrial cytochrome oxidase subunit Ι (COΙ) sequence. Sequence data from GenBank for severalin the Sea of Japan were referred to for the analysis. The aim of this study is to resolve the general taxonomic issues, determine species boundaries and phylogenetic relationships within the genus.

    2 Materials and Methods

    2.1 Sample Collection

    All Chinesetaxa were selected as samples except., due to the loss of type material of this species. A minimum of three specimens per taxon were sequenced. Specimens were collected from coastal waters of mainland China by the National Comprehensive Oceanography Survey in 1958–1960, Beibu Gulf (Gulf of Tonkin) Comprehensive Oceanographic Survey in 1959– 1962, China’s offshore scientific expedition (open and shared voyage) in 2009 and a scientific expedition to the East China Sea in 2010. All samples (vouchers) examined in this study are not type materials and listed in Table 1. Based on the collection data, the locations of sampling stations are illustrated in Fig.1. In addition, the specimens were photographed to provide a visual voucher for confirming the identification of the specimens used in this study (Fig.2). Finally, we also borrowed some specimens offrom the Department of Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History (in Washington, D.C.) in order to check morphological characters (Table 2).

    Table 1 Sampling information

    Notes: SN, sampling number;CN, collection number.

    Fig.1 Locations of sampling stations.

    Table 2 Detailed information of the specimens in the NMNH Department of Invertebrate Zoology collections for the loan

    Note: – not available.

    Fig.2 Body photos of Luidia species and Craspidaster hesperus from Chinese waters. A,Luidia quinaria, Q2, abactinal view; B, Luidia quinaria, Q2, actinal view; C, Luidia quinaria, Q5, abactinal view, Note dark radiating bands on disk and arms; D, Luidia quinaria, Q5, actinal view; E, Luidia yesoensis, Y1, abactinal view; F, Luidia yesoensis, Y1,actinalview; G, Luidia changi, C1, abactinal view; H, Luidia changi, C1,actinal view; I, Luidia orientalis, O2,abactinal view; J, Luidia orientalis, O2,actinal view; K, Luidia avicularia, A3, abactinal view; L, Luidia avicularia, A3,actinal view; M, Luidia longispina, L2, abactinal view; N, Luidia longispina, L2,actinal view; O, Luidia hardwicki, H2,abactinal view; P, Luidia hardwicki, H2, actinalview; Q, Luidia maculata, M2, abactinal view; R, Luidia maculata, M2, actinalview; S, Craspidaster hesperus, W3,abactinal view; T, Craspidaster hesperus, W3,actinal view. Scale bar=10mm.

    2.2 DNA Extraction, PCR Amplification and Sequencing

    Genomic DNA was extracted from tube foot tissue using TIANamp Marine Animals DNA Kit (TIANGEN). A fragment of COI was amplified with standard polymerase chain reaction (PCR) and directly sequenced after purification. One pair of primers was used for PCR and sequencing: ECOΙA (5’ACCATGCAACTAAGACGAT- GA 3’) (Knott and Wray, 2000) and HCO (5’ TAAACTT- CAGGGTGACCAAAAATCA 3’) (Folmer., 1994). The amplification was conducted in a reaction mixture containing 0.125μL of exTaq polymerase (250U, TaKaRa), 2.5μL of exTaq buffer, 2.0μL of MgCl(25mmolL), 1.0μL of dNTPs (25nmol), 0.5μL of primers (10pmol), 5.0μL of template DNA and ddHO to a total volume of 25μL. Conditions for amplification included an initial denaturation at 95℃ for 5min followed by 30 cycles of 94℃ for 30s, annealing for 45s at 50℃, extension at 72℃ for 1min, which was followed by a final extension at 72℃ for 10min. PCR products were purified with a SanPrep Colum DNA Gel Extraction Kit (Sangon) and sequencing was conducted with ABI Big Dye protocols.

    2.3 Sequence Alignment and Phylogenetic Analysis

    The COΙ sequences alignments were performed using Clustal X with default parameters. Kimura 2-parameter genetic distances for COΙ were calculated using MEGA, Ver. 4 (Tamura., 2007). Maximum parsimony (MP), maximum likelihood (ML), neighbour joining (NJ) and Bayesian inference (BI) approaches were employed to construct phylogenetic trees. MP was implemented with the heuristic search option in PAUP 4.0b10 (Swofford, 2002). All informative bases in MP analyses were weighted equally and unordered. Bootstrapping proportions (BSP) (Felsenstein, 1985) with 1000 replicates were used for nodal evaluations. For ML, the evolutionary model that best fit the data set was selected using the likelihood ratio test (Goldman, 1993), and implemented in ModelTest version 3.06 (Posada and Crandall, 1998). Analyses were based on the selected model (TrN+G) using the heuristic search algorithm. An NJ phenogram was constructed and used as the initial topology for branch swapping. Bayesian inference analyses were performed with MrBayes 3.0 (Huelsenbeck and Ronquist, 2001). All Bayesian analyses were initiated with random starting trees. The site-specific rates were estimated during the run. Four Markov chains were used and the data set was run for 1×10generations to allow for adequate time of convergence. Trees were sampled every 100 generations. After approximately 20000 generations, the log-likely- hood values of each sampled tree stabilized. The last 18, 001 sampled trees were used to estimate the 50% majority rule consensus tree and the Bayesian posterior probabilities.

    Twenty four samples were sequenced successfully and the sequences were used in the final analyses.(GenBank Accession Nos. AB183558 and NC006664) and(Grube, 1866) (GenBank Accession No. DQ380243) were included in these analyses and(Müller & Troschel, 1840) (Paxillosida: Astropectinidae) was selected as the outgroup.

    3 Results

    3.1 General Sequence Characteristics

    The COI sequences consisted of 685 base pairs. In total, 202 nucleotide sites were potentially phylogenetic informative (29.5%). The average content of G/C was 43%.

    3.2 Sequence Divergence

    Kimura 2-Parameter distance is showed in Table 3. Genetic distances between individuals of the same taxa of Chinesetaxa ranged from 0.1% to1.3%, and those across the taxa ranged from 0% to 26.6%. Surprisingly, small genetic distances existed in the seven nominal species(,,,,,and), ranging from 0 to 1.6%. In contrast,individuals from the Sea of Japan and the Yellow Sea showed exceptional levels of genetic divergence (12.9%–13.1%).was highly distinct from othertaxa, with genetic distances ranging from 24.2% to 26.6%.

    3.3 Tree Topology

    Six unrooted cladograms were produced in the MP analyses, and the strict consensus tree included four main branches (Fig.3). Three clades were well supported by high bootstrap support (100%): Clade A (AB 183558+NC 006664), Clade B (a large clade with(Q1 to Q6),(Y1 to Y3),(C1 to C3),(O1 to O3),(A1 and A3),(L1 to L3) and(H1 and H2), and Clade C (M1+M2), which are also shown in the ML and BI trees with strong bootstrap support (see Figs.4 and 5). Furthermore, all three clades were well separated (13%–26%, see Table 4). By contrast, taxa within each clade exhibited small divergences (typically less than 1.0%, see Table 5). One basal node and some subordinate branches in the MP, ML and BI trees were not all well supported. Therefore, it was unable to resolve the relationship betweenDQ 380243 and othertaxa.

    Fig.4 Maximum likelihood tree based on COΙ sequences. Bootstrap support values are indicated above nodes. See Table 1 for collection locality of specimens. (JPS, Sea of Japan; BOS, Bohai Sea; YS, Yellow Sea; ECS, East China Sea; SCS, South China Sea; TKG, Tonkin Gulf).

    Fig.5 Bayesian inference tree based on COΙ sequences. Posterior probabilities are indicated above nodes. See Table 1 for collection locality of specimens. (JPS, Sea of Japan; BOS, Bohai Sea; YS, Yellow Sea; ECS, East China Sea; SCS, South China Sea; TKG, Tonkin Gulf).

    Table 4 Distances between clades

    Notes: The upper-right half gives the values of standard error. The lower-left half gives evolutionary distance values.

    Table 5 Distances within clades

    Notes: d, estimate; S. E., standard error.

    4 Discussion

    4.1 Molecular Phylogeny and the Classification of D?derlein (1920) in Chinese

    D?derlein (1920) stated that there are four major groups inbased on morphological characters: Quinaria-Group, Ciliaris-Group, Clathrata-Group, and Alternata-Group. Systematic arrangement of some Chineseby D?derlein (1920) is shown in Table 6. In this study,,andare all clustered within the Clade B. Moreover,specimens are clustered into a separate clade as D?derlein suggested, not in the same group as the above three species. However,also appears in Clade B. Molecular data supportedas a member of the Quinaria-Group, which D?derlein considered belonging to the Ciliaris-Group.D?derlein (1920) did not assignto any group and neglected; our molecular data place these two species in the Quinaria- Group together with, which has been found and described after his classification. Though the number of taxa sampled is small and the sample is limited to Chinese species in the present study, the molecular phylogeny supports the distinction between the Quinaria-Group and Alternata-Group. With regard to the division of the Chinese Alternata/Quinaria Groups, the important characters are the presence or absence of pedicellariae close to the mouth and marked dark patches on the dorsal surface. From a broad perspective, further sampling oftaxa from other regions of the world would be highly desirable. It could have helped with the discussion or understanding of the D?derlein’s overall taxonomic groups.

    Table 6 Systematic arrangement of some Chinese Luidia by D?derlein (1920)

    Note:indefinite.

    4.2 Conflict Between Molecular Systematic and Traditional Taxonomy at the Species Level

    Molecular systematic studiesoften conflict with traditional, morphology-based taxonomy, which is due tophenotypic difference arising from both environmental variation and genetic divergences. For example, taxonomically different species are sometimes genetically indistinguishable from each other (Williams, 2000). In contrast, a widespread ‘species’ is actually a species- complex, and cryptic speciation may have occurred (Zulliger and Lessios, 2010).

    Our phylogenetic analyses revealed that the Chineseare divided into two genetically distinct monophyletic clades B and C. The first one includes seven nominal taxa,,,,,,and, which exhibited substantial morphological diversity (Fig.2A–P) and only show subtle differences for COI (ranging from 0 to 1.6%). In COI, the intraspecies divergence of Asteroidea ranges from 0 to 1.85% (Mean= 0.53%±0.13%) and the interspecies divergence of Asteroidea ranges from 2.17% to 22.85% (Mean=14.75%±0.62%) (Ward., 2008). The smallest interspecific distance was employed to define species boundaries in. Therefore, this low genetic divergence (less than 2% for COI) indicates that samples identified as,,,,,andvery likely belong to the same species. Considering that the incomplete speciation events can lead to conflicting genetic and morphological variation, it is possible that there is not enough time for COI to evolve diagnostic differences. As a result, many species share the identical DNA barcodes. However, the study of Ward. (2008)showed that DNA barcoding is likely to be an effective, accurate and useful method of species diagnosis for all five classes of Echinodermata. The present study also shows that genetic divergences ofallow species identification and reveal cryptic species within known taxa. For example, divergence between species ofand theother taxa,and theother taxa,and theother taxa exhibits favorable levels (>20%). Therefore, the possibility of many different species sharing identical DNA barcodes has been considered little. The second clade consists ofwhich is very common in southern China. It is the best-known Indo-Pacific species of, and can be easily recognizable by its large body, eight arms and dorsal surface patterned with dark and light colours, which do not disappear after preservation (Liao and Clark, 1995; Clark and Rowe, 1971). Based on our examination, the distinct diagnostic character exists in both preserved and fresh specimens. The validity ofis also supported by molecular results.

    In the MP tree, theindividuals from the Sea of Japan form a separate clade with high support to otherindividuals from the Yellow Sea. Furthermore, the individuals from the Sea of Japan and the Yellow Sea show 12.9%–13.1% divergence for COI, which is substantially greater than typical intra-specific distance proposed by Ward(2008). Therefore, it is supposed there is a misidentification of the samples whose sequences are in GenBank, or a cryptic species exists. Recent molecular studies indicate that cryptic species are common in sea stars. For example, genetic data from COI and 16 allozyme loci suggest that there are two cryptic within the currently acceptedGray, 1840 (see Williams, 2000). Two mitochondrial gene regions and a nuclear gene region provide evidence of at least two biological species within the nominal species(Stimpson, 1862) (see Foltz., 2008). The result of molecule phylogeny ofbased on mtDNA sequences of 12S rRNA, 16S rRNA and COI revealed thatMüller & Tr?schel, 1842 andD?derlein, 1888 are species-com- plexes; cryptic speciation might have occurred within each of these morphospecies (Zulliger and Lessios, 2010). The cryptic species derived from different areas suggests that ecological and physical conditions (., different vertical ranges or different water masses or geographical isolation) may prevent the flow of genes between the Yellow Sea and the Sea of Japan. The application of echinoderm COI divergence rates (3.5% per million years, Lessios., 2008) suggests that the individuals ofin the Yellow Sea and the Sea of Japan diverged before 1.85Ma. Although we were not able to obtain some samples (GenBank Accession Nos. AB183- 558 and NC 006664) for morphological re-examination, we obtained and examined another specimen (USNM 1085982) from the Japan Sea (Toyama Bay). Only minor morphological differences (mainly in the paxillar structure) can be found between specimens from the Sea of Japan and the Yellow Sea. The morphology is very similar, and current descriptions ofdo not permit delineation of species.

    4.3 Reassessment of Current Diagnostic Morphological Characters

    Given the subtle genetic divergences within seven Chinese taxa (,,,,,and), it would be more appropriate to consider them as one species. Therefore, our results suggest that several morphological characters need to be reassessed.

    ,,anddisplay considerable variations with regard to the pedicellariae on the adambulacral and inferomarginal plates in specimens from Chinese waters and those borrowed from the NMNH. Therefore, we doubt if their occurrence is sufficiently constant to serve as a character of specific weight. Moreover, the shape of abactinal paxillar spinelets (., central and peripheral spinelets being uniform or the central spinelets markedly longer than the rest on lateral paxillae) is only a minor morphological difference. The study of the sea starshows that the variation in spinelet morphology may be due to the action of waves (Xiao., 2011). We suggest that the shape of abactinal paxillar spinelets should not be considered as a character of specific weight. It is noteworthy that the number and form of large, erect inferomarginal spines are the major differences between,and, which may need to be re-evaluated.

    In the northern waters of China, the identification of,andmight be confusing. Adults of(Fig.2C) are easily distinguished from the other species ofby their unique morphological characters, such as arms with a distinct dark area in disk center and along midradial line. However, young individuals (Fig.2A) are somewhat difficult to be distinguished from(Fig.2E) (abactinal surface uniformly dark grey or black, without radiating bands) since their arms are shorter and the dark radial midline is less distinct. Meanwhile,collected from the Yellow Sea differs fromandin details of abactinal plates, abactinal spinelets and body proportions (Liu., 2006). However, our molecular evidence reveals thatsamples from the Bohai Sea,samples andspecimens from the Yellow Sea might be conspecific. In other words, there may only be one species ofin the Yellow Sea and the Bohai Sea. Japanese samples from NMNH also reveal that the dark radial midline is variable in. Therefore we doubt whether the arm width and dark radial midline of upper side can be applied as characters with specific weight.

    5 Conclusions

    Phylogenetic analyses of Chinesebased on mitochondrial COI sequences support the distinction between Quinaria-Group and Alternata-Group as D?derlein (1920) assigned, but conflict with the current morphological taxonomy ofat the species level, except for. It is possible that the studied seven species,,,,,andare synonymized andGray, 1840 is the senior synonym. The results also show that cryptic speciation might have taken place inindividuals from Sea of Japan and the Yellow Sea. The present study shows that the combined analyses based on molecular gene sequence and morphological evidence represents a powerful technique for asteroid taxonomy.

    Acknowledgements

    This work was supported by the Knowledge Innovation Program of CAS (KSCX2-YW-N-0807), the Ministry of Science and Technology of the People’s Republic of China (2006FY110500), and IOCAS funding (2012IO 060104). The authors are grateful to Dr. Zhang Junlong at our laboratory (IOCAS) for his kind assistance with the figures. We thank David L. Pawson of Smithsonian Institution for facilitating the loan of some specimens of the genusfrom National Museum of Natural History. We also thank Dr. Song Linsheng (IOCAS) for his helpful comments.

    Blake, D. B., 1973. Ossicle morphology of some recent asteroids and description of some west American fossil asteroids., 104: 1-59.

    Chang, F. Y., 1948. Echinoderms of Tsingtao., 4 (2): 33-104.

    Clark, A. M., and Downey, M. E., 1992.., 3. Natural History Museum Publications, London, 794pp.

    Clark, A. M., and Rowe, F. W. E., 1971.. British Museum (Natural History), London, 238pp.

    Clark, H. E. S., and McKnight, D. G., 2000. The marine fauna of New Zealand: Echinodermata: Asteroidea (sea-stars). Order Paxillosida & Notomyotida., 116: 1-196.

    Djakonov, A. M., 1950. Starfish of the Soviet Union., 34: 1-203.

    D?derlein, L., 1888. Echinodermen von Ceylon.,3: 822-846.

    D?derlein, L., 1920. Die Asteriden der ‘Siboga’ Expedition. 2. Die Gattungand ihre Stammesgeschichte., 46b: 193-291, Figs.1–37.

    Düben, M. W., and Koren, J., 1845. Untitled (in German; under name of Lóven)., 1: 436-440.

    Fell, H. B., 1963. The phylogeny of sea-stars.., 246: 381-435.

    Fisher, W. K., 1913. New starfishes from the Philippine Islands, Celebes and Moluccas., 46: 201-224.

    Fleckenstein, J., 1985. Confidence limits on phylogenies: An approach using the bootstrap., 39 (4): 783-791.

    Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R., 1994. DNA primers for amplification of mitochondrial cytochromeoxidase subunit Ι from diverse metazoan invertebrates., 3: 294- 299.

    Foltz, D. W., Nguyen, A. T., Kiger J. R., and Mah, C. L., 2008. Pleistocene speciation of sister taxa in a North Pacific clade of brooding sea stars (Leptasterias)., 154: 593-602.

    Forbes, E., 1839. On the Asteriadae of the Irish Sea.,, 8: 114- 129.

    Goldman, N., 1993. Statistical tests of models of DNA substitution., 36: 182-198.

    Goto, S., 1914. A descriptive monograph of Japanese Asteroidea. 1. Archasteridae, Benthopectinidae, Porcellanasteridae, Astropectinidae, Luidiidae, Pentagonasteridae, Oreasteridae, Gymnasteriidae, Asterinidae.,, 29 (1): 1-808.

    Gray, J. E., 1840. A Synopsis of the Genera and Species of the Class Hypostoma (,Linnaeus)., 6: 175-184, 275-290.

    Grube, A. E., 1866. Einige neue Seesterne des heisigen zoologischen Museums., 43: 59-61.

    Gui, L. P., Liu, C. Z., Sun, J. F., and Guo, Y. Q., 2011.Chemical Constituents fromGoto., 44 (6): 99-101.

    Hayashi, R., 1973.,. Biology Laboratory, Imperial Household, Tokyo, 41-53.

    Huelsenbeck, J. P., and Ronquist, F., 2001. MrBayes: Bayesian inference of phylogeny., 17: 754-755.

    Imaoka, T., Irimura, S., Okutani, T., Oguro, C., Oji, T., Shigei, M., and Horikawa, H., 1990.. Vol. Ι. Japan Fisheries Resource Conservation Association Press, Tokyo, 159pp.

    Knott, K. E., and Wray, G. A., 2000. Controversy and consensus in asteroid systematics: new insights to ordinal familial relationships., 40 (3): 382-392.

    Lessios, H. A., 2008. The Great American Schism: divergence of marine organisms after the rise of the Central American Isthmus.,,,39:63-91.

    Liao, Y. L., 2008. Echinodermata. In:. Liu, J. Y., ed., Science Press, Beijing, 845- 876.

    Liao, Y. L., and Clark, A. M., 1995.. Science Press, Beijing, 614pp.

    Liu, W., Liao Y. L., and Li, X. Z., 2006. A new sea-star species (Asteroidea: Luidiidae) from the South China Sea., 54 (2): 441-445.

    Liu, W., Liao, Y. L., and Li, X. Z., 2006., a new sea star species (Echinodermata: Asteroidea: Luidiidae) from the Yellow Sea, with a review of two related species., 1315: 57-68.

    Liu, W., Liao, Y. L., and Li, X. Z., 2007. Report on the sea-star species of Luidiidae (Echinodermata, Asteroidea) from the Chinese waters., 32 (1): 234-240.

    Mah, C., and Hansson, H., 2012.Forbes, 1839. World Asteroidea database. Accessed through: World Asteroidea database at http://www.marinespecies.org/asteroidea/phia.hp? =taxdetails&id=123260 on 2012-02-16.

    Martens, E. von., 1865. Ueber ?stasiatiche Echinodermen. 1. Japanische Seesterne. 2. Chinesische Seesterne., 31: 345-360.

    Müller, J., and Troschel, F. H., 1840. Ueber die Gattungen der Asterien., 6: 318-326.

    Müller, J., and Troschel, F. H., 1842.. Braunschweig, 134pp.

    Posada, D., and Crandall, K. A., 1998. Modeltest: testing the model of DNA substitution., 14 (9): 817-818.

    Schram, J. B., McClintock, J. B., Angus, R. A., and Lawrence, J. M., 2011. Regenerative capacity and biochemical composition of the sea star(Say) (Echinodermata: Asteroidea) under conditions of near-future ocean acidification., 407 (2): 266-274.

    Sladen, W. P., 1889. Report on the Asteroidea collected by H. M. S. Challenger., 30: 1-935.

    Sloan, N. A., 1980. Aspects of the feeding biology of asteroids., 18: 57- 124.

    Stimpson, W., 1862. On new genera and species of starfishes of the family Pycnopodidae (Müll, and Trosch.), 8: 261- 273.

    Swofford, D. L., 2002. PAUP*. Phylogenetic Analysis Using Parsimony and Other Methods. Version 4. Sinauer Associates, Sunderland, MA.

    Tamura, K., Dudley, J., Nei, M., and Kumar, S., 2007. MEGA 4: molecular evolutionary genetics analysis (MEGA) software version 4.0.,24: 1596- 1599.

    Ward, R. D., Holmes, B. H., and O’Hara, T. D., 2008. DNA Barcoding discriminates echinoderm species., 8: 1202-1211.

    Williams, S. T., 2000. Species boundaries in the starfish genus., 136: 137-148.

    Xiao, N., Liao, Y. L., and Liu, R. Y., 2011. Records of the genusGray, 1840 (Echinodermata: Asteroidea: Echinasteridae) from Chinese waters., 3115: 1-20.

    Zulliger, D. E., and Lessios, H. A., 2010. Phylogenetic relationships in the genusGray (Paxillosida: Asteropectinidae) on a global scale: molecular evidence for morphological convergence, species-complexes and possible cryptic speciation., 2504: 1-19.

    (Edited by Qiu Yantao)

    10.1007/s11802-013-2158-0

    ISSN 1672-5182, 2013 12 (3): 459-468

    . Tel: 0086-532- E-mail: shazl@qdio.ac.cn

    (September 14, 2012; revised October 9, 2012; accepted January 4, 2013)

    ? Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2013

    欧美日本亚洲视频在线播放| 搡老熟女国产l中国老女人| 久久久久久久午夜电影| 婷婷精品国产亚洲av| 日日夜夜操网爽| 日韩大尺度精品在线看网址| 亚洲av中文字字幕乱码综合 | 老司机在亚洲福利影院| 真人做人爱边吃奶动态| 国产人伦9x9x在线观看| 两人在一起打扑克的视频| 国产色视频综合| 免费观看人在逋| 黄色视频不卡| 午夜福利18| 精品国产超薄肉色丝袜足j| 久久精品国产综合久久久| 中出人妻视频一区二区| 国产成人一区二区三区免费视频网站| 成人国语在线视频| 成年女人毛片免费观看观看9| 国产片内射在线| 中文字幕最新亚洲高清| 精品国产乱子伦一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 亚洲中文日韩欧美视频| av电影中文网址| 精品一区二区三区av网在线观看| 两人在一起打扑克的视频| 丰满人妻熟妇乱又伦精品不卡| 国产精品久久电影中文字幕| 国产精品 欧美亚洲| 中出人妻视频一区二区| 97超级碰碰碰精品色视频在线观看| 真人一进一出gif抽搐免费| 免费人成视频x8x8入口观看| 日韩欧美免费精品| 老汉色av国产亚洲站长工具| 国产精品久久久人人做人人爽| 夜夜看夜夜爽夜夜摸| 久热爱精品视频在线9| 国产激情欧美一区二区| 午夜福利视频1000在线观看| 久久久久国内视频| 色综合站精品国产| 国产一区二区在线av高清观看| 欧美激情高清一区二区三区| 一区二区三区精品91| 亚洲精品av麻豆狂野| 一本精品99久久精品77| 校园春色视频在线观看| 国产熟女午夜一区二区三区| 在线观看午夜福利视频| 欧美性猛交╳xxx乱大交人| 亚洲中文av在线| 午夜免费观看网址| 久久99热这里只有精品18| 欧美又色又爽又黄视频| 黄色成人免费大全| 精品福利观看| 日本成人三级电影网站| 女性被躁到高潮视频| 91成人精品电影| 国产三级黄色录像| aaaaa片日本免费| 国产成人精品久久二区二区免费| 97人妻精品一区二区三区麻豆 | 国产成人啪精品午夜网站| 欧美激情久久久久久爽电影| 他把我摸到了高潮在线观看| 香蕉国产在线看| 亚洲在线自拍视频| 12—13女人毛片做爰片一| 亚洲男人天堂网一区| 亚洲一码二码三码区别大吗| 中文字幕人妻熟女乱码| 91在线观看av| 国产精品98久久久久久宅男小说| 午夜a级毛片| 午夜福利在线观看吧| √禁漫天堂资源中文www| 国产精品99久久99久久久不卡| 亚洲精品久久成人aⅴ小说| 午夜亚洲福利在线播放| 午夜福利成人在线免费观看| 国产亚洲av高清不卡| 国产精品免费一区二区三区在线| 午夜精品久久久久久毛片777| 怎么达到女性高潮| 女人高潮潮喷娇喘18禁视频| 99国产精品一区二区蜜桃av| 精品久久久久久久久久久久久 | а√天堂www在线а√下载| 久久草成人影院| 757午夜福利合集在线观看| 久久精品aⅴ一区二区三区四区| 免费搜索国产男女视频| 亚洲在线自拍视频| 亚洲美女黄片视频| 亚洲av日韩精品久久久久久密| 三级毛片av免费| 麻豆一二三区av精品| 村上凉子中文字幕在线| 中文资源天堂在线| 亚洲aⅴ乱码一区二区在线播放 | 亚洲人成伊人成综合网2020| 一级毛片精品| 侵犯人妻中文字幕一二三四区| 午夜两性在线视频| 波多野结衣av一区二区av| 日韩三级视频一区二区三区| 日本a在线网址| 女警被强在线播放| e午夜精品久久久久久久| 亚洲第一电影网av| 精品第一国产精品| 50天的宝宝边吃奶边哭怎么回事| 免费一级毛片在线播放高清视频| 国内精品久久久久精免费| 9191精品国产免费久久| 制服人妻中文乱码| 亚洲免费av在线视频| 中亚洲国语对白在线视频| av福利片在线| 午夜激情福利司机影院| 麻豆国产av国片精品| 热99re8久久精品国产| 免费在线观看日本一区| 一级a爱视频在线免费观看| 国产亚洲精品久久久久久毛片| 免费在线观看完整版高清| 99在线视频只有这里精品首页| 精品第一国产精品| 波多野结衣av一区二区av| 男女视频在线观看网站免费 | 成年版毛片免费区| 女性生殖器流出的白浆| 精品久久久久久成人av| 精品国产亚洲在线| 免费看美女性在线毛片视频| 国产精品一区二区免费欧美| 人人妻人人澡欧美一区二区| 国产精华一区二区三区| 日日爽夜夜爽网站| av欧美777| 桃红色精品国产亚洲av| 久久久久久久久中文| 神马国产精品三级电影在线观看 | 久久久久精品国产欧美久久久| 精品国产超薄肉色丝袜足j| 老司机午夜福利在线观看视频| 午夜久久久在线观看| 亚洲avbb在线观看| 精品国产乱子伦一区二区三区| 91九色精品人成在线观看| 一级a爱视频在线免费观看| 一级毛片精品| 亚洲一区中文字幕在线| 国产99白浆流出| 啦啦啦免费观看视频1| 欧美激情 高清一区二区三区| 国产精品av久久久久免费| 1024手机看黄色片| 特大巨黑吊av在线直播 | 亚洲国产高清在线一区二区三 | 国产aⅴ精品一区二区三区波| 夜夜看夜夜爽夜夜摸| 国产亚洲欧美在线一区二区| 级片在线观看| 嫩草影视91久久| 亚洲国产精品成人综合色| 亚洲人成网站高清观看| 午夜免费成人在线视频| 久久精品91无色码中文字幕| 国产亚洲精品综合一区在线观看 | 免费人成视频x8x8入口观看| 亚洲av片天天在线观看| 1024香蕉在线观看| 精品午夜福利视频在线观看一区| 黄网站色视频无遮挡免费观看| 90打野战视频偷拍视频| 国产久久久一区二区三区| 精品国产亚洲在线| 大型av网站在线播放| 亚洲欧美日韩高清在线视频| 久久人人精品亚洲av| av超薄肉色丝袜交足视频| 亚洲精品av麻豆狂野| 日韩 欧美 亚洲 中文字幕| 亚洲五月婷婷丁香| 久久精品亚洲精品国产色婷小说| 亚洲久久久国产精品| 夜夜夜夜夜久久久久| 亚洲精品一卡2卡三卡4卡5卡| АⅤ资源中文在线天堂| 亚洲国产精品久久男人天堂| 99国产极品粉嫩在线观看| 亚洲黑人精品在线| 99久久99久久久精品蜜桃| 久久精品国产亚洲av香蕉五月| 最近在线观看免费完整版| 亚洲va日本ⅴa欧美va伊人久久| 久久久久久久久久黄片| 婷婷丁香在线五月| 嫩草影视91久久| av超薄肉色丝袜交足视频| 99国产精品99久久久久| 亚洲成人国产一区在线观看| www国产在线视频色| 亚洲精品国产区一区二| 免费搜索国产男女视频| 欧美乱色亚洲激情| 久久久国产精品麻豆| 熟女少妇亚洲综合色aaa.| 丝袜在线中文字幕| 又大又爽又粗| 欧美国产精品va在线观看不卡| 精品乱码久久久久久99久播| 亚洲欧美精品综合久久99| 国产一区二区三区视频了| 中文字幕另类日韩欧美亚洲嫩草| 精品久久久久久久人妻蜜臀av| 美女免费视频网站| 午夜激情福利司机影院| 熟女电影av网| 母亲3免费完整高清在线观看| 窝窝影院91人妻| 国产不卡一卡二| 欧美色视频一区免费| 美女国产高潮福利片在线看| 国产成人欧美| 中国美女看黄片| 亚洲国产欧美网| 日韩精品免费视频一区二区三区| 亚洲欧美激情综合另类| 久久精品91蜜桃| 亚洲av美国av| 日本免费a在线| 国产一区二区在线av高清观看| 91av网站免费观看| av福利片在线| 看片在线看免费视频| 妹子高潮喷水视频| 日韩欧美一区二区三区在线观看| 久久久精品欧美日韩精品| www.www免费av| 欧美一级毛片孕妇| 国产精品一区二区免费欧美| 午夜两性在线视频| 亚洲国产看品久久| АⅤ资源中文在线天堂| 亚洲国产欧美一区二区综合| 精品一区二区三区四区五区乱码| 精品一区二区三区av网在线观看| 日韩精品中文字幕看吧| 欧美日本亚洲视频在线播放| 亚洲性夜色夜夜综合| 国产成人一区二区三区免费视频网站| 中文字幕久久专区| 动漫黄色视频在线观看| 亚洲真实伦在线观看| 国产一区二区在线av高清观看| 久久这里只有精品19| 一级毛片女人18水好多| 老司机在亚洲福利影院| 精品人妻1区二区| 亚洲无线在线观看| 日韩有码中文字幕| 怎么达到女性高潮| 国产精品综合久久久久久久免费| 中文字幕人妻丝袜一区二区| 大香蕉久久成人网| 最新美女视频免费是黄的| 亚洲熟女毛片儿| 国产91精品成人一区二区三区| 18禁裸乳无遮挡免费网站照片 | 精品高清国产在线一区| 午夜a级毛片| 大型av网站在线播放| 色尼玛亚洲综合影院| 香蕉久久夜色| 国产成人一区二区三区免费视频网站| 久久午夜综合久久蜜桃| 一二三四在线观看免费中文在| 久久婷婷成人综合色麻豆| 88av欧美| 久久天躁狠狠躁夜夜2o2o| 亚洲第一欧美日韩一区二区三区| 久久久久久久久中文| 国产三级在线视频| 美女高潮到喷水免费观看| 午夜免费激情av| 欧美大码av| 精品福利观看| 黄色 视频免费看| 男女床上黄色一级片免费看| 国产成人影院久久av| 午夜久久久在线观看| 中文字幕精品免费在线观看视频| 亚洲精品久久成人aⅴ小说| 十八禁人妻一区二区| 九色国产91popny在线| 精华霜和精华液先用哪个| 老司机午夜十八禁免费视频| 日本免费一区二区三区高清不卡| 一本一本综合久久| 亚洲中文字幕日韩| 黄片大片在线免费观看| 在线观看免费视频日本深夜| 又大又爽又粗| 在线观看免费视频日本深夜| 午夜福利在线观看吧| 婷婷亚洲欧美| 大型av网站在线播放| 久久精品亚洲精品国产色婷小说| 91av网站免费观看| 两性午夜刺激爽爽歪歪视频在线观看 | 国产熟女午夜一区二区三区| 老司机靠b影院| 久久精品91无色码中文字幕| 侵犯人妻中文字幕一二三四区| 国产成人精品无人区| 久久精品亚洲精品国产色婷小说| 国产亚洲精品久久久久5区| 亚洲午夜理论影院| 欧美性猛交╳xxx乱大交人| 欧美一级a爱片免费观看看 | 国产亚洲av嫩草精品影院| 在线观看66精品国产| 色播亚洲综合网| 亚洲最大成人中文| 亚洲av第一区精品v没综合| 99久久99久久久精品蜜桃| 国产亚洲欧美在线一区二区| 看黄色毛片网站| 亚洲精品粉嫩美女一区| 99国产精品99久久久久| 免费高清在线观看日韩| 亚洲av成人一区二区三| 哪里可以看免费的av片| 欧美成人免费av一区二区三区| 国产高清视频在线播放一区| 1024手机看黄色片| 午夜激情av网站| 成人亚洲精品一区在线观看| 欧美日本视频| 国产精品av久久久久免费| 国产亚洲精品综合一区在线观看 | 一级作爱视频免费观看| 少妇熟女aⅴ在线视频| 99re在线观看精品视频| 久久午夜亚洲精品久久| 两性午夜刺激爽爽歪歪视频在线观看 | 不卡一级毛片| 两个人视频免费观看高清| 中文字幕最新亚洲高清| 国产精品久久久久久亚洲av鲁大| 亚洲黑人精品在线| 成人一区二区视频在线观看| 久久欧美精品欧美久久欧美| 国产成人精品久久二区二区91| 淫妇啪啪啪对白视频| av免费在线观看网站| 久久久久久九九精品二区国产 | 精品国产乱码久久久久久男人| 搡老妇女老女人老熟妇| 99riav亚洲国产免费| 麻豆一二三区av精品| 一a级毛片在线观看| 日本一区二区免费在线视频| 欧美日韩精品网址| 长腿黑丝高跟| 欧美日韩亚洲国产一区二区在线观看| 亚洲国产日韩欧美精品在线观看 | 色尼玛亚洲综合影院| ponron亚洲| 亚洲一码二码三码区别大吗| 欧美最黄视频在线播放免费| av欧美777| aaaaa片日本免费| 看黄色毛片网站| 国产91精品成人一区二区三区| 狂野欧美激情性xxxx| 日韩欧美 国产精品| 色播亚洲综合网| 色播在线永久视频| 亚洲,欧美精品.| 亚洲色图 男人天堂 中文字幕| 亚洲精品久久国产高清桃花| 中文在线观看免费www的网站 | 可以在线观看毛片的网站| 日日夜夜操网爽| 午夜免费成人在线视频| 久久久久九九精品影院| 搡老熟女国产l中国老女人| 深夜精品福利| 91麻豆av在线| 熟女电影av网| 无遮挡黄片免费观看| 波多野结衣av一区二区av| 精品久久久久久久末码| 国产激情欧美一区二区| 深夜精品福利| 欧洲精品卡2卡3卡4卡5卡区| 不卡一级毛片| 日韩欧美免费精品| 成人欧美大片| 精品国产美女av久久久久小说| 老司机午夜福利在线观看视频| av天堂在线播放| 欧美色视频一区免费| 亚洲精品在线美女| 亚洲熟妇中文字幕五十中出| 国产又黄又爽又无遮挡在线| 欧美黑人精品巨大| 中出人妻视频一区二区| 大型黄色视频在线免费观看| 青草久久国产| 黄色成人免费大全| videosex国产| 黑人欧美特级aaaaaa片| 在线视频色国产色| 麻豆成人午夜福利视频| 手机成人av网站| 露出奶头的视频| svipshipincom国产片| 久久久久久人人人人人| 亚洲av成人不卡在线观看播放网| 国产成人精品无人区| 女人爽到高潮嗷嗷叫在线视频| 长腿黑丝高跟| 一本精品99久久精品77| 日韩 欧美 亚洲 中文字幕| x7x7x7水蜜桃| 国产成+人综合+亚洲专区| 欧美成人午夜精品| 国产精品av久久久久免费| 日韩大尺度精品在线看网址| 国产主播在线观看一区二区| 麻豆成人午夜福利视频| 国产一区二区三区视频了| 18禁裸乳无遮挡免费网站照片 | 国产99白浆流出| 亚洲黑人精品在线| 99热这里只有精品一区 | 长腿黑丝高跟| 久久草成人影院| 国产精品久久久久久亚洲av鲁大| 亚洲av熟女| 国产精品乱码一区二三区的特点| 国产三级黄色录像| 国产成人av激情在线播放| 村上凉子中文字幕在线| 日韩高清综合在线| 午夜激情福利司机影院| 欧美乱妇无乱码| 国产伦一二天堂av在线观看| 日本五十路高清| 69av精品久久久久久| 看免费av毛片| 男人舔女人下体高潮全视频| 禁无遮挡网站| 国产精品亚洲一级av第二区| 国产精品久久视频播放| 欧美日韩瑟瑟在线播放| 免费在线观看完整版高清| 欧美一级毛片孕妇| 亚洲国产欧美日韩在线播放| 国产精品 国内视频| 成人国产综合亚洲| 中文字幕av电影在线播放| 无遮挡黄片免费观看| 欧美人与性动交α欧美精品济南到| 欧美 亚洲 国产 日韩一| 成人免费观看视频高清| 欧美丝袜亚洲另类 | 欧美黄色片欧美黄色片| 精品久久久久久成人av| 丁香欧美五月| 国产精品二区激情视频| 丝袜人妻中文字幕| 午夜日韩欧美国产| 一二三四社区在线视频社区8| 成人国语在线视频| 久久久国产欧美日韩av| 性欧美人与动物交配| 午夜福利18| 婷婷丁香在线五月| 国产又色又爽无遮挡免费看| 人妻久久中文字幕网| www日本黄色视频网| 亚洲欧美精品综合久久99| 日韩精品免费视频一区二区三区| 国产亚洲欧美98| 美女免费视频网站| 日本三级黄在线观看| 黄色女人牲交| 中文在线观看免费www的网站 | 国产在线观看jvid| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲欧美精品综合一区二区三区| 久久中文字幕人妻熟女| 我的亚洲天堂| 午夜免费成人在线视频| 欧美+亚洲+日韩+国产| tocl精华| 精品国产超薄肉色丝袜足j| 国产成人精品久久二区二区91| 国语自产精品视频在线第100页| 在线观看午夜福利视频| 精品一区二区三区视频在线观看免费| 制服诱惑二区| 国产精品综合久久久久久久免费| 国产精品美女特级片免费视频播放器 | 亚洲av成人不卡在线观看播放网| 一区二区三区精品91| 亚洲三区欧美一区| tocl精华| 亚洲全国av大片| 亚洲人成电影免费在线| 日韩精品青青久久久久久| 欧美日韩福利视频一区二区| 成人国产一区最新在线观看| 国产97色在线日韩免费| 久久久国产欧美日韩av| 在线av久久热| 国产精品影院久久| 免费在线观看亚洲国产| 身体一侧抽搐| av超薄肉色丝袜交足视频| 日日爽夜夜爽网站| 欧美精品啪啪一区二区三区| 国产精品av久久久久免费| 国产精品永久免费网站| 国产熟女xx| 国产精品日韩av在线免费观看| 免费一级毛片在线播放高清视频| 亚洲国产欧洲综合997久久, | 亚洲av成人不卡在线观看播放网| 国产单亲对白刺激| 亚洲片人在线观看| 午夜久久久久精精品| 美女高潮到喷水免费观看| 国产伦一二天堂av在线观看| 色播亚洲综合网| 国产99白浆流出| 99久久国产精品久久久| 久久人人精品亚洲av| 亚洲欧美精品综合久久99| 国产精品久久久久久精品电影 | 长腿黑丝高跟| 久久精品国产综合久久久| 欧美日韩乱码在线| 久久久久国产精品人妻aⅴ院| 最近最新免费中文字幕在线| 色婷婷久久久亚洲欧美| a级毛片a级免费在线| 亚洲国产日韩欧美精品在线观看 | 欧美黄色淫秽网站| 妹子高潮喷水视频| 日韩高清综合在线| 亚洲精品一卡2卡三卡4卡5卡| av超薄肉色丝袜交足视频| 国产精品乱码一区二三区的特点| 叶爱在线成人免费视频播放| 亚洲自偷自拍图片 自拍| 美女高潮到喷水免费观看| 亚洲av中文字字幕乱码综合 | 在线观看免费视频日本深夜| 少妇裸体淫交视频免费看高清 | 欧美中文日本在线观看视频| 国产精品久久久久久亚洲av鲁大| 国产精品亚洲av一区麻豆| 男人舔女人下体高潮全视频| 国产精品 欧美亚洲| 婷婷六月久久综合丁香| 中文在线观看免费www的网站 | 亚洲五月婷婷丁香| 久久久久国产精品人妻aⅴ院| 一级片免费观看大全| 日本成人三级电影网站| 一区二区三区精品91| 大型黄色视频在线免费观看| 国产成人av教育| av天堂在线播放| 欧美另类亚洲清纯唯美| 欧美黑人欧美精品刺激| 黑人操中国人逼视频| 狠狠狠狠99中文字幕| 亚洲人成网站在线播放欧美日韩| 色精品久久人妻99蜜桃| 国产高清视频在线播放一区| 国产成人欧美在线观看| 国产一卡二卡三卡精品| 精品高清国产在线一区| 99国产精品一区二区蜜桃av| 国产精品亚洲一级av第二区| 一级作爱视频免费观看| 婷婷精品国产亚洲av在线| 精品免费久久久久久久清纯| 国产欧美日韩一区二区精品| 午夜视频精品福利| 久久久久久亚洲精品国产蜜桃av| 欧美在线黄色| 国产精品永久免费网站| 国产欧美日韩精品亚洲av| 一区二区三区国产精品乱码| 亚洲人成77777在线视频| 曰老女人黄片| 男人的好看免费观看在线视频 | 国产精品一区二区精品视频观看| 久久亚洲真实| 18禁黄网站禁片午夜丰满| 欧美国产精品va在线观看不卡| 久久天躁狠狠躁夜夜2o2o|